Skip to main content

Advertisement

Log in

Growth of BiOBr/ZIF-67 Nanocomposites on Carbon Fiber Cloth as Filter-Membrane-Shaped Photocatalyst for Degrading Pollutants in Flowing Wastewater

  • Research Article
  • Published:
Advanced Fiber Materials Aims and scope Submit manuscript

Abstract

BiOBr-based nanocomposite photocatalysts are used for removing the organic pollutants, but their poor adsorption/photocatalytic performances and the low potential for recycling limit their application. To solve the issue, herein we report a large-area recyclable CFC/BiOBr/ZIF-67 filter-membrane-shaped photocatalyst prepared by in situ growth of BiOBr/ZIF-67 nanocomposites on carbon fiber cloth (CFC). Fabrication process is based on hydrothermal synthesis of BiOBr nanosheets (diameter 0.5–1 μm) on carbon fiber cloth (as substrate material) and then a chemical bath route is used to grow ZIF-67 nanoparticles (diameter 300–600 nm) in situ on the surface of CFC/BiOBr. Resulted composite, CFC/BiOBr/ZIF-67, exhibits a high specific surface area (545.82 m2 g−1) and a wide photoabsorption, accompanied by an absorption edge (~ 620 nm). In dark condition, CFC/BiOBr/ZIF-67 adsorbs bisphenol A (BPA) and orange 7 (AO7) within 60 min, respectively with 20.0% and 40.1% efficiency. This level of efficiencies are correspondingly 2.6 and 3.2 times more that of the bare CFC/BiOBr (7.6% for BPA and 12.4% for AO7). Under visible light irradiation, CFC/BiOBr/ZIF-67 can degrade 69.7% of BPA and 96.0% of AO7, in 120 min, which are, respectively, 1.3 and 1.8 times higher than the absorption efficiency of bare CFC/BiOBr (53.2% for BPA, 52.0% for AO7). When CFC/BiOBr/ZIF-67 is used as a filter membrane for photocatalytic removal of pollutants in flowing wastewater (AO7, rate: ~ 1.5 L h−1), 92.2% of AO7 can be decomposed after 10 filtering cycles. This study suggests CFC/BiOBr/ZIF-67 as a novel highly functional, recyclable and environmental friendly photo-driven membrane filter for purification and recovery of flowing surface waste waters.

Graphical abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11

Similar content being viewed by others

References

  1. Wang CC, Li JR, Lv XL, Zhang YQ, Guo GS. Photocatalytic organic pollutants degradation in metal-organic frameworks. Energy Environ Sci. 2014;7(9):2831–2867.

    Article  CAS  Google Scholar 

  2. Gomez-Ruiz B, Ribao P, Diban N, Rivero MJ, Ortiz I, Urtiaga A. Photocatalytic degradation and mineralization of perfluorooctanoic acid (PFOA) using a composite TiO2-rGO catalyst. J Hazard Mater. 2018;344:950–957.

    Article  CAS  Google Scholar 

  3. Zhang J, Wang Z, Fan M, Tong P, Sun J, Dong S, Sun J. Ultra-light and compressible 3D BiOCl/RGO aerogel with enriched synergistic effect of adsorption and photocatalytic degradation of oxytetracycline. J Mater Res Technol-JMRT. 2019;8(5):4577–4587.

    Article  CAS  Google Scholar 

  4. Zhang C, Tian S, Qin F, Yu Y, Huang D, Duan A, Zhou C, Yang Y, Wang W, Zhou Y, Luo H. Catalyst-free activation of permanganate under visible light irradiation for sulfamethazine degradation: experiments and theoretical calculation. Water Res. 2021;194:116915.

    Article  CAS  Google Scholar 

  5. Kang JH, Katayama Y, Kondo F. Biodegradation or metabolism of bisphenol A: From microorganisms to mammals. Toxicology 2006;217(2–3):81–90.

    Article  CAS  Google Scholar 

  6. Fujishima A, Honda K. Electrochemical photolysis of water at a semiconductor electrode. Nature 1972;238(5358):37–38.

    Article  CAS  Google Scholar 

  7. Wang Y, Bao S, Liu Y, Yang W, Yu Y, Feng M, Li K. Efficient photocatalytic reduction of Cr(VI) in aqueous solution over CoS2/g-C3N4-rGO nanocomposites under visible light. Appl Surf Sci 2020;510:145495.

    Article  CAS  Google Scholar 

  8. Sun YJ, Mwandeje JB, Wangatia LM, Zabihi F, Nedeljkovic J, Yang SY. Enhanced photocatalytic performance of surface-modified TiO2 nanofibers with rhodizonic acid. Adv Fiber Mater. 2020;2(2):118–122.

    Article  CAS  Google Scholar 

  9. Ye LQ, Liu JY, Jiang Z, Peng TY, Zan L. Facets coupling of BiOBr-g-C3N4 composite photocatalyst for enhanced visible-light-driven photocatalytic activity. Appl Catal B-Environ 2013;142:1–7.

    Google Scholar 

  10. Meng XC, Li ZZ, Zeng HM, Chen J, Zhang ZS. MoS2 quantum dots-interspersed Bi2WO6 heterostructures for visible light-induced detoxification and disinfection. Appl Catal B-Environ. 2017;210:160–172.

    Article  CAS  Google Scholar 

  11. Wu J, Xie Y, Ling Y, Dong Y, Li J, Li S, Zhao J. Synthesis of flower-like g-C3N4/BiOBr and enhancement of the activity for the degradation of bisphenol a under visible light irradiation. Front Chem 2019;7:649.

    Article  CAS  Google Scholar 

  12. Wang CY, Zeng Q, Zhu GC. Novel S-doped BiOBr nanosheets for the enhanced photocatalytic degradation of bisphenol A under visible light irradiation. Chemosphere 2021;268:11.

    Article  Google Scholar 

  13. Yosefi L, Haghighi M. Sequential precipitation design of novel high-efficiency flowerlike BiOBr(x)-Mn3O4(100–x) nanoheterojunction with superior solar-light photo-activity in water treatment. Mater Res Bull 2019;113:51–63.

    Article  CAS  Google Scholar 

  14. Ratova M, Redfern J, Verran J, Kelly PJ. Highly efficient photocatalytic bismuth oxide coatings and their antimicrobial properties under visible light irradiation. Appl Catal B-Environ. 2018;239:223–232.

    Article  CAS  Google Scholar 

  15. Zhang Q, Kang S-Z, Wang D, Li X, Qin L, Mu J. Multi-layered mesh-like MoS2 hierarchical nanostructure fabricated on Ti foil: an efficient noble metal-free photocatalyst for visible-light-driven H2 evolution from water. Catal Commun 2016;82:7–10.

    Article  CAS  Google Scholar 

  16. Yang H, Zhang QX, Chen Y, Huang Y, Yang F, Lu Z. Ultrasonic-microwave synthesis of ZnO/BiOBr functionalized cotton fabrics with antibacterial and photocatalytic properties. Carbohydr Polym 2018;201:162–171.

    Article  CAS  Google Scholar 

  17. Xiong SW, Yu Y, Wang P, Liu M, Chen SH, Yin XZ, Wang LX, Wang H. Growth of AgBr/Ag3PO4 heterojunction on chitosan fibers for degrading organic pollutants. Adv Fiber Mater. 2020;2(5):246–255.

    Article  CAS  Google Scholar 

  18. Duoerkun G, Zhang Y, Shi Z, Shen XF, Cao W, Liu T, Liu JS, Chen QY, Zhang LS. Construction of n-TiO2/p-Ag2O junction on carbon fiber cloth with Vis-NIR photoresponse as a filter-membrane-shaped photocatalyst. Adv Fiber Mater. 2020;2(1):13–23.

    Article  CAS  Google Scholar 

  19. Shi Z, Zhang Y, Shen XF, Duoerkun G, Zhu B, Zhang LS, Li MQ, Chen ZG. Fabrication of g-C3N4/BiOBr heterojunctions on carbon fibers as weaveable photocatalyst for degrading tetracycline hydrochloride under visible light. Chem Eng J 2020;386:124010.

    Article  CAS  Google Scholar 

  20. Cao W, Zhang Y, Shi Z, Liu T, Song XS, Zhang LS, Wong PK, Chen ZG. Boosting the adsorption and photocatalytic activity of carbon fiber/MoS2-based weavable photocatalyst by decorating UiO-66-NH2 nanoparticles. Chem Eng J 2021;417:128112.

    Article  CAS  Google Scholar 

  21. Zhang Y, Xiong MY, Sun AR, Shi Z, Zhu B, Macharia DK, Li F, Chen ZG, Liu JS, Zhang LS. MIL-101(Fe) nanodot-induced improvement of adsorption and photocatalytic activity of carbon fiber/TiO2-based weavable photocatalyst for removing pharmaceutical pollutants. J Clean Prod 2021;290:125782.

    Article  CAS  Google Scholar 

  22. Zhang Y, Luo L, Shi Z, Shen X, Peng C, Liu J, Chen Z, Chen Q, Zhang L. Synthesis of MoS2/CdS heterostructures on carbon-fiber cloth as filter-membrane-shaped photocatalyst for purifying the flowing wastewater under visible-light illumination. ChemCatChem 2019;11(12):2855–2863.

    Article  Google Scholar 

  23. Liu T, Zhang Y, Shi Z, Cao W, Zhang LS, Liu JS, Chen ZG. BiOBr/Ag/AgBr heterojunctions decorated carbon fiber cloth with broad-spectral photoresponse as filter-membrane-shaped photocatalyst for the efficient purification of flowing wastewater. J Colloid Interface Sci 2021;587:633–643.

    Article  CAS  Google Scholar 

  24. Li S, Cui J, Wu X, Zhang X, Hu Q, Hou X. Rapid in situ microwave synthesis of Fe3O4@MIL-100(Fe) for aqueous diclofenac sodium removal through integrated adsorption and photodegradation. J Hazard Mater 2019;373:408–416.

    Article  CAS  Google Scholar 

  25. Devic T, Serre C. High valence 3p and transition metal based MOFs. Chem Soc Rev 2014;43(16):6097–6115.

    Article  CAS  Google Scholar 

  26. Su Y, Zhang Z, Liu H, Wang Y. Cd0.2Zn0.8S@UiO-66-NH2 nanocomposites as efficient and stable visible-light-driven photocatalyst for H2 evolution and CO2 reduction. Appl. Catal. B-Environ. 2017; 200: 448–457.

  27. Li N, Chen G, Zhao J, Yan B, Cheng Z, Meng L, Chen V. Self-cleaning PDA/ZIF-67@PP membrane for dye wastewater remediation with peroxymonosulfate and visible light activation. J Membr Sci 2019;591:117341.

    Article  CAS  Google Scholar 

  28. Park H, Oh S, Lee S, Choi S, Oh M. Cobalt-and nitrogen-codoped porous carbon catalyst made from core-shell type hybrid metal-organic framework (ZIF-L@ZIF-67) and its efficient oxygen reduction reaction (ORR) activity. Appl Catal B-Environ. 2019;246:322–329.

    Article  CAS  Google Scholar 

  29. Askari N, Beheshti M, Mowla D, Farhadian M. Fabrication of CuWO4/Bi2S3/ZIF67 MOF: A novel double Z-scheme ternary heterostructure for boosting visible-light photodegradation of antibiotics. Chemosphere 2020;251:126453.

    Article  CAS  Google Scholar 

  30. Yang Q, Lu R, Ren S, Zhou H, Wu Q, Zhen Y, Chen Z, Fang S. Magnetic beads embedded in poly (sodium-p-styrenesulfonate) and ZIF-67: Removal of nitrophenol from water. J Solid State Chem 2018;265:200–207.

    Article  CAS  Google Scholar 

  31. Jiang G, Li X, Wei Z, Jiang T, Du X, Chen W. Growth of N-doped BiOBr nanosheets on carbon fibers for photocatalytic degradation of organic pollutants under visible light irradiation. Powder Technol 2014;260:84–89.

    Article  CAS  Google Scholar 

  32. Shen X, Zhang T, Xu P, Zhang L, Liu J, Chen Z. Growth of C3N4 nanosheets on carbon-fiber cloth as flexible and macroscale filter-membrane-shaped photocatalyst for degrading the flowing wastewater. Appl Catal B-Environ. 2017;219:425–431.

    Article  CAS  Google Scholar 

  33. Yan W, Burgos-Caminal A, Das Gupta T, Moser JE, Sorin F. Direct synthesis of selenium nanowire mesh on a solid substrate and insights into ultrafast photocarrier dynamics. J Phys Chem C 2018;122(43):25134–25141.

    Article  CAS  Google Scholar 

  34. Yan W, Qu YP, Das Gupta T, Darga A, Nguyen DT, Page AG, Rossi M, Ceriotti M, Sorin F. Semiconducting nanowire-based optoelectronic fibers. Adv Mater 2017;29:1700681.

    Article  Google Scholar 

  35. Li HP, Hu TX, Du N, Zhang RJ, Liu JQ, Hou WG. Wavelength-dependent differences in photocatalytic performance between BiOBr nanosheets with dominant exposed (001) and (010) facets. Appl Catal B-Environ. 2016;187:342–349.

    Article  CAS  Google Scholar 

  36. Zhang D, Li J, Wang QG, Wu QS. High 001 facets dominated BiOBr lamellas: facile hydrolysis preparation and selective visible-light photocatalytic activity. J Mater Chem A. 2013;1(30):8622–8629.

    Article  CAS  Google Scholar 

  37. Banerjee R, Phan A, Wang B, Knobler C, Furukawa H, O’Keeffe M, Yaghi OM. High-throughput synthesis of zeolitic imidazolate frameworks and application to CO2 capture. Science 2008;319(5865):939–943.

    Article  CAS  Google Scholar 

  38. Li Y, Jin Z, Zhao T. Performance of ZIF-67-Derived fold polyhedrons for enhanced photocatalytic hydrogen evolution. Chem. Eng. J. 2020; 382.

  39. Li T, Gao YW, Zhang LL, Xing XC, Huang X, Li F, Jin Y, Hu C. Enhanced Cr(VI) reduction by direct transfer of photo-generated electrons to Cr 3d orbitals in CrO42–intercalated BiOBr with exposed (110) facets. Appl Catal B-Environ. 2020;277:119065.

    Article  CAS  Google Scholar 

  40. Wang SY, Yang XL, Zhang XH, Ding X, Yang ZX, Dai K, Chen H. A plate-on-plate sandwiched Z-scheme heterojunction photocatalyst: BiOBr-Bi2MoO6 with enhanced photocatalytic performance. Appl Surf Sci 2017;391:194–201.

    Article  CAS  Google Scholar 

  41. You D, Shi DJ, Cheng QR, Chen YL, Pan ZQ. Integrating Mn-ZIF-67 on hollow spherical CdS photocatalysts forming a unique interfacial structure for the efficient photocatalytic hydrogen evolution and degradation under visible light. Environ.-Sci. Nano 2020; 7(9): 2809–2822.

  42. Wang A, Zheng Z, Wang H, Chen Y, Luo C, Liang D, Hu B, Qiu R, Yan K. 3D hierarchical H2-reduced Mn-doped CeO2 microflowers assembled from nanotubes as a high-performance Fenton-like photocatalyst for tetracycline antibiotics degradation. Appl Catal B-Environ. 2020;277:119171.

    Article  CAS  Google Scholar 

  43. Xu P, Shen X, Luo L, Shi Z, Liu Z, Chen Z, Zhu M, Zhang L. Preparation of TiO2/Bi2WO6 nanostructured heterojunctions on carbon fibers as a weaveable visible-light photocatalyst/photoelectrode. Environ.-Sci. Nano 2018; 5(2): 327–337.

  44. Chen FY, An WJ, Liu L, Liang YH, Cui WQ. Highly efficient removal of bisphenol A by a three-dimensional graphene hydrogel-AgBr@rGO exhibiting adsorption/photocatalysis synergy. Appl Catal B-Environ. 2017;217:65–80.

    Article  CAS  Google Scholar 

  45. Zhang Y, Cao W, Zhu B, Cai JF, Li XL, Liu JS, Chen ZG, Li MQ, Zhang LS. Fabrication of NH2-MIL-125(Ti) nanodots on carbon fiber/MoS2-based weavable photocatalysts for boosting the adsorption and photocatalytic performance. J Colloid Interface Sci 2022;611:706–717.

    Article  CAS  Google Scholar 

  46. Li YB, Jin ZL, Zhao TS. Performance of ZIF-67-Derived fold polyhedrons for enhanced photocatalytic hydrogen evolution. Chem Eng J 2020;382:120051.

    Article  Google Scholar 

  47. Qin J, Wang S, Wang X. Visible-light reduction CO2 with dodecahedral zeolitic imidazolate framework ZIF-67 as an efficient co-catalyst. Appl Catal B-Environ. 2017;209:476–482.

    Article  CAS  Google Scholar 

  48. Shao W, Chen YR, Xie F, Zhang H, Wang HT, Chang N. Facile construction of a ZIF-67/AgCl/Ag heterojunction via chemical etching and surface ion exchange strategy for enhanced visible light driven photocatalysis. RSC Adv 2020;10(63):38174–38183.

    Article  CAS  Google Scholar 

  49. Lin Y, Wu SH, Li X, Wu X, Yang CP, Zeng GM, Peng YR, Zhou Q, Lu L. Microstructure and performance of Z-scheme photocatalyst of silver phosphate modified by MWCNTs and Cr-doped SrTiO3 for malachite green degradation. Appl Catal B-Environ. 2018;227:557–570.

    Article  CAS  Google Scholar 

  50. Zhang YY, Wang LL, Park SH, Kong XY, Lan XF, Song ZY, Shi JS. Single near-infrared-laser driven Z-scheme photocatalytic H2 evolution on upconversion material@Ag3PO4@black phosphorus. Chem Eng J 2019;375:121967.

    Article  CAS  Google Scholar 

  51. Meng AN, Chaihu LX, Chen HH, Gu ZY. Ultrahigh adsorption and singlet-oxygen mediated degradation for efficient synergetic removal of bisphenol A by a stable zirconium-porphyrin metal-organic framework. Sci Rep 2017;7:6297.

    Article  Google Scholar 

  52. Dadigala R, Bandi R, Alle M, Gangapuram BR, Guttena V, Kim JC. In-situ fabrication of novel flower like MoS2/CoTiO3 nanorod heterostructures for the recyclable degradation of ciprofloxacin and bisphenol A under sunlight. Chemosphere 2021;281:11.

    Article  Google Scholar 

  53. Gao YW, Li SM, Li YX, Yao LY, Zhang H. Accelerated photocatalytic degradation of organic pollutant over metal-organic framework MIL-53(Fe) under visible LED light mediated by persulfate. Appl Catal B-Environ. 2017;202:165–174.

    Article  CAS  Google Scholar 

  54. Bai Y, Shi X, Wang P, Wnag L, Zhang K, Zhou Y, Xie H, Wang J, Ye L. BiOBrxI1-x/BiOBr heterostructure engineering for efficient molecular oxygen activation. Chem Eng J. 2019;356:34–42.

    Article  CAS  Google Scholar 

  55. Wang X, Xu G, Tu Y, Wu D, Li A, Xie X. BiOBr/PBCD-B-D dual-function catalyst with oxygen vacancies for Acid Orange 7 removal: Evaluation of adsorption-photocatalysis performance and synergy mechanism. Chem Eng J. 2021;411:128456.

    Article  CAS  Google Scholar 

  56. Chen F, Wu C, Wang J, Francois-Xavier CP, Wintgens T. Highly efficient Z-scheme structured visible-light photocatalyst constructed by selective doping of Ag@AgBr and Co3O4 separately on 010 and 110 facets of BiVO4: Pre-separation channel and hole-sink effects. Appl Catal B-Environ. 2019;250:31–41.

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This work was financially supported by the Natural Science Foundation of Shanghai (21ZR1402500), the National Natural Science Foundation of China (52161145406), the Open Project Program of the State Key Laboratory of Photocatalysis on Energy and Environment for the Fuzhou University, the Fundamental Research Funds for the Central Universities, and DHU Distinguished Young Professor Program.

Author information

Authors and Affiliations

Authors

Contributions

XL: investigation, methodology, data analysis, writing—original draft. TL: investigation. YZ: Investigation. JC: investigation. MQH: investigation. ML: funding acquisition. ZC: project administration, Resources. LZ: project administration, writing—review and editing.

Corresponding authors

Correspondence to Zhigang Chen or Lisha Zhang.

Ethics declarations

Conflict of interest

The authors declare that they have no known competing financial interests or personal relationships that could have appeared to influence the work reported in this paper.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (DOCX 261 KB)

Rights and permissions

Springer Nature or its licensor holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Li, X., Liu, T., Zhang, Y. et al. Growth of BiOBr/ZIF-67 Nanocomposites on Carbon Fiber Cloth as Filter-Membrane-Shaped Photocatalyst for Degrading Pollutants in Flowing Wastewater. Adv. Fiber Mater. 4, 1620–1631 (2022). https://doi.org/10.1007/s42765-022-00189-w

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s42765-022-00189-w

Keywords

Navigation