Skip to main content
Log in

PARP molecular functions and applications of PARP inhibitors in cancer treatment

  • Review Article
  • Published:
Genome Instability & Disease Aims and scope Submit manuscript

Abstract

Poly(ADP-ribosyl)ation (PARylation), a type of post-translational modification catalyzed by poly(ADP-ribose) polymerase (PARP), is implicated in numerous biological processes including DNA repair, chromatin remodeling, programmed cell death, RNA regulation, and PAR-dependent ubiquitination. The advent of PARP inhibitors represents a new synthetic lethality paradigm for killing tumors bearing BRCA mutations in which tumor-specific defects are exploited to create a vulnerability that causes tumor cell death. To date, four PARP inhibitors have been approved by the US Food and Drug Administration for treatment of several types of cancer. In this review, we summarize the current knowledge of the molecular functions of PARP1 and highlight the recent advances in the use of PARP inhibitors in cancer treatment and the problem of drug resistance.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

Data availability

Data sharing not applicable to this article as no datasets were generated or analysed during the current study.

References

  • Adamowicz, M., Hailstone, R., Demin, A. A., Komulainen, E., Hanzlikova, H., Brazina, J., Gautam, A., Wells, S. E., & Caldecott, K. W. (2021). XRCC1 protects transcription from toxic PARP1 activity during DNA base excision repair. Nature Cell Biology, 23(12), 1287–1298. https://doi.org/10.1038/s41556-021-00792-w

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Alano, C. C., Garnier, P., Ying, W., Higashi, Y., Kauppinen, T. M., & Swanson, R. A. (2010). NAD+ depletion is necessary and sufficient for poly(ADP-ribose) polymerase-1-mediated neuronal death. The Journal of Neuroscience, 30(8), 2967–2978. https://doi.org/10.1523/JNEUROSCI.5552-09.2010

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Alemasova, E. E., & Lavrik, O. I. (2019). Poly(ADP-ribosyl)ation by PARP1: Reaction mechanism and regulatory proteins. Nucleic Acids Research, 47(8), 3811–3827. https://doi.org/10.1093/nar/gkz120

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Alvarez-Gonzalez, R., & Mendoza-Alvarez, H. (1995). Dissection of ADP-ribose polymer synthesis into individual steps of initiation, elongation, and branching. Biochimie, 77(6), 403–407. https://doi.org/10.1016/0300-9084(96)88153-3

    Article  CAS  PubMed  Google Scholar 

  • Amé, J.-C., Fouquerel, E., Gauthier, L. R., Biard, D., Boussin, F. D., Dantzer, F., de Murcia, G., & Schreiber, V. (2009). Radiation-induced mitotic catastrophe in PARG-deficient cells. Journal of Cell Science, 122(Pt 12), 1990–2002. https://doi.org/10.1242/jcs.039115

    Article  CAS  PubMed  Google Scholar 

  • Amé, J.-C., Rolli, V., Schreiber, V., Niedergang, C., Apiou, F., Decker, P., Muller, S., Höger, T., Murcia, J. M., & de Murcia, G. (1999). PARP-2, A novel mammalian DNA damage-dependent poly(ADP-ribose) polymerase*. Journal of Biological Chemistry, 274(25), 17860–17868. https://doi.org/10.1074/jbc.274.25.17860

    Article  PubMed  Google Scholar 

  • Anderson, P., & Kedersha, N. (2008). Stress granules: The Tao of RNA triage. Trends in Biochemical Sciences, 33(3), 141–150. https://doi.org/10.1016/j.tibs.2007.12.003

    Article  CAS  PubMed  Google Scholar 

  • Andrei, L., Kasas, S., Ochoa Garrido, I., Stanković, T., Suárez Korsnes, M., Vaclavikova, R., Assaraf, Y. G., & Pešić, M. (2020). Advanced technological tools to study multidrug resistance in cancer. Drug Resistance Updates, 48, 100658. https://doi.org/10.1016/j.drup.2019.100658

    Article  PubMed  Google Scholar 

  • Barazas, M., Annunziato, S., Pettitt, S. J., de Krijger, I., Ghezraoui, H., Roobol, S. J., Lutz, C., Frankum, J., Song, F. F., Brough, R., Evers, B., Gogola, E., Bhin, J., van de Ven, M., van Gent, D. C., Jacobs, J. J. L., Chapman, R., Lord, C. J., Jonkers, J., & Rottenberg, S. (2018). The CST complex mediates end protection at double-strand breaks and promotes PARP inhibitor sensitivity in BRCA1-deficient cells. Cell Reports, 23(7), 2107–2118. https://doi.org/10.1016/j.celrep.2018.04.046

    Article  CAS  PubMed  Google Scholar 

  • Barber, L. J., Sandhu, S., Chen, L., Campbell, J., Kozarewa, I., Fenwick, K., Assiotis, I., Rodrigues, D. N., Reis Filho, J. S., Moreno, V., Mateo, J., Molife, L. R., De Bono, J., Kaye, S., Lord, C. J., & Ashworth, A. (2013). Secondary mutations in BRCA2 associated with clinical resistance to a PARP inhibitor. The Journal of Pathology, 229(3), 422–429. https://doi.org/10.1002/path.4140

    Article  CAS  PubMed  Google Scholar 

  • Beck, C., Boehler, C., Guirouilh Barbat, J., Bonnet, M.-E., Illuzzi, G., Ronde, P., Gauthier, L. R., Magroun, N., Rajendran, A., Lopez, B. S., Scully, R., Boussin, F. D., Schreiber, V., & Dantzer, F. (2014). PARP3 affects the relative contribution of homologous recombination and nonhomologous end-joining pathways. Nucleic Acids Research, 42(9), 5616–5632. https://doi.org/10.1093/nar/gku174

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Bilokapic, S., Suskiewicz, M. J., Ahel, I., & Halic, M. (2020). Bridging of DNA breaks activates PARP2–HPF1 to modify chromatin. Nature, 585(7826), 609–613. https://doi.org/10.1038/s41586-020-2725-7

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Boamah, E. K., Kotova, E., Garabedian, M., Jarnik, M., & Tulin, A. V. (2012). Poly(ADP-Ribose) POLYMERASE 1 (PARP-1) regulates ribosomal biogenesis in drosophila nucleoli. PLoS Genetics, 8(1), e1002442. https://doi.org/10.1371/journal.pgen.1002442

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Bock, F. J., Todorova, T. T., & Chang, P. (2015). RNA Regulation by poly(ADP-Ribose) polymerases. Molecular Cell, 58(6), 959–969. https://doi.org/10.1016/j.molcel.2015.01.037

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Boehler, C., Gauthier, L. R., Mortusewicz, O., Biard, D. S., Saliou, J.-M., Bresson, A., Sanglier-Cianferani, S., Smith, S., Schreiber, V., Boussin, F., & Dantzer, F. (2011). Poly(ADP-ribose) polymerase 3 (PARP3), a newcomer in cellular response to DNA damage and mitotic progression. Proceedings of the National Academy of Sciences, 108(7), 2783–2788. https://doi.org/10.1073/pnas.1016574108

    Article  Google Scholar 

  • Brochu, G., Duchaine, C., Thibeault, L., Lagueux, J., Shah, G. M., & Poirier, G. G. (1994). Mode of action of poly(ADP-ribose) glycohydrolase. Biochimica Et Biophysica Acta, 1219(2), 342–350. https://doi.org/10.1016/0167-4781(94)90058-2

    Article  CAS  PubMed  Google Scholar 

  • Bryant, H. E., Schultz, N., Thomas, H. D., Parker, K. M., Flower, D., Lopez, E., Kyle, S., Meuth, M., Curtin, N. J., & Helleday, T. (2005). Specific killing of BRCA2-deficient tumours with inhibitors of poly(ADP-ribose) polymerase. Nature, 434(7035), 913–917. https://doi.org/10.1038/nature03443

    Article  CAS  PubMed  Google Scholar 

  • Bunting, S. F., Callén, E., Wong, N., Chen, H.-T., Polato, F., Gunn, A., Bothmer, A., Feldhahn, N., Fernandez-Capetillo, O., Cao, L., Xu, X., Deng, C.-X., Finkel, T., Nussenzweig, M., Stark, J. M., & Nussenzweig, A. (2010). 53BP1 inhibits homologous recombination in Brca1-deficient cells by blocking resection OF DNA breaks. Cell, 141(2), 243–254. https://doi.org/10.1016/j.cell.2010.03.012

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Calabrese, C. R., Almassy, R., Barton, S., Batey, M. A., Calvert, A. H., Canan-Koch, S., Durkacz, B. W., Hostomsky, Z., Kumpf, R. A., Kyle, S., Li, J., Maegley, K., Newell, D. R., Notarianni, E., Stratford, I. J., Skalitzky, D., Thomas, H. D., Wang, L.-Z., Webber, S. E., & Curtin, N. J. (2004). Anticancer chemosensitization and radiosensitization by the novel poly(ADP-ribose) polymerase-1 inhibitor AG14361. Journal of the National Cancer Institute, 96(1), 56–67. https://doi.org/10.1093/jnci/djh005

    Article  CAS  PubMed  Google Scholar 

  • Caldecott, K. W., Aoufouchi, S., Johnson, P., & Shall, S. (1996). XRCC1 polypeptide interacts with DNA polymerase beta and possibly poly (ADP-ribose) polymerase, and DNA ligase III is a novel molecular “nick-sensor” in vitro. Nucleic Acids Research, 24(22), 4387–4394. https://doi.org/10.1093/nar/24.22.4387

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Caldecott, K. W., McKeown, C. K., Tucker, J. D., Ljungquist, S., & Thompson, L. H. (1994). An interaction between the mammalian DNA repair protein XRCC1 and DNA ligase III. Molecular and Cellular Biology, 14(1), 68–76. https://doi.org/10.1128/mcb.14.1.68-76.1994

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Ceccaldi, R., Liu, J. C., Amunugama, R., Hajdu, I., Primack, B., Petalcorin, M. I. R., O’Connor, K. W., Konstantinopoulos, P. A., Elledge, S. J., Boulton, S. J., Yusufzai, T., & D’Andrea, A. D. (2015). Homologous-recombination-deficient tumours are dependent on Polθ-mediated repair. Nature, 518(7538), 258–262. https://doi.org/10.1038/nature14184

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Ceccaldi, R., Rondinelli, B., & D’Andrea, A. D. (2016). Repair pathway choices and consequences at the double-strand break. Trends in Cell Biology, 26(1), 52–64. https://doi.org/10.1016/j.tcb.2015.07.009

    Article  CAS  PubMed  Google Scholar 

  • Chambon, P., Weill, J. D., & Mandel, P. (1963). Nicotinamide mononucleotide activation of new DNA-dependent polyadenylic acid synthesizing nuclear enzyme. Biochemical and Biophysical Research Communications, 11, 39–43. https://doi.org/10.1016/0006-291x(63)90024-x

    Article  CAS  PubMed  Google Scholar 

  • Chen, C.-C., Feng, W., Lim, P. X., Kass, E. M., & Jasin, M. (2018a). Homology-directed repair and the role of BRCA1, BRCA2, and related proteins in genome integrity and cancer. Annual Review of Cancer Biology, 2, 313–336. https://doi.org/10.1146/annurev-cancerbio-030617-050502

    Article  PubMed  Google Scholar 

  • Chen, Q., Kassab, M. A., Dantzer, F., & Yu, X. (2018b). PARP2 mediates branched poly ADP-ribosylation in response to DNA damage. Nature Communications. https://doi.org/10.1038/s41467-018-05588-5

    Article  PubMed  PubMed Central  Google Scholar 

  • Chiu, L.-Y., Ho, F.-M., Shiah, S.-G., Chang, Y., & Lin, W.-W. (2011). Oxidative stress initiates DNA damager MNNG-induced poly(ADP-ribose)polymerase-1-dependent parthanatos cell death. Biochemical Pharmacology, 81(3), 459–470. https://doi.org/10.1016/j.bcp.2010.10.016

    Article  CAS  PubMed  Google Scholar 

  • Clarke, N., Wiechno, P., Alekseev, B., Sala, N., Jones, R., Kocak, I., Chiuri, V. E., Jassem, J., Fléchon, A., Redfern, C., Goessl, C., Burgents, J., Kozarski, R., Hodgson, D., Learoyd, M., & Saad, F. (2018). Olaparib combined with abiraterone in patients with metastatic castration-resistant prostate cancer: A randomised, double-blind, placebo-controlled, phase 2 trial. The Lancet Oncology, 19(7), 975–986. https://doi.org/10.1016/S1470-2045(18)30365-6

    Article  CAS  PubMed  Google Scholar 

  • Coleman, R. L., Fleming, G. F., Brady, M. F., Swisher, E. M., Steffensen, K. D., Friedlander, M., Okamoto, A., Moore, K. N., Efrat Ben-Baruch, N., Werner, T. L., Cloven, N. G., Oaknin, A., DiSilvestro, P. A., Morgan, M. A., Nam, J.-H., Leath, C. A., Nicum, S., Hagemann, A. R., Littell, R. D., & Bookman, M. A. (2019). Veliparib with first-line chemotherapy and as Maintenance therapy in ovarian cancer. New England Journal of Medicine, 381(25), 2403–2415. https://doi.org/10.1056/NEJMoa1909707

    Article  CAS  PubMed  Google Scholar 

  • Coleman, R. L., Oza, A. M., Lorusso, D., Aghajanian, C., Oaknin, A., Dean, A., Colombo, N., Weberpals, J. I., Clamp, A., Scambia, G., Leary, A., Holloway, R. W., Gancedo, M. A., Fong, P. C., Goh, J. C., O’Malley, D. M., Armstrong, D. K., Garcia-Donas, J., Swisher, E. M., ARIEL3 investigators. (2017). Rucaparib maintenance treatment for recurrent ovarian carcinoma after response to platinum therapy (ARIEL3): A randomised, double-blind, placebo-controlled, phase 3 trial. Lancet (london, England), 390(10106), 1949–1961. https://doi.org/10.1016/S0140-6736(17)32440-6

    Article  CAS  PubMed  Google Scholar 

  • Cropper, J. D., Alimbetov, D. S., Brown, K. T. G., Likhotvorik, R. I., Robles, A. J., Guerra, J. T., He, B., Chen, Y., Kwon, Y., & Kurmasheva, R. T. (2022). PARP1-MGMT complex underpins pathway crosstalk in O6-methylguanine repair. Journal of Hematology & Oncology, 15(1), 146. https://doi.org/10.1186/s13045-022-01367-4

    Article  CAS  Google Scholar 

  • DaRosa, P. A., Wang, Z., Jiang, X., Pruneda, J. N., Cong, F., Klevit, R. E., & Xu, W. (2015). Allosteric activation of the RNF146 ubiquitin ligase by a poly(ADP-ribosyl)ation signal. Nature, 517(7533), 223–226. https://doi.org/10.1038/nature13826

    Article  CAS  PubMed  Google Scholar 

  • Daugas, E., Susin, S. A., Zamzami, N., Ferri, K. F., Irinopoulou, T., Larochette, N., Prévost, M. C., Leber, B., Andrews, D., Penninger, J., & Kroemer, G. (2000). Mitochondrio-nuclear translocation of AIF in apoptosis and necrosis. FASEB Journal, 14(5), 729–739.

    Article  CAS  PubMed  Google Scholar 

  • Day, T. A., Layer, J. V., Cleary, J. P., Guha, S., Stevenson, K. E., Tivey, T., Kim, S., Schinzel, A. C., Izzo, F., Doench, J., Root, D. E., Hahn, W. C., Price, B. D., & Weinstock, D. M. (2017). PARP3 is a promoter of chromosomal rearrangements and limits G4 DNA. Nature Communications. https://doi.org/10.1038/ncomms15110

    Article  PubMed  PubMed Central  Google Scholar 

  • Del Campo, J. M., Matulonis, U. A., Malander, S., Provencher, D., Mahner, S., Follana, P., Waters, J., Berek, J. S., Woie, K., Oza, A. M., Canzler, U., Gil-Martin, M., Lesoin, A., Monk, B. J., Lund, B., Gilbert, L., Wenham, R. M., Benigno, B., Arora, S., & Mirza, M. R. (2019). Niraparib maintenance therapy in patients with recurrent ovarian cancer after a partial response to the last platinum-based chemotherapy in the ENGOT-OV16/NOVA trial. Journal of Clinical Oncology, 37(32), 2968–2973. https://doi.org/10.1200/JCO.18.02238

    Article  PubMed  PubMed Central  Google Scholar 

  • Demple, B., & Harrison, L. (1994). Repair of oxidative damage to DNA: Enzymology and biology. Annual Review of Biochemistry, 63, 915–948. https://doi.org/10.1146/annurev.bi.63.070194.004411

    Article  CAS  PubMed  Google Scholar 

  • Dias, M. P., Moser, S. C., Ganesan, S., & Jonkers, J. (2021). Understanding and overcoming resistance to PARP inhibitors in cancer therapy. Nature Reviews Clinical Oncology, 18(12), 773–791. https://doi.org/10.1038/s41571-021-00532-x

    Article  PubMed  Google Scholar 

  • Drew, Y., Kaufman, B., Banerjee, S., Lortholary, A., Hong, S. H., Park, Y. H., Zimmermann, S., Roxburgh, P., Ferguson, M., Alvarez, R. H., Domchek, S., Gresty, C., Angell, H. K., Ros, V. R., Meyer, K., Lanasa, M., Herbolsheimer, P., & de Jonge, M. (2019). 1190PD - phase II study of olaparib + durvalumab (MEDIOLA): Updated results in germline BRCA-mutated platinum-sensitive relapsed (PSR) ovarian cancer (OC). Annals of Oncology, 30, v485–v486. https://doi.org/10.1093/annonc/mdz253.016

    Article  Google Scholar 

  • Drew, Y., Ledermann, J., Hall, G., Rea, D., Glasspool, R., Highley, M., Jayson, G., Sludden, J., Murray, J., Jamieson, D., Halford, S., Acton, G., Backholer, Z., Mangano, R., Boddy, A., Curtin, N., & Plummer, R. (2016). Phase 2 multicentre trial investigating intermittent and continuous dosing schedules of the poly(ADP-ribose) polymerase inhibitor rucaparib in germline BRCA mutation carriers with advanced ovarian and breast cancer. British Journal of Cancer, 114(12), e21. https://doi.org/10.1038/bjc.2016.133

    Article  PubMed  PubMed Central  Google Scholar 

  • Dungrawala, H., Bhat, K. P., Le Meur, R., Chazin, W. J., Ding, X., Sharan, S. K., Wessel, S. R., Sathe, A. A., Zhao, R., & Cortez, D. (2017). RADX promotes genome stability and modulates Chemosensitivity by regulating RAD51 at replication forks. Molecular Cell, 67(3), 374-386.e5. https://doi.org/10.1016/j.molcel.2017.06.023

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Eustermann, S., Videler, H., Yang, J.-C., Cole, P. T., Gruszka, D., Veprintsev, D., & Neuhaus, D. (2011). The DNA-binding domain of human PARP-1 interacts with DNA single-strand breaks as a monomer through its second zinc finger. Journal of Molecular Biology, 407(1), 149–170. https://doi.org/10.1016/j.jmb.2011.01.034

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Farmer, H., McCabe, N., Lord, C. J., Tutt, A. N. J., Johnson, D. A., Richardson, T. B., Santarosa, M., Dillon, K. J., Hickson, I., Knights, C., Martin, N. M. B., Jackson, S. P., Smith, G. C. M., & Ashworth, A. (2005). Targeting the DNA repair defect in BRCA mutant cells as a therapeutic strategy. Nature, 434(7035), 917–921. https://doi.org/10.1038/nature03445

    Article  CAS  PubMed  Google Scholar 

  • Ferraris, D. V. (2010). Evolution of poly(ADP-ribose) polymerase-1 (PARP-1) inhibitors. From concept to clinic. Journal of Medicinal Chemistry, 53(12), 4561–4584. https://doi.org/10.1021/jm100012m

    Article  CAS  PubMed  Google Scholar 

  • Gagné, J.-P., Hunter, J. M., Labrecque, B., Chabot, B., & Poirier, G. G. (2003). A proteomic approach to the identification of heterogeneous nuclear ribonucleoproteins as a new family of poly(ADP-ribose)-binding proteins. The Biochemical Journal, 371(Pt 2), 331–340. https://doi.org/10.1042/BJ20021675

    Article  PubMed  PubMed Central  Google Scholar 

  • Gagné, J.-P., Isabelle, M., Lo, K. S., Bourassa, S., Hendzel, M. J., Dawson, V. L., Dawson, T. M., & Poirier, G. G. (2008). Proteome-wide identification of poly(ADP-ribose) binding proteins and poly(ADP-ribose)-associated protein complexes. Nucleic Acids Research, 36(22), 6959–6976. https://doi.org/10.1093/nar/gkn771

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Ganesan, S. (2018). Tumor suppressor tolerance: Reversion mutations in BRCA1 and BRCA2 and resistance to PARP inhibitors and platinum. JCO Precision Oncology, 2, 1–4. https://doi.org/10.1200/PO.18.00001

    Article  PubMed  Google Scholar 

  • Gelmon, K. A., Tischkowitz, M., Mackay, H., Swenerton, K., Robidoux, A., Tonkin, K., Hirte, H., Huntsman, D., Clemons, M., Gilks, B., Yerushalmi, R., Macpherson, E., Carmichael, J., & Oza, A. (2011). Olaparib in patients with recurrent high-grade serous or poorly differentiated ovarian carcinoma or triple-negative breast cancer: A phase 2, multicentre, open-label, non-randomised study. The Lancet Oncology, 12(9), 852–861. https://doi.org/10.1016/S1470-2045(11)70214-5

    Article  CAS  PubMed  Google Scholar 

  • Gibbs-Seymour, I., Fontana, P., Rack, J. G. M., & Ahel, I. (2016). HPF1/C4orf27 Is a PARP-1-interacting protein that regulates PARP-1 ADP-ribosylation activity. Molecular Cell, 62(3), 432–442. https://doi.org/10.1016/j.molcel.2016.03.008

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Gibson, B. A., & Kraus, W. L. (2012). New insights into the molecular and cellular functions of poly(ADP-ribose) and PARPs. Nature Reviews Molecular Cell Biology, 13(7), 411–424. https://doi.org/10.1038/nrm3376

    Article  CAS  PubMed  Google Scholar 

  • Gogola, E., Duarte, A. A., de Ruiter, J. R., Wiegant, W. W., Schmid, J. A., de Bruijn, R., James, D. I., Guerrero Llobet, S., Vis, D. J., Annunziato, S., van den Broek, B., Barazas, M., Kersbergen, A., van de Ven, M., Tarsounas, M., Ogilvie, D. J., van Vugt, M., Wessels, L. F. A., Bartkova, J., & Rottenberg, S. (2018). Selective loss of PARG restores PARylation and counteracts PARP inhibitor-mediated synthetic lethality. Cancer Cell, 33(6), 1078-1093.e12. https://doi.org/10.1016/j.ccell.2018.05.008

    Article  CAS  PubMed  Google Scholar 

  • Golan, T., Hammel, P., Reni, M., Van Cutsem, E., Macarulla, T., Hall, M. J., Park, J.-O., Hochhauser, D., Arnold, D., Oh, D.-Y., Reinacher-Schick, A., Tortora, G., Algül, H., O’Reilly, E. M., McGuinness, D., Cui, K. Y., Schlienger, K., Locker, G. Y., & Kindler, H. L. (2019). Maintenance olaparib for germline BRCA-mutated metastatic pancreatic cancer. The New England Journal of Medicine, 381(4), 317–327. https://doi.org/10.1056/NEJMoa1903387

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • González-Martín, A., Pothuri, B., Vergote, I., DePont Christensen, R., Graybill, W., Mirza, M. R., McCormick, C., Lorusso, D., Hoskins, P., Freyer, G., Baumann, K., Jardon, K., Redondo, A., Moore, R. G., Vulsteke, C., O’Cearbhaill, R. E., Lund, B., Backes, F., & Barretina-Ginesta, P. (2019). Niraparib in patients with newly diagnosed advanced ovarian cancer. The New England Journal of Medicine, 381(25), 2391–2402. https://doi.org/10.1056/NEJMoa1910962

    Article  PubMed  Google Scholar 

  • Goodall, J., Mateo, J., Yuan, W., Mossop, H., Porta, N., Miranda, S., Perez-Lopez, R., Dolling, D., Robinson, D. R., Sandhu, S., Fowler, G., Ebbs, B., Flohr, P., Seed, G., Rodrigues, D. N., Boysen, G., Bertan, C., Atkin, M., Clarke, M., TOPARP-A investigators. (2017). Circulating cell-free DNA to guide prostate cancer treatment with PARP inhibition. Cancer Discovery, 7(9), 1006–1017. https://doi.org/10.1158/2159-8290.CD-17-0261

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Gorodetska, I., Kozeretska, I., & Dubrovska, A. (2019). BRCA genes: The role in genome stability, cancer stemness and therapy resistance. Journal of Cancer, 10(9), 2109–2127. https://doi.org/10.7150/jca.30410

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Guillemette, S., Serra, R. W., Peng, M., Hayes, J. A., Konstantinopoulos, P. A., Green, M. R., & Cantor, S. B. (2015). Resistance to therapy in BRCA2 mutant cells due to loss of the nucleosome remodeling factor CHD4. Genes & Development, 29(5), 489–494. https://doi.org/10.1101/gad.256214.114

    Article  CAS  Google Scholar 

  • Haince, J.-F., McDonald, D., Rodrigue, A., Déry, U., Masson, J.-Y., Hendzel, M. J., & Poirier, G. G. (2008). PARP1-dependent kinetics of recruitment of MRE11 and NBS1 proteins to multiple DNA damage sites. The Journal of Biological Chemistry, 283(2), 1197–1208. https://doi.org/10.1074/jbc.M706734200

    Article  CAS  PubMed  Google Scholar 

  • Hanzlikova, H., Gittens, W., Krejcikova, K., Zeng, Z., & Caldecott, K. W. (2017). Overlapping roles for PARP1 and PARP2 in the recruitment of endogenous XRCC1 and PNKP into oxidized chromatin. Nucleic Acids Research, 45(5), 2546–2557. https://doi.org/10.1093/nar/gkw1246

    Article  CAS  PubMed  Google Scholar 

  • Hochegger, H., Dejsuphong, D., Fukushima, T., Morrison, C., Sonoda, E., Schreiber, V., Zhao, G. Y., Saberi, A., Masutani, M., Adachi, N., Koyama, H., de Murcia, G., & Takeda, S. (2006). Parp-1 protects homologous recombination from interference by Ku and Ligase IV in vertebrate cells. The EMBO Journal, 25(6), 1305–1314. https://doi.org/10.1038/sj.emboj.7601015

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Hu, Q., Botuyan, M. V., Zhao, D., Cui, G., Mer, E., & Mer, G. (2021). Mechanisms of BRCA1–BARD1 nucleosome recognition and ubiquitylation. Nature. https://doi.org/10.1038/s41586-021-03716-8

    Article  PubMed  PubMed Central  Google Scholar 

  • Huang, D., & Kraus, W. L. (2022). The expanding universe of PARP1-mediated molecular and therapeutic mechanisms. Molecular Cell, 82(12), 2315–2334. https://doi.org/10.1016/j.molcel.2022.02.021

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Isabelle, M., Gagné, J.-P., Gallouzi, I.-E., & Poirier, G. G. (2012). Quantitative proteomics and dynamic imaging reveal that G3BP-mediated stress granule assembly is poly(ADP-ribose)-dependent following exposure to MNNG-induced DNA alkylation. Journal of Cell Science, 125(Pt 19), 4555–4566. https://doi.org/10.1242/jcs.106963

    Article  CAS  PubMed  Google Scholar 

  • Jankevicius, G., Hassler, M., Golia, B., Rybin, V., Zacharias, M., Timinszky, G., & Ladurner, A. G. (2013). A family of macrodomain proteins reverses cellular mono-ADP-ribosylation. Nature Structural & Molecular Biology, 20(4), 508–514. https://doi.org/10.1038/nsmb.2523

    Article  CAS  Google Scholar 

  • Jaspers, J. E., Sol, W., Kersbergen, A., Schlicker, A., Guyader, C., Xu, G., Wessels, L., Borst, P., Jonkers, J., & Rottenberg, S. (2015). BRCA2-deficient sarcomatoid mammary tumors exhibit multidrug resistance. Cancer Research, 75(4), 732–741. https://doi.org/10.1158/0008-5472.CAN-14-0839

    Article  CAS  PubMed  Google Scholar 

  • Ji, Y., & Tulin, A. V. (2013). Post-transcriptional regulation by poly(ADP-ribosyl)ation of the RNA-binding proteins. International Journal of Molecular Sciences, 14(8), 16168–16183. https://doi.org/10.3390/ijms140816168

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Juncheng, P., Joseph, A., Lafarge, A., Martins, I., Obrist, F., Pol, J., Saavedra, E., Li, S., Sauvat, A., Cerrato, G., Lévesque, S., Leduc, M., Kepp, O., Durand, S., Aprahamian, F., Nirmalathansan, N., Michels, J., Kroemer, G., & Castedo, M. (2022). Cancer cell-autonomous overactivation of PARP1 compromises immunosurveillance in non-small cell lung cancer. Journal for Immunotherapy of Cancer, 10(6), e004280. https://doi.org/10.1136/jitc-2021-004280

    Article  PubMed  PubMed Central  Google Scholar 

  • Kang, H. C., Lee, Y.-I., Shin, J.-H., Andrabi, S. A., Chi, Z., Gagné, J.-P., Lee, Y., Ko, H. S., Lee, B. D., Poirier, G. G., Dawson, V. L., & Dawson, T. M. (2011). Iduna is a poly(ADP-ribose) (PAR)-dependent E3 ubiquitin ligase that regulates DNA damage. Proceedings of the National Academy of Sciences of the United States of America, 108(34), 14103–14108. https://doi.org/10.1073/pnas.1108799108

    Article  PubMed  PubMed Central  Google Scholar 

  • Kashima, L., Idogawa, M., Mita, H., Shitashige, M., Yamada, T., Ogi, K., Suzuki, H., Toyota, M., Ariga, H., Sasaki, Y., & Tokino, T. (2012). CHFR protein regulates mitotic checkpoint by targeting PARP-1 protein for ubiquitination and degradation. The Journal of Biological Chemistry, 287(16), 12975–12984. https://doi.org/10.1074/jbc.M111.321828

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kassner, I., Barandun, M., Fey, M., Rosenthal, F., & Hottiger, M. O. (2013). Crosstalk between SET7/9-dependent methylation and ARTD1-mediated ADP-ribosylation of histone H1.4. Epigenetics & Chromatin, 6(1), 1. https://doi.org/10.1186/1756-8935-6-1

    Article  CAS  Google Scholar 

  • Kondrashova, O., Nguyen, M., Shield-Artin, K., Tinker, A. V., Teng, N. N. H., Harrell, M. I., Kuiper, M. J., Ho, G.-Y., Barker, H., Jasin, M., Prakash, R., Kass, E. M., Sullivan, M. R., Brunette, G. J., Bernstein, K. A., Coleman, R. L., Floquet, A., Friedlander, M., Kichenadasse, G., AOCS Study Group. (2017). Secondary somatic mutations restoring RAD51C and RAD51D associated with acquired resistance to the PARP inhibitor rucaparib in high-grade ovarian carcinoma. Cancer Discovery, 7(9), 984–998. https://doi.org/10.1158/2159-8290.CD-17-0419

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Konstantinopoulos, P. A., Waggoner, S., Vidal, G. A., Mita, M., Moroney, J. W., Holloway, R., Van Le, L., Sachdev, J. C., Chapman-Davis, E., Colon-Otero, G., Penson, R. T., Matulonis, U. A., Kim, Y. B., Moore, K. N., Swisher, E. M., Färkkilä, A., D’Andrea, A., Stringer-Reasor, E., Wang, J., & Munster, P. (2019). Single-arm phases 1 and 2 trial of niraparib in combination with pembrolizumab in patients with recurrent platinum-resistant ovarian carcinoma. JAMA Oncology, 5(8), 1141–1149. https://doi.org/10.1001/jamaoncol.2019.1048

    Article  PubMed  PubMed Central  Google Scholar 

  • Krishnakumar, R., Gamble, M. J., Frizzell, K. M., Berrocal, J. G., Kininis, M., & Kraus, W. L. (2008). Reciprocal binding of PARP-1 and histone H1 at promoters specifies transcriptional outcomes. Science, 319(5864), 819–821. https://doi.org/10.1126/science.1149250

    Article  CAS  PubMed  Google Scholar 

  • Kristeleit, R., Shapiro, G. I., Burris, H. A., Oza, A. M., LoRusso, P., Patel, M. R., Domchek, S. M., Balmaña, J., Drew, Y., Chen, L.-M., Safra, T., Montes, A., Giordano, H., Maloney, L., Goble, S., Isaacson, J., Xiao, J., Borrow, J., Rolfe, L., & Shapira-Frommer, R. (2017). A phase I-II study of the oral PARP inhibitor rucaparib in patients with germline BRCA1/2-mutated ovarian carcinoma or other solid tumors. Clinical Cancer Research, 23(15), 4095–4106. https://doi.org/10.1158/1078-0432.CCR-16-2796

    Article  CAS  PubMed  Google Scholar 

  • Langelier, M.-F., Planck, J. L., Roy, S., & Pascal, J. M. (2011). Crystal structures of poly(ADP-ribose) polymerase-1 (PARP-1) zinc fingers bound to DNA: Structural and functional insights into DNA-dependent PARP-1 activity. The Journal of Biological Chemistry, 286(12), 10690–10701. https://doi.org/10.1074/jbc.M110.202507

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Langelier, M.-F., Planck, J. L., Roy, S., & Pascal, J. M. (2012). Structural basis for DNA damage-dependent poly(ADP-ribosyl)ation by human PARP-1. Science, 336(6082), 728–732. https://doi.org/10.1126/science.1216338

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Langelier, M.-F., Ruhl, D. D., Planck, J. L., Kraus, W. L., & Pascal, J. M. (2010). The Zn3 domain of human poly(ADP-ribose) polymerase-1 (PARP-1) functions in both DNA-dependent poly(ADP-ribose) synthesis activity and chromatin compaction. The Journal of Biological Chemistry, 285(24), 18877–18887. https://doi.org/10.1074/jbc.M110.105668

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Ledermann, J., Harter, P., Gourley, C., Friedlander, M., Vergote, I., Rustin, G., Scott, C. L., Meier, W., Shapira-Frommer, R., Safra, T., Matei, D., Fielding, A., Spencer, S., Dougherty, B., Orr, M., Hodgson, D., Barrett, J. C., & Matulonis, U. (2014). Olaparib maintenance therapy in patients with platinum-sensitive relapsed serous ovarian cancer: A preplanned retrospective analysis of outcomes by BRCA status in a randomised phase 2 trial. The Lancet Oncology, 15(8), 852–861. https://doi.org/10.1016/S1470-2045(14)70228-1

    Article  CAS  PubMed  Google Scholar 

  • Lepeltier, E., Rijo, P., Rizzolio, F., Popovtzer, R., Petrikaite, V., Assaraf, Y. G., & Passirani, C. (2020). Nanomedicine to target multidrug resistant tumors. Drug Resistance Updates, 52, 100704. https://doi.org/10.1016/j.drup.2020.100704

    Article  PubMed  Google Scholar 

  • Leung, A. K. L., Vyas, S., Rood, J. E., Bhutkar, A., Sharp, P. A., & Chang, P. (2011). Poly(ADP-ribose) regulates stress responses and microRNA activity in the cytoplasm. Molecular Cell, 42(4), 489–499. https://doi.org/10.1016/j.molcel.2011.04.015

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Li, N., Zhang, Y., Han, X., Liang, K., Wang, J., Feng, L., Wang, W., Songyang, Z., Lin, C., Yang, L., Yu, Y., & Chen, J. (2015). Poly-ADP ribosylation of PTEN by tankyrases promotes PTEN degradation and tumor growth. Genes & Development, 29(2), 157–170. https://doi.org/10.1101/gad.251785.114

    Article  CAS  Google Scholar 

  • Liptay, M., Barbosa, J. S., & Rottenberg, S. (2020). Replication fork remodeling and therapy escape in DNA damage response-deficient cancers. Frontiers in Oncology, 10, 670. https://doi.org/10.3389/fonc.2020.00670

    Article  PubMed  PubMed Central  Google Scholar 

  • Litton, J. K., Rugo, H. S., Ettl, J., Hurvitz, S. A., Gonçalves, A., Lee, K.-H., Fehrenbacher, L., Yerushalmi, R., Mina, L. A., Martin, M., Roché, H., Im, Y.-H., Quek, R. G. W., Markova, D., Tudor, I. C., Hannah, A. L., Eiermann, W., & Blum, J. L. (2018). Talazoparib in patients with advanced breast cancer and a germline BRCA mutation. The New England Journal of Medicine, 379(8), 753–763. https://doi.org/10.1056/NEJMoa1802905

    Article  CAS  PubMed  Google Scholar 

  • Liu, J. F., Barry, W. T., Birrer, M., Lee, J.-M., Buckanovich, R. J., Fleming, G. F., Rimel, B., Buss, M. K., Nattam, S., Hurteau, J., Luo, W., Quy, P., Whalen, C., Obermayer, L., Lee, H., Winer, E. P., Kohn, E. C., Ivy, S. P., & Matulonis, U. A. (2014). Combination cediranib and olaparib versus olaparib alone for women with recurrent platinum-sensitive ovarian cancer: A randomised phase 2 study. The Lancet Oncology, 15(11), 1207–1214. https://doi.org/10.1016/S1470-2045(14)70391-2

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Loehr, A., Hussain, A., Patnaik, A., Bryce, A. H., Castellano, D., Font, A., Shapiro, J., Zhang, J., Sautois, B., Vogelzang, N. J., Chatta, G., Courtney, K., Harzstark, A., Ricci, F., Despain, D., Watkins, S., King, C., Nguyen, M., Simmons, A. D., & Abida, W. (2022). Emergence of BRCA reversion mutations in patients with metastatic castration-resistant prostate cancer after treatment with rucaparib. European Urology, S0302–2838(22), 02639–02642. https://doi.org/10.1016/j.eururo.2022.09.010

    Article  CAS  Google Scholar 

  • Lombard, A. P., Liu, C., Armstrong, C. M., D’Abronzo, L. S., Lou, W., Chen, H., Dall’Era, M., Ghosh, P. M., Evans, C. P., & Gao, A. C. (2019). Overexpressed ABCB1 induces olaparib-taxane cross-resistance in advanced prostate cancer. Translational Oncology, 12(7), 871–878. https://doi.org/10.1016/j.tranon.2019.04.007

    Article  PubMed  PubMed Central  Google Scholar 

  • Lord, C. J., & Ashworth, A. (2017). PARP inhibitors: Synthetic lethality in the clinic. Science, 355(6330), 1152–1158. https://doi.org/10.1126/science.aam7344

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Mallery, D. L., Vandenberg, C. J., & Hiom, K. (2002). Activation of the E3 ligase function of the BRCA1/BARD1 complex by polyubiquitin chains. The EMBO Journal, 21(24), 6755–6762. https://doi.org/10.1093/emboj/cdf691

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Manco, G., Lacerra, G., Porzio, E., & Catara, G. (2022). ADP-ribosylation post-translational modification: An overview with a focus on RNA biology and new pharmacological perspectives. Biomolecules, 12(3), 443. https://doi.org/10.3390/biom12030443

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Manke, I. A., Lowery, D. M., Nguyen, A., & Yaffe, M. B. (2003). BRCT repeats as phosphopeptide-binding modules involved in protein targeting. Science, 302(5645), 636–639. https://doi.org/10.1126/science.1088877

    Article  CAS  PubMed  Google Scholar 

  • Maruta, H., Okita, N., Takasawa, R., Uchiumi, F., Hatano, T., & Tanuma, S. (2007). The involvement of ATP produced via (ADP-Ribose)n in the maintenance of DNA replication apparatus during DNA repair. Biological & Pharmaceutical Bulletin, 30(3), 447–450. https://doi.org/10.1248/bpb.30.447

    Article  CAS  Google Scholar 

  • Mashimo, M., Onishi, M., Uno, A., Tanimichi, A., Nobeyama, A., Mori, M., Yamada, S., Negi, S., Bu, X., Kato, J., Moss, J., Sanada, N., Kizu, R., & Fujii, T. (2021). The 89-kDa PARP1 cleavage fragment serves as a cytoplasmic PAR carrier to induce AIF-mediated apoptosis. Journal of Biological Chemistry. https://doi.org/10.1074/jbc.RA120.014479

    Article  PubMed  Google Scholar 

  • Matveeva, E., Maiorano, J., Zhang, Q., Eteleeb, A. M., Convertini, P., Chen, J., Infantino, V., Stamm, S., Wang, J., Rouchka, E. C., & Fondufe-Mittendorf, Y. N. (2016). Involvement of PARP1 in the regulation of alternative splicing. Cell Discovery, 2, 15046. https://doi.org/10.1038/celldisc.2015.46

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Messner, S., Altmeyer, M., Zhao, H., Pozivil, A., Roschitzki, B., Gehrig, P., Rutishauser, D., Huang, D., Caflisch, A., & Hottiger, M. O. (2010). PARP1 ADP-ribosylates lysine residues of the core histone tails. Nucleic Acids Research, 38(19), 6350–6362. https://doi.org/10.1093/nar/gkq463

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Mirza, M. R., Åvall Lundqvist, E., Birrer, M. J., dePont Christensen, R., Nyvang, G.-B., Malander, S., Anttila, M., Werner, T. L., Lund, B., Lindahl, G., Hietanen, S., Peen, U., Dimoula, M., Roed, H., Ør Knudsen, A., Staff, S., Krog Vistisen, A., Bjørge, L., Mäenpää, J. U., AVANOVA investigators. (2019). Niraparib plus bevacizumab versus niraparib alone for platinum-sensitive recurrent ovarian cancer (NSGO-AVANOVA2/ENGOT-ov24): A randomised, phase 2, superiority trial. The Lancet. Oncology, 20(10), 1409–1419. https://doi.org/10.1016/S1470-2045(19)30515-7

    Article  CAS  PubMed  Google Scholar 

  • Mirza, M. R., Monk, B. J., Herrstedt, J., Oza, A. M., Mahner, S., Redondo, A., Fabbro, M., Ledermann, J. A., Lorusso, D., Vergote, I., Ben-Baruch, N. E., Marth, C., Mądry, R., Christensen, R. D., Berek, J. S., Dørum, A., Tinker, A. V., du Bois, A., González-Martín, A., ENGOT-OV16/NOVA Investigators. (2016). Niraparib maintenance therapy in platinum-sensitive, recurrent ovarian cancer. The New England Journal of Medicine, 375(22), 2154–2164. https://doi.org/10.1056/NEJMoa1611310

    Article  CAS  PubMed  Google Scholar 

  • Moore, K. N., Secord, A. A., Geller, M. A., Miller, D. S., Cloven, N., Fleming, G. F., Wahner Hendrickson, A. E., Azodi, M., DiSilvestro, P., Oza, A. M., Cristea, M., Berek, J. S., Chan, J. K., Rimel, B. J., Matei, D. E., Li, Y., Sun, K., Luptakova, K., Matulonis, U. A., & Monk, B. J. (2019). Niraparib monotherapy for late-line treatment of ovarian cancer (QUADRA): A multicentre, open-label, single-arm, phase 2 trial. The Lancet Oncology, 20(5), 636–648. https://doi.org/10.1016/S1470-2045(19)30029-4

    Article  CAS  PubMed  Google Scholar 

  • Moudry, P., Watanabe, K., Wolanin, K. M., Bartkova, J., Wassing, I. E., Watanabe, S., Strauss, R., Troelsgaard Pedersen, R., Oestergaard, V. H., Lisby, M., Andújar-Sánchez, M., Maya-Mendoza, A., Esashi, F., Lukas, J., & Bartek, J. (2016). TOPBP1 regulates RAD51 phosphorylation and chromatin loading and determines PARP inhibitor sensitivity. The Journal of Cell Biology, 212(3), 281–288. https://doi.org/10.1083/jcb.201507042

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Mukhopadhyay, A., Elattar, A., Cerbinskaite, A., Wilkinson, S. J., Drew, Y., Kyle, S., Los, G., Hostomsky, Z., Edmondson, R. J., & Curtin, N. J. (2010). Development of a functional assay for homologous recombination status in primary cultures of epithelial ovarian tumor and correlation with sensitivity to poly(ADP-ribose) polymerase inhibitors. Clinical Cancer Research, 16(8), 2344–2351. https://doi.org/10.1158/1078-0432.CCR-09-2758

    Article  CAS  PubMed  Google Scholar 

  • Murai, J., Huang, S.-Y.N., Renaud, A., Zhang, Y., Ji, J., Takeda, S., Morris, J., Teicher, B., Doroshow, J. H., & Pommier, Y. (2014). Stereospecific PARP trapping by BMN 673 and comparison with olaparib and rucaparib. Molecular Cancer Therapeutics, 13(2), 433–443. https://doi.org/10.1158/1535-7163.MCT-13-0803

    Article  CAS  PubMed  Google Scholar 

  • Niere, M., Mashimo, M., Agledal, L., Dölle, C., Kasamatsu, A., Kato, J., Moss, J., & Ziegler, M. (2012). ADP-ribosylhydrolase 3 (ARH3), not poly(ADP-ribose) glycohydrolase (PARG) isoforms, Is responsible for degradation of mitochondrial matrix-associated poly(ADP-ribose)*. Journal of Biological Chemistry, 287(20), 16088–16102. https://doi.org/10.1074/jbc.M112.349183

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Norquist, B., Wurz, K. A., Pennil, C. C., Garcia, R., Gross, J., Sakai, W., Karlan, B. Y., Taniguchi, T., & Swisher, E. M. (2011). Secondary somatic mutations restoring BRCA1/2 predict chemotherapy resistance in hereditary ovarian carcinomas. Journal of Clinical Oncology, 29(22), 3008–3015. https://doi.org/10.1200/JCO.2010.34.2980

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Oka, S., Kato, J., & Moss, J. (2006). Identification and characterization of a mammalian 39-kDa poly(ADP-ribose) glycohydrolase. The Journal of Biological Chemistry, 281(2), 705–713. https://doi.org/10.1074/jbc.M510290200

    Article  CAS  PubMed  Google Scholar 

  • Palazzo, L., Leidecker, O., Prokhorova, E., Dauben, H., Matic, I., & Ahel, I. (2018). Serine is the major residue for ADP-ribosylation upon DNA damage. eLife, 7, e34334. https://doi.org/10.7554/eLife.34334

    Article  PubMed  PubMed Central  Google Scholar 

  • Park, H., Kam, T.-I., Dawson, T. M., & Dawson, V. L. (2020). Poly (ADP-ribose) (PAR)-dependent cell death in neurodegenerative diseases. International Review of Cell and Molecular Biology, 353, 1–29. https://doi.org/10.1016/bs.ircmb.2019.12.009

    Article  CAS  PubMed  Google Scholar 

  • Patch, A.-M., Christie, E. L., Etemadmoghadam, D., Garsed, D. W., George, J., Fereday, S., Nones, K., Cowin, P., Alsop, K., Bailey, P. J., Kassahn, K. S., Newell, F., Quinn, M. C. J., Kazakoff, S., Quek, K., Wilhelm-Benartzi, C., Curry, E., Leong, H. S., Australian Ovarian Cancer Study Group, & Bowtell, D. D. L. (2015). Whole-genome characterization of chemoresistant ovarian cancer. Nature, 521(7553), 489–494. https://doi.org/10.1038/nature14410

    Article  CAS  PubMed  Google Scholar 

  • Patel, A. G., Sarkaria, J. N., & Kaufmann, S. H. (2011). Nonhomologous end joining drives poly(ADP-ribose) polymerase (PARP) inhibitor lethality in homologous recombination-deficient cells. Proceedings of the National Academy of Sciences of the United States of America, 108(8), 3406–3411. https://doi.org/10.1073/pnas.1013715108

    Article  PubMed  PubMed Central  Google Scholar 

  • Peterson, F. C., Chen, D., Lytle, B. L., Rossi, M. N., Ahel, I., Denu, J. M., & Volkman, B. F. (2011). Orphan macrodomain protein (human C6orf130) is an O-acyl-ADP-ribose deacylase: Solution structure and catalytic properties. The Journal of Biological Chemistry, 286(41), 35955–35965. https://doi.org/10.1074/jbc.M111.276238

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Pillay, N., Tighe, A., Nelson, L., Littler, S., Coulson-Gilmer, C., Bah, N., Golder, A., Bakker, B., Spierings, D. C. J., James, D. I., Smith, K. M., Jordan, A. M., Morgan, R. D., Ogilvie, D. J., Foijer, F., Jackson, D. A., & Taylor, S. S. (2019). DNA replication vulnerabilities render ovarian cancer cells sensitive to poly(ADP-Ribose) glycohydrolase inhibitors. Cancer Cell, 35(3), 519-533.e8. https://doi.org/10.1016/j.ccell.2019.02.004

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Plummer, R., Jones, C., Middleton, M., Wilson, R., Evans, J., Olsen, A., Curtin, N., Boddy, A., McHugh, P., Newell, D., Harris, A., Johnson, P., Steinfeldt, H., Dewji, R., Wang, D., Robson, L., & Calvert, H. (2008). Phase I study of the poly(ADP-ribose) polymerase inhibitor, AG014699, in combination with temozolomide in patients with advanced solid tumors. Clinical Cancer Research, 14(23), 7917–7923. https://doi.org/10.1158/1078-0432.CCR-08-1223

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Poveda, A., Floquet, A., Ledermann, J. A., Asher, R., Penson, R. T., Oza, A. M., Korach, J., Huzarski, T., Pignata, S., Friedlander, M., Baldoni, A., Park-Simon, T.-W., Tamura, K., Sonke, G. S., Lisyanskaya, A., Kim, J.-H., Filho, E. A., Milenkova, T., Lowe, E. S., SOLO2/ENGOT-Ov21 investigators. (2021). Olaparib tablets as maintenance therapy in patients with platinum-sensitive relapsed ovarian cancer and a BRCA1/2 mutation (SOLO2/ENGOT-Ov21): A final analysis of a double-blind, randomised, placebo-controlled, phase 3 trial. The Lancet Oncology, 22(5), 620–631. https://doi.org/10.1016/S1470-2045(21)00073-5

    Article  CAS  PubMed  Google Scholar 

  • Powell, C., Mikropoulos, C., Kaye, S. B., Nutting, C. M., Bhide, S. A., Newbold, K., & Harrington, K. J. (2010). Pre-clinical and clinical evaluation of PARP inhibitors as tumour-specific radiosensitisers. Cancer Treatment Reviews, 36(7), 566–575. https://doi.org/10.1016/j.ctrv.2010.03.003

    Article  CAS  PubMed  Google Scholar 

  • Prokhorova, E., Agnew, T., Wondisford, A. R., Tellier, M., Kaminski, N., Beijer, D., Holder, J., Groslambert, J., Suskiewicz, M. J., Zhu, K., Reber, J. M., Krassnig, S. C., Palazzo, L., Murphy, S., Nielsen, M. L., Mangerich, A., Ahel, D., Baets, J., O’Sullivan, R. J., & Ahel, I. (2021). Unrestrained poly-ADP-ribosylation provides insights into chromatin regulation and human disease. Molecular Cell, 81(12), 2640-2655.e8. https://doi.org/10.1016/j.molcel.2021.04.028

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Rack, J. G. M., Perina, D., & Ahel, I. (2016). Macrodomains: structure, function, evolution, and catalytic activities. Annual Review of Biochemistry, 85, 431–454. https://doi.org/10.1146/annurev-biochem-060815-014935

    Article  CAS  PubMed  Google Scholar 

  • Rafiei, S., Fitzpatrick, K., Liu, D., Cai, M.-Y., Elmarakeby, H. A., Park, J., Ricker, C., Kochupurakkal, B. S., Choudhury, A. D., Hahn, W. C., Balk, S. P., Hwang, J. H., Van Allen, E. M., & Mouw, K. W. (2020). ATM loss confers greater sensitivity to ATR inhibition than PARP inhibition in prostate cancer. Cancer Research, 80(11), 2094–2100. https://doi.org/10.1158/0008-5472.CAN-19-3126

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Raphael, B. J., Hruban, R. H., Aguirre, A. J., Moffitt, R. A., Yeh, J. J., Stewart, C., Robertson, A. G., Cherniack, A. D., Gupta, M., Getz, G., Gabriel, S. B., Meyerson, M., Cibulskis, C., Fei, S. S., Hinoue, T., Shen, H., Laird, P. W., Ling, S., Lu, Y., & Zenklusen, J. C. (2017). Integrated genomic characterization of pancreatic ductal adenocarcinoma. Cancer Cell, 32(2), 185-203.e13. https://doi.org/10.1016/j.ccell.2017.07.007

    Article  CAS  Google Scholar 

  • Ray Chaudhuri, A., Callen, E., Ding, X., Gogola, E., Duarte, A. A., Lee, J.-E., Wong, N., Lafarga, V., Calvo, J. A., Panzarino, N. J., John, S., Day, A., Crespo, A. V., Shen, B., Starnes, L. M., de Ruiter, J. R., Daniel, J. A., Konstantinopoulos, P. A., Cortez, D., & Nussenzweig, A. (2016). Replication fork stability confers chemoresistance in BRCA-deficient cells. Nature, 535(7612), 382–387. https://doi.org/10.1038/nature18325

    Article  CAS  PubMed  Google Scholar 

  • Ray Chaudhuri, A., & Nussenzweig, A. (2017). The multifaceted roles of PARP1 in DNA repair and chromatin remodelling. Nature Reviews Molecular Cell Biology, 18(10), 610–621. https://doi.org/10.1038/nrm.2017.53

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Ray-Coquard, I., Pautier, P., Pignata, S., Pérol, D., González-Martín, A., Berger, R., Fujiwara, K., Vergote, I., Colombo, N., Mäenpää, J., Selle, F., Sehouli, J., Lorusso, D., Guerra Alía, E. M., Reinthaller, A., Nagao, S., Lefeuvre-Plesse, C., Canzler, U., Scambia, G., PAOLA-1 Investigators. (2019). Olaparib plus bevacizumab as first-line maintenance in ovarian cancer. The New England Journal of Medicine, 381(25), 2416–2428. https://doi.org/10.1056/NEJMoa1911361

    Article  CAS  PubMed  Google Scholar 

  • Rebbeck, T. R., Mitra, N., Wan, F., Sinilnikova, O. M., Healey, S., McGuffog, L., Mazoyer, S., Chenevix-Trench, G., Easton, D. F., Antoniou, A. C., Nathanson, K. L., CIMBA Consortium, Laitman, Y., Kushnir, A., Paluch-Shimon, S., Berger, R., Zidan, J., Friedman, E., Ehrencrona, H., & Andrulis, I. (2015). Association of type and location of BRCA1 and BRCA2 mutations with risk of breast and ovarian cancer. JAMA, 313(13), 1347–1361. https://doi.org/10.1001/jama.2014.5985

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Robinson, D., Van Allen, E. M., Wu, Y.-M., Schultz, N., Lonigro, R. J., Mosquera, J.-M., Montgomery, B., Taplin, M.-E., Pritchard, C. C., Attard, G., Beltran, H., Abida, W., Bradley, R. K., Vinson, J., Cao, X., Vats, P., Kunju, L. P., Hussain, M., Feng, F. Y., & Chinnaiyan, A. M. (2015). Integrative clinical genomics of advanced prostate cancer. Cell, 161(5), 1215–1228. https://doi.org/10.1016/j.cell.2015.05.001

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Robson, M., Im, S.-A., Senkus, E., Xu, B., Domchek, S. M., Masuda, N., Delaloge, S., Li, W., Tung, N., Armstrong, A., Wu, W., Goessl, C., Runswick, S., & Conte, P. (2017). Olaparib for metastatic breast cancer in patients with a germline BRCA mutation. The New England Journal of Medicine, 377(6), 523–533. https://doi.org/10.1056/NEJMoa1706450

    Article  CAS  PubMed  Google Scholar 

  • Rolli, V., O’Farrell, M., Ménissier-de Murcia, J., & de Murcia, G. (1997). Random mutagenesis of the poly(ADP-ribose) polymerase catalytic domain reveals amino acids involved in polymer branching. Biochemistry, 36(40), 12147–12154. https://doi.org/10.1021/bi971055p

    Article  CAS  PubMed  Google Scholar 

  • Rondinelli, B., Gogola, E., Yücel, H., Duarte, A. A., van de Ven, M., van der Sluijs, R., Konstantinopoulos, P. A., Jonkers, J., Ceccaldi, R., Rottenberg, S., & D’Andrea, A. D. (2017). EZH2 promotes degradation of stalled replication forks by recruiting MUS81 through histone H3 trimethylation. Nature Cell Biology, 19(11), 1371–1378. https://doi.org/10.1038/ncb3626

    Article  CAS  PubMed  Google Scholar 

  • Rosenthal, F., Feijs, K. L. H., Frugier, E., Bonalli, M., Forst, A. H., Imhof, R., Winkler, H. C., Fischer, D., Caflisch, A., Hassa, P. O., Lüscher, B., & Hottiger, M. O. (2013). Macrodomain-containing proteins are new mono-ADP-ribosylhydrolases. Nature Structural & Molecular Biology, 20(4), 502–507. https://doi.org/10.1038/nsmb.2521

    Article  CAS  Google Scholar 

  • Ruf, A., Mennissier de Murcia, J., de Murcia, G., & Schulz, G. E. (1996). Structure of the catalytic fragment of poly(AD-ribose) polymerase from chicken. Proceedings of the National Academy of Sciences of the United States of America, 93(15), 7481–7485. https://doi.org/10.1073/pnas.93.15.7481

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Ruf, A., Rolli, V., de Murcia, G., & Schulz, G. E. (1998). The mechanism of the elongation and branching reaction of poly(ADP-ribose) polymerase as derived from crystal structures and mutagenesis. Journal of Molecular Biology, 278(1), 57–65. https://doi.org/10.1006/jmbi.1998.1673

    Article  CAS  PubMed  Google Scholar 

  • Schlacher, K., Christ, N., Siaud, N., Egashira, A., Wu, H., & Jasin, M. (2011). Double-strand break repair-independent role for BRCA2 in blocking stalled replication fork degradation by MRE11. Cell, 145(4), 529–542. https://doi.org/10.1016/j.cell.2011.03.041

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Sharifi, R., Morra, R., Appel, C. D., Tallis, M., Chioza, B., Jankevicius, G., Simpson, M. A., Matic, I., Ozkan, E., Golia, B., Schellenberg, M. J., Weston, R., Williams, J. G., Rossi, M. N., Galehdari, H., Krahn, J., Wan, A., Trembath, R. C., Crosby, A. H., & Ahel, I. (2013). Deficiency of terminal ADP-ribose protein glycohydrolase TARG1/C6orf130 in neurodegenerative disease. The EMBO Journal, 32(9), 1225–1237. https://doi.org/10.1038/emboj.2013.51

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Slade, D., Dunstan, M. S., Barkauskaite, E., Weston, R., Lafite, P., Dixon, N., Ahel, M., Leys, D., & Ahel, I. (2011). The structure and catalytic mechanism of a poly(ADP-ribose) glycohydrolase. Nature, 477(7366), 616–620. https://doi.org/10.1038/nature10404

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Smith, R., Lebeaupin, T., Juhász, S., Chapuis, C., D’Augustin, O., Dutertre, S., Burkovics, P., Biertümpfel, C., Timinszky, G., & Huet, S. (2019). Poly(ADP-ribose)-dependent chromatin unfolding facilitates the association of DNA-binding proteins with DNA at sites of damage. Nucleic Acids Research, 47(21), 11250–11267. https://doi.org/10.1093/nar/gkz820

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Solmaz, A. E., Onay, H., Yeniay, L., Gökmen, E., Özdemir, N., Alanyalı, S., Oktay, A., Özsaran, Z., Kapkaç, M., & Özkınay, F. (2020). BRCA1-BRCA2 mutation analysis results in 910 individuals: Mutation distribution and 8 novel mutations. Cancer Genetics, 241, 20–24. https://doi.org/10.1016/j.cancergen.2019.12.008

    Article  PubMed  Google Scholar 

  • Stewart, R. A., Pilié, P. G., & Yap, T. A. (2018). Development of PARP and Immune-checkpoint inhibitor combinations. Cancer Research, 78(24), 6717–6725. https://doi.org/10.1158/0008-5472.CAN-18-2652

    Article  CAS  PubMed  Google Scholar 

  • Vyas, S., Chesarone-Cataldo, M., Todorova, T., Huang, Y.-H., & Chang, P. (2013). A systematic analysis of the PARP protein family identifies new functions critical for cell physiology. Nature Communications, 4, 2240. https://doi.org/10.1038/ncomms3240

    Article  CAS  PubMed  Google Scholar 

  • Vyas, S., Matic, I., Uchima, L., Rood, J., Zaja, R., Hay, R. T., Ahel, I., & Chang, P. (2014). Family-wide analysis of poly(ADP-ribose) polymerase activity. Nature Communications, 5, 4426. https://doi.org/10.1038/ncomms5426

    Article  CAS  PubMed  Google Scholar 

  • Waks, A. G., Cohen, O., Kochupurakkal, B., Kim, D., Dunn, C. E., Buendia Buendia, J., Wander, S., Helvie, K., Lloyd, M. R., Marini, L., Hughes, M. E., Freeman, S. S., Ivy, S. P., Geradts, J., Isakoff, S., LoRusso, P., Adalsteinsson, V. A., Tolaney, S. M., Matulonis, U., & Wagle, N. (2020). Reversion and non-reversion mechanisms of resistance to PARP inhibitor or platinum chemotherapy in BRCA1/2-mutant metastatic breast cancer. Annals of Oncology, 31(5), 590–598. https://doi.org/10.1016/j.annonc.2020.02.008

    Article  CAS  PubMed  Google Scholar 

  • Whitehouse, C. J., Taylor, R. M., Thistlethwaite, A., Zhang, H., Karimi-Busheri, F., Lasko, D. D., Weinfeld, M., & Caldecott, K. W. (2001). XRCC1 stimulates human polynucleotide kinase activity at damaged DNA termini and accelerates DNA single-strand break repair. Cell, 104(1), 107–117. https://doi.org/10.1016/s0092-8674(01)00195-7

    Article  CAS  PubMed  Google Scholar 

  • Xu, Y., Huang, S., Liu, Z.-G., & Han, J. (2006). Poly(ADP-ribose) polymerase-1 signaling to mitochondria in necrotic cell death requires RIP1/TRAF2-mediated JNK1 activation. The Journal of Biological Chemistry, 281(13), 8788–8795. https://doi.org/10.1074/jbc.M508135200

    Article  CAS  PubMed  Google Scholar 

  • Yang, L., Zhang, Y., Shan, W., Hu, Z., Yuan, J., Pi, J., Wang, Y., Fan, L., Tang, Z., Li, C., Hu, X., Tanyi, J. L., Fan, Y., Huang, Q., Montone, K., Dang, C. V., & Zhang, L. (2017). Repression of BET activity sensitizes homologous recombination-proficient cancers to PARP inhibition. Science Translational Medicine, 9(400), eaal1645. https://doi.org/10.1126/scitranslmed.aal1645

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Yu, J., Hu, X., Yang, Q., Shan, R., Zhang, Y., Dong, Z., Li, H., Wang, J., Li, C., Xie, S., Dong, Y., Ni, W., Jiang, L., Liu, X., Wei, B., Wen, J., Liu, M., Chen, Q., Yang, Y., & Meng, X. (2022). Insulin-like growth factor binding protein 7 promotes acute kidney injury by alleviating poly ADP ribose polymerase 1 degradation. Kidney International, 102(4), 828–844. https://doi.org/10.1016/j.kint.2022.05.026

    Article  CAS  PubMed  Google Scholar 

  • Yu, S.-W., Andrabi, S. A., Wang, H., Kim, N. S., Poirier, G. G., Dawson, T. M., & Dawson, V. L. (2006). Apoptosis-inducing factor mediates poly(ADP-ribose) (PAR) polymer-induced cell death. Proceedings of the National Academy of Sciences of the United States of America, 103(48), 18314–18319. https://doi.org/10.1073/pnas.0606528103

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Yu, S.-W., Wang, H., Poitras, M. F., Coombs, C., Bowers, W. J., Federoff, H. J., Poirier, G. G., Dawson, T. M., & Dawson, V. L. (2002). Mediation of poly(ADP-ribose) polymerase-1-dependent cell death by apoptosis-inducing factor. Science, 297(5579), 259–263. https://doi.org/10.1126/science.1072221

    Article  CAS  PubMed  Google Scholar 

  • Zhang, Y., Liu, S., Mickanin, C., Feng, Y., Charlat, O., Michaud, G. A., Schirle, M., Shi, X., Hild, M., Bauer, A., Myer, V. E., Finan, P. M., Porter, J. A., Huang, S.-M.A., & Cong, F. (2011). RNF146 is a poly(ADP-ribose)-directed E3 ligase that regulates axin degradation and Wnt signalling. Nature Cell Biology, 13(5), 623–629. https://doi.org/10.1038/ncb2222

    Article  CAS  PubMed  Google Scholar 

  • Zhou, B., Yan, J., Guo, L., Zhang, B., Liu, S., Yu, M., Chen, Z., Zhang, K., Zhang, W., Li, X., Xu, Y., Xiao, Y., Zhou, J., Fan, J., Hung, M.-C., Li, H., & Ye, Q. (2020). Hepatoma cell-intrinsic TLR9 activation induces immune escape through PD-L1 upregulation in hepatocellular carcinoma. Theranostics, 10(14), 6530–6543. https://doi.org/10.7150/thno.44417

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

This work was supported by National Natural Science Foundation of China (T2225006) and Beijing Municipal Natural Science Foundation (Z220011) to ML.

Author information

Authors and Affiliations

Authors

Contributions

ML designed and wrote the manuscript. YG wrote the manuscript. BF revised the manuscript.

Corresponding author

Correspondence to Mo Li.

Ethics declarations

Conflict of interest

The authors have no competing interests to declare that are relevant to the content of this article.

Ethical approval

Not applicable.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Guo, Y., Fan, B. & Li, M. PARP molecular functions and applications of PARP inhibitors in cancer treatment. GENOME INSTAB. DIS. 4, 137–153 (2023). https://doi.org/10.1007/s42764-023-00100-w

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s42764-023-00100-w

Keywords

Navigation