Skip to main content
Log in

Experimental analyses of temperature and pressure oscillation frequencies of a flat plate pulsating heat pipe tested under various edge orientation angles and heat loads

  • Research Article
  • Published:
Experimental and Computational Multiphase Flow Aims and scope Submit manuscript

Abstract

A closed loop flat plate pulsating heat pipe, filled with OpteonTM SF33 (with a filling ratio of 50%), was experimentally studied in different orientations: 0° (horizontal), 22.5°, 45°, 67.5°, and 90° (“;edge”: vertical with horizontal channels). The results confirm the interest of such configurations, rarely investigated in the literature, on the thermal behavior of the device and on the regularity of the temperatures and pressure signals: If dried-out occurred in horizontal orientation, increase of inclination angle (starting from 22.5°) led to regular oscillatory movement due to help of gravity pressure drop between channels. The thermal performance remains very similar for the device inclination angles from 45° to 90°. Both FFT and wavelet analyses of the pressure signal and temperatures of the external wall of the device (measured with IR camera) were done to characterize the dominant oscillatory frequencies. These orientations led to dominant frequencies, rarely detected in the literature for other classic configurations (with vertical/inclined channels). Similar internal pressure and temperature signals both showed that the dominant frequency increases with decreasing angle (from edge to horizontal orientation), but also with increasing applied heat power, and finally tends to spread and disappear for the highest heat loads.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Abbreviations

a :

Scaling factor

Bo :

Bond number

BHM:

Bottom heated mode

c:

Condenser

d :

Inter-channel distance (m)

D :

Diameter (m)

e:

Evaporator

f :

Frequency (Hz)

FFT:

Fast Fourier transform

FPPHP:

Flat plate pulsating heat pipe

FR:

Feeling ratio (%)

g :

Gravity acceleration (m/s2)

IR:

Infrared

l:

Liquid

P :

Pressure (Pa)

PSD:

Power spectrum density

Ȯ :

Heat power (W)

R th :

Thermal resistance (K/W)

t :

Time (s)

T :

Temperature (°C)

TC:

Thermocouple

v:

Vapor

W :

Wavelet transform

α:

Inclination angle (°)

η:

Dimensionless time

λ:

Thermal conductivity (W/(m-K))

ρ:

Density (kg/m3)

σ:

Surface tension (J/m2)

τ:

Time shift (s)

ψ:

Wavelet shape

ω0 :

Characteristic parameter

References

  • Ayel, V., Romestant, C., Bertin, Y., Manno, V., Filippeschi, S. 2014. Visualisation of flow patterns in flat plate pulsating heat pipe: Influence of hydraulic behaviour on thermal performances. Heat Pipe Science and Technology, 5: 377–384.

    Article  Google Scholar 

  • Ayel, V., Slobodeniuk, M., Bertossi, R., Romestant, C., Bertin, Y. 2021. Flat plate pulsating heat pipes: A review on the thermohydraulic principles, thermal performances and open issues. Applied Thermal Engineering, 197: 117200.

    Article  Google Scholar 

  • Borgmeyer, B., Ma, H. 2007. Experimental investigation of oscillating motions in a flat plate pulsating heat pipe. Journal of Thermophysics and Heat Transfer, 21: 405–409.

    Article  CAS  Google Scholar 

  • Chi, R.-G., Chung, W.-S., Rhi, S.-H. 2018. Thermal characteristics of an oscillating heat pipe cooling system for electric vehicle Li-ion batteries. Energies, 11: 1–16.

    Article  Google Scholar 

  • Drolen, B. L., Smoot, C. D. 2017. Performance limits of oscillating heat pipes: Theory and validation. Journal of Thermophysics and Heat Transfer, 31: 920–936.

    Article  CAS  Google Scholar 

  • Iwata, N., Bozzoli, F., Pagliarini, L., Cattani, L., Vocale, P., Malavasi, M., Rainieri, S. 2022. Characterization of thermal behavior of a micro pulsating heat pipe by local heat transfer investigation. International Journal of Heat and Mass Transfer, 196: 123203.

    Article  CAS  Google Scholar 

  • Khandekar, S., Gautam, A. P., Sharma, P. K. 2009. Multiple quasi-steady states in a closed loop pulsating heat pipe. International Journal of Thermal Sciences, 48: 535–546.

    Article  CAS  Google Scholar 

  • Khandekar, S., Panigrahi, P. K., Lefèvre, F., Bonjour, J. 2010. Local hydrodynamics of flow in a pulsating heat pipe: A review. Frontiers in Heat Pipes, 1: 023003.

    Article  Google Scholar 

  • Kim, J.-S., Bui, N. H., Kim, J.-W., Kim, J.-H., Jung, H. S. 2003. Flow visualization of oscillation characteristics of liquid and vapor flow in the oscillating capillary tube heat pipe. KSME International Journal, 17: 1507–1519.

    Article  Google Scholar 

  • Ma, H. 2015. Oscillating Heat Pipes. New York: Springer, 427.

    Book  Google Scholar 

  • Mameli, M., Marengo, M., Khandekar, S. 2014. Local heat transfer measurement and thermo-fluid characterization of a pulsating heat pipe. International Journal of Thermal Sciences, 75: 140–152.

    Article  CAS  Google Scholar 

  • Marengo, M., Nikolayev, V. S. 2018. Pulsating heat pipes: Experimental analysis, design and applications. In: Encyclopedia of Two-Phase Heat Transfer and Flow IV: Modeling Methodologies, Boiling of CO2, and Micro-Two-Phase Cooling Volume 1: Modeling of Two-Phase Flows and Heat Transfer. Thome, J. R., Ed. World Scientific, 1–62.

  • Miyazaki, Y. 1999. Oscillatory flow in oscillating heat pipe. In: Proceedings of the 11th International Heat Pipe Conference, 367–372.

  • Monroe, J. G., Aspin, Z. S., Fairley, J. D., Thompson, S. M. 2017. Analysis and comparison of internal and external temperature measurements of a tubular oscillating heat pipe. Experimental Thermal and Fluid Science, 84: 165–178.

    Article  Google Scholar 

  • Pagliarini, L., Cattani, L., Ayel, V., Slobodeniuk, M., Romestant, C., Bozzoli, F. 2023a. Thermographic investigation on fluid oscillations and transverse interactions in a fully metallic flat-plate pulsating heat pipe. Applied Sciences, 13: 6351.

    Article  CAS  Google Scholar 

  • Pagliarini, L., Cattani, L., Bozzoli, F., Mameli, M., Filippeschi, S., Rainieri, S., Marengo, M. 2021. Thermal characterization of a multi-turn pulsating heat pipe in microgravity conditions: Statistical approach to the local wall-to-fluid heat flux. International Journal of Heat and Mass Transfer, 169: 120930.

    Article  CAS  Google Scholar 

  • Pagliarini, L., Cattani, L., Mameli, M., Filippeschi, S., Bozzoli, F. 2023b. Heat transfer delay method for the fluid velocity evaluation in a multi-turn pulsating heat pipe. International Journal of Thermofluids, 17: 100278.

    Article  CAS  Google Scholar 

  • Pagliarini, L., Cattani, L., Slobodeniuk, M., Ayel, V., Romestant, C., Bozzoli, F., Rainieri, S. 2022. Novel infrared approach for the evaluation of thermofluidic interactions in a metallic flat-plate pulsating heat pipe. Applied Sciences, 12: 11682.

    Article  CAS  Google Scholar 

  • Pagliarini, L., Iwata, N., Bozzoli, F. 2023c. Pulsating heat pipes: Critical review on different experimental techniques. Experimental Thermal and Fluid Science, 148: 110980.

    Article  Google Scholar 

  • Pagnoni, F., Ayel, V., Scoletta, E., Bertin, Y. 2018. Effects of the hydrostatic pressure gradient no thermohydraulic behavior of flat plate pulsating heat pipe: Experimental and numerical analyses. In: Proceedings of the 6th International Heat Transfer Conference, 8.

  • Perna, R., Abela, M., Mameli, M., Mariotti, A., Pietrasanta, L., Marengo, M., Filippeschi, S. 2020. Flow characterization of a pulsating heat pipe through the wavelet analysis of pressure signals. Applied Thermal Engineering, 171: 115128.

    Article  Google Scholar 

  • Takawale, A., Abraham, S., Sielaff, A., Mahapatra, P. S., Pattamatta, A., Stephan, P. 2019. A comparative study of flow regimes and thermal performance between flat plate pulsating heat pipe and capillary tube pulsating heat pipe. Applied Thermal Engineering, 149: 613–624.

    Article  CAS  Google Scholar 

  • Xu, J. L., Zhang, X. M. 2005. Start-up and steady thermal oscillation of a pulsating heat pipe. Heat and Mass Transfer, 41: 685–694.

    Article  ADS  Google Scholar 

  • Yasuda, Y., Nabeshima, F., Horiuchi, K., Nagai, H. 2022. Visualization of the working fluid in a flat-plate pulsating heat pipe by neutron radiography. International Journal of Heat and Mass Transfer, 185: 122336.

    Article  CAS  Google Scholar 

  • Zhang, Y., Faghri, A. 2008. Advances and unsolved issues in pulsating heat pipes. Heat Transfer Engineering, 29: 20–44.

    Article  ADS  Google Scholar 

  • Zhao, N., Ma, H., Pan, X. 2011. Wavelet analysis of oscillating motions in an oscillating heat pipe. In: Proceedings of the ASME 2011 International Mechanical Engineering Congress and Exposition, 545–549.

Download references

Acknowledgements

This work has been pursued in the framework of the “Two-phase passive thermal devices for deployable space systems (TOPDESS)” project, financed through the Microgravity Application Program (Grant No. 4000128640) by the European Space Agency. Part of this work was also carried out by CIFRE convention (ANRT program) established between Pprime Institute (Poitiers) and Stellantis (Site de Carrières-sous-Poissy) with the OpenLab Fluidics.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Vincent Ayel.

Ethics declarations

The authors have no competing interests to declare that are relevant to the content of this article.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ayel, V., Pagliarini, L., Van’t Veer, T. et al. Experimental analyses of temperature and pressure oscillation frequencies of a flat plate pulsating heat pipe tested under various edge orientation angles and heat loads. Exp. Comput. Multiph. Flow (2024). https://doi.org/10.1007/s42757-023-0178-6

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s42757-023-0178-6

Keywords

Navigation