Skip to main content

Advertisement

Log in

Facile Fabrication of Cotton-Based Thermoelectric Yarns for the Construction of Textile Generator with High Performance in Human Heat Harvesting

  • Research Article
  • Published:
Advanced Fiber Materials Aims and scope Submit manuscript

Abstract

Thermoelectric (TE) textiles which can harvest thermal energy from the human body, are highly desirable and vital to the charging of wearable electronics owing to their stable and long-term power output. The typical carbon nanotube (CNT) yarns or bismuth telluride (Bi2Te3) based inorganic TE materials used hitherto limit the development of TE textiles, because of their high cost and rareness. In this work, scalable and high-TE performance carbon nanotube composite yarns (CNTYs) are developed using p- and n-type tuneable multi-wall CNTs and single-wall CNTs as TE materials and waterborne polyurethane (WPU) as the binder. The mechanical properties of the CNTYs are tuned and improved considerably by adding a small amount of WPU. Furthermore, TE yarns with p- and n-type segmented structures are prepared by treating CNTYs with poly(3, 4-ethylene dioxythiophene): polystyrene sulfonate solution and n-type dopant polyetherimide, respectively. Based on the prepared p- and n-type segmented TE yarns, a TE textile with 75 p–n pairs that achieve outstanding TE output is fabricated. The TE textile can generate a high power density of 95.74 μW m−2 with a voltage density of 3.76 V m−2 at a temperature difference of 32 K. It provides an output voltage of ~ 37 mV outdoors (~ 12 ℃) when worn on the arm and demonstrates potential application to electronic devices after amplification. The fabrication method used in this study is not only a low-cost, scalable for preparing high-performance TE yarns but also realizes the body heat harvesting and temperature sensing of yarn-based TE textiles.

Graphical Abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

Data availability

Data available from the authors.

References

  1. Uzun S, Seyedin S, Stoltzfus AL, Levitt AS, Alhabeb M, Anayee M, Strobel CJ, Razal JM, Dion G, Gogotsi Y. Knittable and washable multifunctional MXene-coated cellulose yarns. Adv Funct Mater. 2019;29:1905015.

    Article  CAS  Google Scholar 

  2. Zheng YY, Zhang QH, Jin WL, Jing YY, Chen XY, Han X, Bao QY, Liu YP, Wang XH, Wang SR, Qiu YP, Di C-A, Zhang K. Carbon nanotube yarn based thermoelectric textiles for harvesting thermal energy and powering electronics. J Mater Chem A. 2020;8:2984.

    Article  CAS  Google Scholar 

  3. Jing TT, Xu BG, Yang YJ. Organogel electrode based continuous fiber with large-scale production for stretchable triboelectric nanogenerator textiles. Nano Energy. 2021;84: 105867.

    Article  CAS  Google Scholar 

  4. Sattar M, Yeo W-H. Recent advances in materials for wearable thermoelectric generators and biosensing devices. Materials. 2022;15:4315.

    Article  CAS  Google Scholar 

  5. Peng Y, Wang ZS, Shao YF, Xu JJ, Wang XD, Hu JC, Zhang K-Q. A review of recent development of wearable triboelectric nanogenerators aiming at human clothing for energy conversion. Polymers. 2023;15:508.

    Article  CAS  Google Scholar 

  6. Zhao DZ, Zhang KJ, Meng Y, Li ZY, Pi YC, Shi YJ, You JC, Wang RK, Dai ZY, Zhou BP, Zhong JW. Untethered triboelectric patch for wearable smart sensing and energy harvesting. Nano Energy. 2022;100: 107500.

    Article  CAS  Google Scholar 

  7. Bae J, Song J, Jeong W, Nandanapalli KR, Son N, Zulkifli NAB, Gwon G, Kim M, Yoo S, Lee H, Choi H, Lee S, Cheng HY, Kim C, Jang KI, Lee S. Multi-deformable piezoelectric energy nano-generator with high conversion efficiency for subtle body movements. Nano Energy. 2022;97: 107223.

    Article  CAS  Google Scholar 

  8. Wang YL, Zhou ZY, Zhou JB, Shao LH, Wang Y, Deng Y. High-performance stretchable organic thermoelectric generator via rational thermal interface design for wearable electronics. Adv Energy Mater. 2022;12:2102835.

    Article  CAS  Google Scholar 

  9. Fan WS, Shen ZY, Zhang Q, Liu F, Fu CG, Zhu TJ, Zhao XB. High-power-density wearable thermoelectric generators for human body heat harvesting. ACS Appl Mater Interfaces. 2022;14:21224.

    Article  CAS  Google Scholar 

  10. Liu L, Chen J, Liang LR, Deng L, Chen GM. A PEDOT: PSS thermoelectric fiber generator. Nano Energy. 2022;102: 107678.

    Article  CAS  Google Scholar 

  11. He XY, Gu JT, Hao YN, Zheng M, Wang R, Yu LM, Qin JY. Continuous manufacture of stretchable and integratable thermoelectric nanofiber yarn for human body energy harvesting and self-powered motion detection. Chem Eng J. 2022;450:137937.

    Article  CAS  Google Scholar 

  12. Jang D, Park KT, Lee S-S, Kim H. Highly stretchable three-dimensional thermoelectric fabrics exploiting woven structure deformability and passivation-induced fiber elasticity. Nano Energy. 2022;97: 107143.

    Article  CAS  Google Scholar 

  13. Lee JA, Aliev AE, Bykova JS, de Andrade MJ, Kim D, Sim HJ, Lepró X, Zakhidov AA, Lee J-B, Spinks GM, Roth S, Kim SJ, Baughman RH. Woven-yarn thermoelectric textiles. Adv Mater. 2016;28:5038.

    Article  CAS  Google Scholar 

  14. Zheng YY, Han X, Yang JW, Jing YY, Chen XY, Li QQ, Zhang T, Li GD, Zhu HT, Zhao HZ, Snyder GJ, Zhang K. Durable, stretchable and washable inorganic-based woven thermoelectric textiles for power generation and solid-state cooling. Energy Environ Sci. 2022;15:2374.

    Article  CAS  Google Scholar 

  15. Yang XN, Zhang K. Direct wet-spun single-walled carbon nanotubes-based p-n segmented filaments toward wearable thermoelectric textiles. ACS Appl Mater Interfaces. 2022;14:44704.

    Article  CAS  Google Scholar 

  16. Paleo AJ, Vieira EMF, Wan K, Bondarchuk O, Cerqueira MF, Bilotti E, Melle-Franco M, Rocha AM. Vapor grown carbon nanofiber based cotton fabrics with negative thermoelectric power. Cellulose. 2020;27:9091.

    Article  CAS  Google Scholar 

  17. Lu ZS, Zhang HH, Mao CP, Li CM. Silk fabric-based wearable thermoelectric generator for energy harvesting from the human body. Appl Energy. 2016;164:57.

    Article  CAS  Google Scholar 

  18. Sun TT, Zhou BY, Zheng Q, Wang LJ, Jiang W, Snyder GJ. Stretchable fabric generates electric power from woven thermoelectric fibers. Nat Commun. 2020;11:572.

    Article  CAS  Google Scholar 

  19. Zhang YC, Zhang QC, Chen GM. Carbon and carbon composites for thermoelectric applications. Carbon Energy. 2020;2:408.

    Article  CAS  Google Scholar 

  20. Zhang CY, Zhang Q, Zhang D, Wang MY, Bo YW, Fan XQ, Li FC, Liang JJ, Huang Y, Ma RJ, Chen YS. Highly stretchable carbon nanotubes/polymer thermoelectric fibers. Nano Lett. 2021;21:1047.

    Article  CAS  Google Scholar 

  21. Subjalearndee N, He NF, Cheng H, Tesatchabut P, Eiamlamai P, Limthongkul P, Intasanta V, Gao W, Zhang XW. Gamma (ɣ)-MnO2/rGO fibered cathode fabrication from wet spinning and dip coating techniques for cable-shaped Zn-ion batteries. Adv Fiber Mater. 2022;1:457.

    Article  Google Scholar 

  22. Ma LY, Nie Y, Liu YR, Huo F, Bai L, Li Q, Zhang SJ. Preparation of core/shell electrically conductive fibers by efficient coating carbon nanotubes on polyester. Adv Fiber Mater. 2021;3:180.

    Article  CAS  Google Scholar 

  23. Maity D, Rajavel K, Kumar RTR. Polyvinyl alcohol wrapped multiwall carbon nanotube (MWCNTs) network on fabrics for wearable room temperature ethanol sensor. Sens Actuat B Chem. 2018;261:297.

    Article  CAS  Google Scholar 

  24. Wu Q, Hu JL. A novel design for a wearable thermoelectric generator based on 3D fabric structure. Smart Mater Struct. 2017;26: 045037.

    Article  Google Scholar 

  25. Kim J-Y, Lee W, Kang YH, Cho SY, Jang K-S. Wet-spinning and post-treatment of CNT/PEDOT: PSS composites for use in organic fiber-based thermoelectric generators. Carbon. 2018;133:293.

    Article  CAS  Google Scholar 

  26. Ryu Y, Freeman D, Yu C. High electrical conductivity and n-type thermopower from double-/single-wall carbon nanotubes by manipulating charge interactions between nanotubes and organic/inorganic nanomaterials. Carbon. 2011;49:4745.

    Article  CAS  Google Scholar 

  27. Wang Y, Ke GZ, Chen SH, Jin XY. Fabrication and characterization of polyurethane and zirconium carbide coated cotton yarn. Cellulose. 2022;29:647.

    Article  CAS  Google Scholar 

  28. Gebhardt B, Hof F, Backes C, Müller M, Plocke T, Maultzsch J, Thomsen C, Hauke F, Hirsch A. Selective polycarboxylation of semiconducting single-walled carbon nanotubes by reductive sidewall functionalization. J Am Chem Soc. 2011;133:19459.

    Article  CAS  Google Scholar 

  29. Bharti M, Singh A, Singh BP, Dhakate SR, Saini G, Bhattacharya S, Debnath AK, Muthe KP, Aswal DK. Free-standing flexible multiwalled carbon nanotubes paper for wearable thermoelectric power generator. J Power Sourc. 2020;449: 227493.

    Article  CAS  Google Scholar 

  30. Yan H, Li QW, Zhang J, Liu ZF. Possible tactics to improve the growth of single-walled carbon nanotubes by chemical vapor deposition. Carbon. 2002;40:2693.

    Article  CAS  Google Scholar 

  31. Song HJ, Qiu Y, Wang Y, Cai KF, Li DL, Deng Y, He JQ. Polymer/carbon nanotube composite materials for flexible thermoelectric power generator. Compos Sci Technol. 2017;153:71.

    Article  CAS  Google Scholar 

  32. Wang LM, Zhang J, Guo YT, Chen XY, Jin XM, Yang QY, Zhang K, Wang SR, Qiu YP. Fabrication of core-shell structured poly (3, 4-ethylenedioxythiophene)/carbon nanotube hybrids with enhanced thermoelectric power factors. Carbon. 2019;148:290.

    Article  CAS  Google Scholar 

  33. Lan XQ, Wang TZ, Liu CC, Liu PP, Xu JK, Liu XF, Du YK, Jiang FX. A high performance all-organic thermoelectric fiber generator towards promising wearable electron. Compos Sci Technol. 2019;182: 107767.

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This research was funded by the Natural Science Foundation for Key Program of the Jiangsu Higher Education Institutions grant number 17KJA540002; Nantong Science and Technology Bureau, grant number JC2021043 and Natural Science Foundation of China, grant number 51603135, 51873134.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Jianchen Hu or Ke-Qin Zhang.

Ethics declarations

Conflict of interest

No conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (DOCX 1763 kb)

Supplementary file2 (MP4 33499 kb)

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Jiang, W., Li, T., Hussain, B. et al. Facile Fabrication of Cotton-Based Thermoelectric Yarns for the Construction of Textile Generator with High Performance in Human Heat Harvesting. Adv. Fiber Mater. 5, 1725–1736 (2023). https://doi.org/10.1007/s42765-023-00305-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s42765-023-00305-4

Keywords

Navigation