Skip to main content
Log in

Modeling of chemical-looping combustion process of methane with nickel-based oxygen carrier

  • Research Article
  • Published:
Experimental and Computational Multiphase Flow Aims and scope Submit manuscript

Abstract

The chemical-looping combustion of methane in a three-dimensional cylindrical fuel reactor is numerically studied using the developed multiphase particle-in-cell reactive model, featuring the multi-phase flow, heat transfer, reduction of oxygen carriers, and particle shrinkage. After model validation, the general flow patterns, and the thermophysical properties of oxygen carriers (e.g., temperature, heat transfer coefficient) and gas phase (e.g., temperature, density, thermal conductivity, specific heat capacity, and viscosity) are comprehensively studied with the discussion on several crucial operating parameters. The results show that bubble dynamics (e.g., generation, rising, coalescence, and eruption) induce the segregation of small- and large-mass particles. CH4 is thoroughly converted in a very short distance above the bottom distributor while CO and H2 increase above the bottom distributor and then decrease axially. The temperature of particles ranges from 1275 to 1295 K, leading to a 20 K temperature difference in the bed. The heat transfer coefficient (HTC) of particles is in the range of 50–150 W/(m2·K). Increasing the investigated operating parameters (i.e., superficial gas velocity, methane ratio, and wall temperature) enlarges the particle properties (i.e., temperature, HTC) and most of the gas properties (i.e., temperature, thermal conductivity, specific capacity, and viscosity), but decreases the gas density. The findings shed light on the reactor design and process control of the chemical-looping combustion systems.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Abbreviations

A :

Particle acceleration (m/s2)

D g,k :

Turbulent mass diffusion coefficient (m2/s)

D s :

Drag coefficient of the solid phase (1/s)

f D :

Particle distribution function obtained by collapsing the velocity dependence

f s :

Particle distribution function

F gs :

Inter-phase momentum exchanging rate per volume (kg/(m3·s))

h g :

Enthalpy of gas mixture (J/kg)

h s :

Enthalpy of solid phase (J/kg)

ΔH rg :

Heat of chemical reactions (W/m3)

ΔH rs :

Heat of chemical reactions (W/m3)

k s :

Kinetic constant evaluated

m s :

Particle mass (kg)

Nu s :

Nusselt number

N k :

Total number of gas species

p g :

Gas pressure (Pa)

Pr :

Turbulent Prandtl number

q :

Heat flux (W/m2)

\({{\dot Q}_{\rm{D}}}\) :

Enthalpy diffusion (W/m3)

Q radi :

Radiative heat transfer (W)

Q sg :

Convective heat transfer (W)

R 0,ilm :

Oxygen transport capacity of oxygen carriers

S gs :

Gas–solid energy exchanging rate (W/m3)

S gw :

Gas–wall convective heat transfer (W/m3)

t :

Time instant (s)

T 0 :

Reference temperature (K)

T b,local :

Environmental temperature (K)

T g :

Gas temperature (K)

T P :

Particle temperature (K)

T s :

Solid temperature (K)

u g :

Gas velocity (m/s)

u s :

Solid velocity (m/s)

Y g,k :

Mass fraction of gas species i

\(\delta {{\dot m}_{\rm{s}}}\) :

Mass source term of solid phase (kg/(m3·s))

\(\delta {{\dot m}_{k,{\rm{react}}}}\) :

Mass transfer between the gas species (kg)

θ g :

Gas volume fraction

θ s :

Solid volume fraction

ε s :

Emissivity coefficient

λ g :

Gas thermal conductivity (J/(m·s·K))

λ t :

Turbulent component (J/(m·s·K))

μ t :

Gas turbulent viscosity (kg/(m·s))

π g :

Gas density (kg/m3)

π s :

Solid phase density (kg/m3)

σ :

Stefan–Boltzmann constant (W/(m2·K4))

τ g :

Gas stress tensor (Pa)

τ D :

Particle collision damping time (s)

τ s :

Particle normal stress (Pa)

g:

Gas phase

s:

Solid (particle) phase

x, y, z :

Coordinate index

3D:

Three-dimensional

AR:

Air reactor

BFB:

Bubbling fluidized bed

CCS:

CO2 capture and storage

CFB:

Circulating fluidized bed

CFD-DEM:

Computational fluid dynamics-discrete element method

CLC:

Chemical-looping combustion

EMMS:

Energy-minimization multi-scale

FR:

Fuel reactor

FVM:

Finite volume method

HTC:

Heat transfer coefficient

IGCC:

Integrated gasification combined-cycle

LES:

Large-eddy simulation

MP-PIC:

Multi-phase particle-in-cell

PISO:

Pressure implicit with splitting of operator

RANS:

Reynolds-averaged Navier–Stokes

SIMPLE:

Semi-implicit method for pressure-linked equations

TFM:

Two-fluid model

References

  • Abad, A., Adánez, J., García-Labiano, F., de Diego, L. F., Gayán, P., Celaya J. 2007. Mapping of the range of operational conditions for Cu-, Fe-, and Ni-based oxygen carriers in chemical-looping combustion. Chemical Engineering Science, 62: 533–549.

    Article  Google Scholar 

  • Adánez, J., Abad, A. 2019. Chemical-looping combustion: Status and research needs. Proceedings of the Combustion Institute, 37: 4303–4317.

    Article  Google Scholar 

  • Adánez, J., Dueso, C., de Diego, L. F., García-Labiano, F., Gayán, P., Abad, A. 2009. Methane combustion in a 500 Wth chemical-looping combustion system using an impregnated Ni-based oxygen carrier. Energy & Fuels, 23: 130–142.

    Article  Google Scholar 

  • Adánez, J., García-Labiano, F., de Diego, L. F., Gayán, P., Celaya, J., Abad, A. 2006. Nickel-copper oxygen carriers to reach zero CO and H2 emissions in chemical-looping combustion. Industrial & Engineering Chemistry Research, 45: 2617–2625.

    Article  Google Scholar 

  • Chavda, A., Mehta, P., Harichandan, A. 2022. Numerical analysis of multiphase flow in chemical looping reforming process for hydrogen production and CO2 capture. Experimental and Computational Multiphase Flow, 4: 360–376.

    Article  Google Scholar 

  • Chen, C., Zhao, L., Wu, X., Wang, J. 2019a. Numerical and experimental study on oxy-fuel coal and biomass co-firing in a bubbling fluidized bed. Energy & Fuels, 33: 5829–5839.

    Article  Google Scholar 

  • Chen, X., Ma, J., Tian, X., Wan, J., Zhao, H. 2019b. CPFD simulation and optimization of a 50 kWth dual circulating fluidized bed reactor for chemical looping combustion of coal. International Journal of Greenhouse Gas Control, 90: 102800.

    Article  Google Scholar 

  • Chen, Y.-Y., Guo, M., Kim, M., Liu, Y., Qin, L., Hsieh, T.-L., Fan, L.-S. 2021. Predictive screening and validation on chemical looping oxygen carrier activation by tuning electronic structures via transition metal dopants. Chemical Engineering Journal, 406: 126729.

    Article  Google Scholar 

  • Durmaz, M., Dilmaç, N., Dilmaç, Ö. F. 2020. Evaluation of performance of copper converter slag as oxygen carrier in chemical-looping combustion (CLC). Energy, 196: 117055.

    Article  Google Scholar 

  • Gidaspow, D. 1994. Multiphase Flow and Fluidization: Continuum and Kinetic Theory Descriptions. Cambridge, Massachusetts, USA: Academic Press.

    Google Scholar 

  • Gu, J., Shao, Y., Liu, X., Zhong, W., Yu, A. 2018. Modelling of particle flow in a dual circulation fluidized bed by a Eulerian-Lagrangian approach. Chemical Engineering Science, 192: 619–633.

    Article  Google Scholar 

  • Hoteit, A., Chandel, M. K., Delebarre, A. 2009. Nickel- and copper-based oxygen carriers for chemical looping combustion. Chemical Engineering & Technology, 32: 443–449.

    Article  Google Scholar 

  • Khalifa, O., Alkhatib, I. I. I., Bahamon, D., Alhajaj, A., Abu-Zahra, M. R. M., Vega, L. F. 2022. Modifying absorption process configurations to improve their performance for post-combustion CO2 capture—What have we learned and what is still missing? Chemical Engineering Journal, 430: 133096.

    Article  Google Scholar 

  • Kraft, S., Kirnbauer, F., Hofbauer, H. 2017. CPFD simulations of an industrial-sized dual fluidized bed steam gasification system of biomass with 8 MW fuel input. Applied Energy, 190: 408–420.

    Article  Google Scholar 

  • Kuo, P.-C., Chen, J.-R., Wu, W., Chang, J.-S. 2018. Hydrogen production from biomass using iron-based chemical looping technology: Validation, optimization, and efficiency. Chemical Engineering Journal, 337: 405–415.

    Article  Google Scholar 

  • Latifi, M. S., Colangelo, G., Starace, G. 2020. A CFD study on the effect of size of fuel sphere on PBR core. Experimental and Computational Multiphase Flow, 2: 109–114.

    Article  Google Scholar 

  • Li, T., Rogers, W. A., Syamlal, M., Dietiker, J.-F., Musser, J., Shahnam, M., Rabha S. 2017. The NETL MFiX suite of multiphase flow models: A brief review and recent applications of MFiX-TFM to fossil energy technologies. Chemical Engineering Science, 169: 259–272.

    Article  Google Scholar 

  • Lin, J., Luo, K., Sun, L., Wang, S., Hu, C., Fan, J. 2019. Numerical investigation of nickel-copper oxygen carriers in chemical-looping combustion process with zero emission of CO and H2. Energy & Fuels, 33: 12096–12105.

    Article  Google Scholar 

  • Liu, W., Teng, L., Rohani, S., Qin, Z., Zhao, B., Xu, C. C., Ren, S., Liu, Q., Liang, B. 2021. CO2 mineral carbonation using industrial solid wastes: A review of recent developments. Chemical Engineering Journal, 416: 129093.

    Article  Google Scholar 

  • Liu, Z., Li, Z., Zhang, Y., Zhang, Y., Zhao, B. 2022. Thermodynamic analysis of using chemical-looping combustion in Allam-Z cycle instead of common combustion. Energy Conversion and Management, 254: 115229.

    Article  Google Scholar 

  • Luo, C., Peng, Z., Doroodchi, E., Moghtaderi, B. 2018. A three-dimensional hot flow model for simulating the alumina encapsulated NI-NIO methane-air CLC system based on the computational fluid dynamics-discrete element method. Fuel, 224: 388–400.

    Article  Google Scholar 

  • Lyngfelt, A., Pallarès, D., Linderholm, C., Lind, F., Thunman, H., Leckner, B. 2022. Achieving adequate circulation in chemical looping combustion—Design proposal for a 200 MWth chemical looping combustion circulating fluidized bed boiler. Energy & Fuels, 36: 9588–9615.

    Article  Google Scholar 

  • Ma, Y., Luo, Y., Xu, H., Du, R., Wang, Y. 2021. Review on air and water thermal energy storage of buildings with phase change materials. Experimental and Computational Multiphase Flow, 3: 77–99.

    Article  Google Scholar 

  • Mattisson, T., Johansson, M., Jerndal, E., Lyngfelt, A. 2008. The reaction of NiO/NiAl2O4 particles with alternating methane and oxygen. The Canadian Journal of Chemical Engineering, 86: 756–767.

    Article  Google Scholar 

  • Mei, D., Soleimanisalim, A. H., Lyngfelt, A., Leion, H., Linderholm, C., Mattisson, T. 2022. Modelling of gas conversion with an analytical reactor model for biomass chemical looping combustion (bio-CLC) of solid fuels. Chemical Engineering Journal, 433: 133563.

    Article  Google Scholar 

  • Parker, J. M. 2014. CFD model for the simulation of chemical looping combustion. Powder Technology, 265: 47–53.

    Article  Google Scholar 

  • Reinking, Z., Shim, H.-S., Whitty, K. J., Lighty, J. S. 2019. Computational simulation of a 100 kW dual circulating fluidized bed reactor processing coal by chemical looping with oxygen uncoupling. International Journal of Greenhouse Gas Control, 90: 102795.

    Article  Google Scholar 

  • Shao, Y., Agarwal, R. K., Wang, X., Jin, B. 2021. Review of computational fluid dynamics studies on chemical looping combustion. Journal of Energy Resources Technology, 143: 8.

    Article  Google Scholar 

  • Sheth, M., Roy, A., Harichandan, A. 2018. Performance of fuel reactor in a chemical looping combustion system with different oxygen carriers. Thermal Science and Engineering Progress, 5: 303–308.

    Article  Google Scholar 

  • Smagorinsky, J. 1963. General circulation experiments with the primitive equations: I. The basic experiment. Monthly Weather Review, 91: 99–164.

    Article  Google Scholar 

  • Snider, D. M. 2001. An incompressible three-dimensional multiphase particle-in-cell model for dense particle flows. Journal of Computational Physics, 170: 523–549.

    Article  Google Scholar 

  • Snider, D. M., Clark, S. M., O’Rourke, P. J. 2011. Eulerian-Lagrangian method for three-dimensional thermal reacting flow with application to coal gasifiers. Chemical Engineering Science, 66: 1285–1295.

    Article  Google Scholar 

  • Sorgenfrei, M., Tsatsaronis, G. 2014. Design and evaluation of an IGCC power plant using iron-based syngas chemical-looping (SCL) combustion. Applied Energy, 113: 1958–1964.

    Article  Google Scholar 

  • Urdiales Montesino, Á., Jiménez Álvaro, Á., Rodríguez Martín, J., Nieto Carlier, R. 2016. Exergy analysis of a syngas-fueled combined cycle with chemical-looping combustion and CO2 sequestration. Entropy, 18: 314.

    Article  Google Scholar 

  • Vin, N., Bakoc, K., Lambert, A., Pelletant, W., Bertholin, S. 2022. Chemical looping combustion of petcoke using two natural ores in a 10 kWth continuous pilot plant: A performance comparison. Energy & Fuels, 36: 9485–9501.

    Article  Google Scholar 

  • Wan, Z., Yang, S., Wang, H. 2021. MP-PIC investigation of the multi-scale gas–solid flow in the bubbling fluidized bed. Experimental and Computational Multiphase Flow, 3: 289–302.

    Article  Google Scholar 

  • Wang, S., Lu, H., Li, D., Tang, Y. 2013. Simulation of the chemical looping reforming process in the fuel reactor with a bubble-based energy minimization multiscale model. Energy & Fuels, 27: 5008–5015.

    Article  Google Scholar 

  • Wang, S., Luo, K., Hu, C., Sun, L., Fan, J. 2018. Impact of operating parameters on biomass gasification in a fluidized bed reactor: An Eulerian-Lagrangian approach. Powder Technology, 333: 304–316.

    Article  Google Scholar 

  • Wu, H., Gui, N., Yang, X., Tu, J., Jiang, S. 2021. Parameter analysis and wall effect of radiative heat transfer for CFD-DEM simulation in nuclear packed pebble bed. Experimental and Computational Multiphase Flow, 3: 250–257.

    Article  Google Scholar 

  • Xie, J., Zhong, W., Jin, B., Shao, Y., Huang, Y. 2013. Eulerian-Lagrangian method for three-dimensional simulation of fluidized bed coal gasification. Advanced Powder Technology, 24: 382–392.

    Article  Google Scholar 

  • Yang, S., Wan, Z., Wang, S., Wang, H. 2021a. Reactive MP-PIC investigation of heat and mass transfer behaviors during the biomass pyrolysis in a fluidized bed reactor. Journal of Environmental Chemical Engineering, 9: 105047.

    Article  Google Scholar 

  • Yang, S., Wang, S., Wang, H. 2021b. Particle-scale evaluation of the pyrolysis process of biomass material in a reactive gas–solid spouted reactor. Chemical Engineering Journal, 421: 127787.

    Article  Google Scholar 

  • Yang, S., Zhou, T., Wei, Y., Hu, J., Wang, H. 2019. Influence of size-induced segregation on the biomass gasification in bubbling fluidized bed with continuous lognormal particle size distribution. Energy Conversion and Management, 198: 111848.

    Article  Google Scholar 

  • Zeng, J., Li, H., Zhang, D. 2019. Numerical simulation of proppant transport in propagating fractures with the multi-phase particle-in-cell method. Fuel, 245: 316–335.

    Article  Google Scholar 

  • Zhang, Y., Langørgen, Ø., Saanum, I., Chao, Z., Jakobsen, H. A. 2017. Modeling and simulation of chemical looping combustion using a copper-based oxygen carrier in a double-loop circulating fluidized bed reactor system. Industrial & Engineering Chemistry Research, 56: 14754–14765.

    Article  Google Scholar 

  • Zhang, Z., Liu, D., Zhuang, Y., Meng, Q., Chen, X. 2014. CFD-DEM modeling of CO2 capture using alkali metal-based sorbents in a bubbling fluidized bed. International Journal of Chemical Reactor Engineering, 12: 441–449.

    Article  Google Scholar 

  • Zhao, Y., Li, Y., Jin, B., Liang, Z. 2022. Layered double hydroxide derived bifunctional Ca–Fe–Mg material for integrated CO2 capture and utilization via chemical looping strategy. Chemical Engineering Journal, 431: 133826.

    Article  Google Scholar 

  • Zylka, A., Krzywanski, J., Czakiert, T., Idziak, K., Sosnowski, M., Grabowska, K., Prauzner, T., Nowak, W. 2019. The 4th generation of CeSFaMB in numerical simulations for CuO-based oxygen carrier in CLC system. Fuel, 255: 115776.

    Article  Google Scholar 

Download references

Acknowledgements

The authors thank the financial support from the Applied Basic Research Project of Yunnan Province, China (Grant No. 202101AT070135).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Huili Liu.

Ethics declarations

The authors have no competing interests to declare that are relevant to the content of this article.

Supporting Information

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhang, K., Liang, J., Liu, H. et al. Modeling of chemical-looping combustion process of methane with nickel-based oxygen carrier. Exp. Comput. Multiph. Flow 6, 180–194 (2024). https://doi.org/10.1007/s42757-023-0161-2

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s42757-023-0161-2

Keywords

Navigation