Skip to main content
Log in

Long Term Fertilization on Soil Nutrient Dynamics, Soil Quality and Soil Bacterial Community Structure in an Inceptisol Under Semi-arid Tropics of Finger Millet (Eleusine coracana) - Maize (Zea Mays) Cropping Sequence

  • Original Paper
  • Published:
Journal of Soil Science and Plant Nutrition Aims and scope Submit manuscript

Abstract

Purpose

The main aim of this study is to assess the long-term effect of continuous fertilizer and manure addition, as well as intensive cropping, on nutrient availability, major nutrient forms, soil quality, and the composition of soil eubacterial communities over a span of five decades.

Methods

Nutrient dynamics involving nitrogen (N), phosphorus (P), and sulphur (S) were analysed using standard procedures. The eubacterial community structure was investigated through Illumina next-generation sequencing with HiSeq 2500 PE250, focusing on the V4 region of bacterial genes. Principal component analysis was employed as a suitable method for identifying specific key indicators for assessing soil health and sustainability in long-term fertilizer experiments.

Results

Application of NPK fertiliser along with 10 t ha− 1 of FYM led to improvements in nutrient fractions of N, P, and S, as well as soil enzyme activities such as urease (URE), acid phosphatase (ACP), alkaline phosphatase (ALP), dehydrogenase (DHA), and aryl sulphatase (AS). It also enhanced nutrient availability and soil organic carbon (SOC) dynamics, which includes SOC content, SOC stock, SOC sequestration, soil microbial biomass carbon (SMBC), and soil microbial biomass nitrogen (SMBN). These improvements were observed in a sandy clay loam Inceptisol over a five-decade period. According to Illumina sequencing of the 16 S rRNA gene, the relative abundance of various bacterial domains such as Proteobacteria, Actinobacteria, Firmicutes, Gemmatimonadetes, Acidobacteria, Bacteroidetes, and Verrucomicrobiae changed based on the different nutrient management techniques.

Conclusions

Through the use of principal component analysis (PCA), specific critical indicators for soil health were identified, with key limiting parameters including soil fractions of P, S, zinc (Zn), and the enzymes like URE and DHA activities, as well as SOC and SMBN. The composition of the eubacterial community varied based on different nutrient management practices, with a more balanced bacterial community observed in NPK + FYM plots compared to mineral-fertilized plots. In conclusion, the study suggests that integrated nutrient management practices can significantly improve sustainability and maintain soil health, as compared to relying solely on chemical fertilizer application, even over a period of five decades of intensive cultivation.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  • Abu-Zahra TR, Abubaker SM, Tahboub AB, Al-Abbadi AA (2010) Effect of organic matter sources on micronutrients and heavy metals accumulation in soil. J Food Agric Environ 8:1199–1202

    CAS  Google Scholar 

  • Aguirre-von-Wobeser E, Rocha-Estrada J, Shapiro LR, de la Torre M (2018) Enrichment of Verrucomicrobia, Actinobacteria and Burkholderiales drives selection of bacterial community from soil by maize roots in a traditional milpa agro ecosystem. PLoS ONE 13(12):e0208852

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Alizadeh O, Parsaeimehr A (2011) The influence of plant growth promoting rhizobacteria (PGPR) on the reduction of abiotic stresses in crops. ELBA Bioflux 2:32

    Google Scholar 

  • Andrews SS, Karlen DL, Mitchell JP (2002) A comparison of soil quality indexing methods for vegetable production systems in Northern California, vol 90. Agriculture, Ecosystems & Environment, pp 25–45. 1

  • Andrews SS, Karlen DL, Cambardella CA (2004) The soil management assessment framework: a quantitative soil quality evaluation method. Soil Sci Soc Am J 68(6):1945–1962

    Article  CAS  Google Scholar 

  • Anjali MC, Dhananjaya BC (2017) Effect of phosphorus levels with or without PSB seed treatment on dynamics of P in soil under groundnut (Arachis hypogaea L). Environ Ecol 35(4 C):3217–3221

    Google Scholar 

  • Baker BJ, Lesniewski RA, Dick GJ (2012) Genome-enabled transcriptomics reveals archaeal populations that drive nitrification in a deep-sea hydrothermal plume. ISME J 6(12):2269–2279

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Bardsley CE, Lancaster JD, Sulfur (1965) Methods of Soil Analysis: Part 2 Chemical and Microbiological Properties, 1(9):1102-16

  • Basumatary A, Shangne JJ, Das KN, Bhattacharyya D (2018) Impact of sulfur fertilization on distribution of sulfur fractions and use efficiency in black gram in subtropical acidic soil of Assam, India. J Plant Nutr 41(11):1436–1443

    Article  CAS  Google Scholar 

  • Bremner JM (1965) Inorganic and organic forms of nitrogen. In: Methods of Soil Analysis. Part II (ed. by C. A. Black). American Society of Agronomy, Madison, Wisconsin, 1179–1255

  • Cabello P, Roldan MD, Moreno-Vivian C (2004) Nitrate reduction and the nitrogen cycle in archaea. Microbiology 150(11):3527–3546

    Article  CAS  PubMed  Google Scholar 

  • Cao Y, Zhao F, Zhang Z, Zhu T, Xiao H (2020) Biotic and abiotic nitrogen immobilization in soil incorporated with crop residue. Soil Tillage Res 202:104664

    Article  Google Scholar 

  • Caporaso JG, Lauber CL, Walters WA, Berg-Lyons D, Huntley J, Fierer N, Owens SM, Betley J, Fraser L, Bauer M, Gormley N (2012) Ultra-high-throughput microbial community analysis on the Illumina HiSeq and MiSeq platforms. ISME J 6(8):1621–1624

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Casida LE Jr, Klein DA, Santoro T (1964) Soil dehydrogenase activity. Soil Sci 98:371–376

    Article  CAS  Google Scholar 

  • Chang EH, Chung RS, Tsai YH (2007) Effect of different application rates of organic fertilizer on soil enzyme activity and microbial population. Soil Sci Plant Nutr 53:132–140

    Article  CAS  Google Scholar 

  • Cheng HH, Kurtz LT (1963) Chemical distribution of added nitrogen in soils. Soil Sci Soc Am J 27(3):312–316

    Article  CAS  Google Scholar 

  • Chesnin L, Yien CH (1951) Turbidimetric determination of available sulphate. Soil Science Society of America Proceeding, 15: 149–151

  • Chinnadurai C, Gopalaswamy G, Balachandar D (2014) Long term effects of nutrient management regimes on abundance of bacterial genes and soil biochemical processes for fertility sustainability in a semi-arid tropical Alfisol, Geoderma, 232:563–572

  • Crits-Christoph A, Diamond S, Al-Shayeb B, Valentin-Alvarado L, Banfield JF (2022) A widely distributed genus of soil Acidobacteria genomically enriched in biosynthetic gene clusters. ISME Commun 2(1):70

    Article  PubMed  PubMed Central  Google Scholar 

  • D’Amore R, Ijaz UZ, Schirmer M, Kenny JG, Gregory R, Darby AC, Shakya M, Podar M, Quince C, Hall N (2016) A comprehensive benchmarking study of protocols and sequencing platforms for 16S rRNA community profiling. BMC Genomics 17:1–20

    Article  Google Scholar 

  • De Muinck EJ, Trosvik P, Gilfillan GD, Hov JR, Sundaram AY (2017) A novel ultra-high-throughput 16S rRNA gene amplicon sequencing library preparation method for the Illumina HiSeq platform, Microbiome, 5:1–15

  • Deng J, Bai X, Zhou Y, Zhu W, Yin Y (2020) Variations of soil microbial communities accompanied by different vegetation restoration in an open-cut iron mining area. Sci Total Environ 704:135243

    Article  CAS  PubMed  Google Scholar 

  • Dey A, Dwivedi BS, Bhattacharyya R, Datta SP, Meena MC, Jat RK, Gupta RK, Jat ML, Singh VK, Das D, Singh RG (2020) Effect of conservation agriculture on soil organic and inorganic carbon sequestration and lability: a study from a rice–wheat cropping system on a calcareous soil of the eastern Indo-Gangetic plains. Soil Use Manag 36(3):429–438

    Article  Google Scholar 

  • Ding GC, Heuer H, Smalla K (2012) Dynamics of bacterial communities in two unpolluted soils after spiking with phenanthrene: soil type specific and common responders. Front Microbiol 3(290):1–16

    Google Scholar 

  • Doran JW, Parkinson TB (1994) Defining and assessing soil quality. Defining soil quality for a sustainable environment, 1(35):1–21

  • Dutta J, Sankhyan NK, Sharma SP, Sharma GD, Sharma SK (2013) Sulphur fractions in acid soil continuously fertilized with chemical fertilizers and amendments under maize-wheat system. J Indian Soc Soil Sci 61(3):195–201

    Google Scholar 

  • Fierer N, Bradford MA, Jackson RB (2007) Toward an ecological classification of soil bacteria. Ecology 88:1354–1364. https://doi.org/10.1890/05-1839

    Article  PubMed  Google Scholar 

  • Fierer N, Ladau J, Clemente JC, Leff JW, Owens SM, Pollard KS, Knight R, Gilbert JA, McCulley (2013) R L, reconstructing the microbial diversity and function of pre-agricultural tall grass prairie soils in the United States. Science 342(6158):621–624

    Article  CAS  PubMed  Google Scholar 

  • Fischer P, Pöthig R, Venohr M (2017) The degree of phosphorus saturation of agricultural soils in Germany: current and future risk of diffuse P loss and implications for soil P management in Europe. Sci Total Environ 599:1130–1139

    Article  PubMed  Google Scholar 

  • Fujita K, Kunito T, Matsushita J, Nakamura K, Moro H, Yoshida S, Toda H, Otsuka S, Nagaoka K (2018) Nitrogen supply rate regulates microbial resource allocation for synthesis of nitrogen-acquiring enzymes. PLoS ONE 13(8):e0202086

    Article  PubMed  PubMed Central  Google Scholar 

  • García-Fraile P, Menéndez E, Rivas R (2015) Role of bacterial bio fertilizers in agriculture and forestry. Aims Bioeng 2:183–205

    Article  Google Scholar 

  • Gazdag O, Takács T, Ködöböcz L, Krett G, Szili-Kovács T (2019) Alphaproteobacteria communities depend more on soil types than land managements. Acta Agriculturae Scand Sect B-Soil Plant Sci 69(2):147–154

    CAS  Google Scholar 

  • Gérard E, De Goeyse S, Hugoni M, Agogué H, Richard L, Milesi V, Guyot F, Lecourt L, Borensztajn S, Joseph MB, Leclerc T (2018) Key role of alphaproteobacteria and cyanobacteria in the formation of stromatolites of Lake Dziani Dzaha (Mayotte, Western Indian Ocean). Front Microbiol 9:796

    Article  PubMed  PubMed Central  Google Scholar 

  • Gomes NCM, Fagbola O, Costa R, Rumjanek NG, Buchner A, Mendonca- Hagler L et al (2003) Dynamics of fungal communities in bulk and maize rhizosphere soil in the tropics. Appl Environ Microbiol 69:3758–3766. https://doi.org/10.1128/aem.69.7.3758-3766.2003

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Goteti PK, Emmanuel LD, Desai S, Shaik MH (2013) Prospective zinc solubilising bacteria for enhanced nutrient uptake and growth promotion in maize (Zea mays L). Int J Microbiol. https://doi.org/10.1155/2013/869697

    Article  PubMed  PubMed Central  Google Scholar 

  • Guan Y, Jiang N, Wu Y, Yang Z, Bello A, Yang W (2021) Disentangling the role of salinity-sodicity in shaping soil microbiome along a natural saline-sodic gradient. Sci Total Environ 15(765):142738

    Article  Google Scholar 

  • Gügi B, Orange N, Hellio F, Burini JF, Guillou C, Leriche F, Guespin-Michel JF (1991) Effect of growth temperature on several exported enzyme activities in the psychrotropic bacterium Pseudomonas fluorescens. J Bacteriol 173:3814–3820

    Article  PubMed  PubMed Central  Google Scholar 

  • Gupta A, Dutta A, Sarkar J, Panigrahi MK, Sar P (2018) Low-abundance members of the Firmicutes facilitate bioremediation of Soil impacted by highly Acidic Mine Drainage from the Malanjkhand Copper Project, India. Front Microbiol 9:2882. https://doi.org/10.3389/fmicb.2018.02882

    Article  PubMed  PubMed Central  Google Scholar 

  • Hao X, You M, Han X, Li H, Zou W, Xing B (2017) Redistribution of different organic carbon fractions in the soil profile of a typical Chinese mollisol with land-use change. Commun Soil Sci Plant Anal 48:2369–2380

    Article  CAS  Google Scholar 

  • Hinsinger P (2001) Bioavailability of soil inorganic P in the rhizosphere as affected by root-induced chemical changes: a review. Plant Soil 237:173–195

    Article  CAS  Google Scholar 

  • Hong T, Cheng C, Huang J, Meng M (2002) Isolation and biochemical characterization of an endo-1, 3-β-glucanase from Streptomyces sioyaensis containing a C-terminal family 6 carbohydrate-binding module that binds to1, 3-β glucan. Microbiology 148:1151e1159

    Article  Google Scholar 

  • Jenkinson DS (1988) Determination of microbial biomass carbon and nitrogen in soil. Adv Nitrogen Cycl, 368– 86.

  • Karlen DL, Mausbach MJ, Doran JW, Cline RG, Harris RF, Schuman GE (1997) Soil quality: a Concept, Definition and Framework for evaluation. Soil Sci Soc Am J 61:4–10

    Article  CAS  Google Scholar 

  • Kaschuk G, Alberton O, Hungria M (2010) Three decades of soil microbial biomass studies in Brazilian ecosystems: lessons learned about soil quality and indications for improving sustainability. Soil Biol Biochem 42:1–3

    Article  CAS  Google Scholar 

  • Keeney DR, Bremner JM (1964) Effect of cultivation on the N distribution in soils, Soil Sci. Soc. Am. Proc., 28: 653–656

  • Koch M, Kruse J, Eichler-Löbermann B, Zimmer D, Willbold S, Leinweber P, Siebers N (2018) Phosphorus stocks and speciation in soil profiles of a long-term fertilizer experiment: evidence from sequential fractionation, P K-edge XANES, and 31P NMR spectroscopy, Geoderma, 316:115– 26

  • Kulhánek M, Balík J, Černý J, Vašák F, Shejbalová Š (2014) Influence of long-term fertilizer application on changes of the content of Mehlich-3 estimated soil macronutrients. Plant Soil Environ 60:151–157

    Article  Google Scholar 

  • Lauber CL, Hamady M, Knight R, Fierer N (2009) Pyrosequencing-based assessment of soil pH as a predictor of soil bacterial community structure at the continental scale. Appl Environ Microbiol 75(15):5111–5120

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Lebeer S, Verhoeven T, Velez M, Vanderleyden J, De Keersmaecker J (2007) Impact of environmental and genetic factors on biofilm formation by the probiotic strain Lactobacillus rhamnosus GG. Appl Environ Microbiol 73:6768

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Li YY, Rui Y, Ru G, Wei HA, Chen AL, Yong LI (2015) Effects of long-term phosphorus fertilization and straw incorporation on phosphorus fractions in subtropical paddy soil. J Integr Agric 14:365–373

    Article  CAS  Google Scholar 

  • Lidbury ID, Borsetto C, Murphy AR, Bottrill A, Jones AM, Bending GD, Hammond JP, Chen Y, Wellington EM, Scanlan DJ (2021) Niche-adaptation in plant-associated Bacteroidetes favours specialisation in organic phosphorus mineralisation. ISME J 15(4):1040–1055

    Article  CAS  PubMed  Google Scholar 

  • Lindsay WL, Norvell WA (1978) Development of a DTPA- micronutrients soil test for Zn, Fe, Mn and Cu, Soil Sci. Soc. Am. Proc., 42: 421–428

  • Liu T, Chen CY, Chen-Deng A, Chen YL, Wang JY, Hou YI, Lin MC (2020) Joining Illumina paired-end reads for classifying phylogenetic marker sequences. BMC Bioinformatics 21:1–13

    Article  Google Scholar 

  • Liu M, Li X, Zhu R, Chen N, Ding L, Chen C (2021) Vegetation richness, species identity and soil nutrients drive the shifts in soil bacterial communities during restoration process. Environ Microbiol Rep 13(4):411–424

    Article  PubMed  Google Scholar 

  • Lozupone C, Lladser ME, Knights D, Stombaugh J, Knight R (2011) UniFrac an effective distance metric for microbial community comparison. ISME J 5:169–172

    Article  PubMed  Google Scholar 

  • Lu X, Mahdi AK, Han XZ, Chen X, Yan J, Biswas A, Zou WX (2020) Long-term application of fertilizer and manures affect P fractions in Mollisol. Sci Rep 10:1–12

    Article  CAS  Google Scholar 

  • Masto RE, Chhonkar PK, Singh D, Patra AK (2007) Soil quality response to long-term nutrient and Crop Management on a Semi-arid Inceptisol. Agric Ecosyst Environ 118:130–142. https://doi.org/10.1016/j.agee.2006.05.008

    Article  CAS  Google Scholar 

  • Mbuthia LW, Acosta-Martínez V, De Bruyn J, Schaeffer S, Tyler D, Odoi E, Mpheshea M, Walker F, Eash N (2015) Long term tillage, cover crop, and fertilization effects on microbial community structure, activity: implications for soil quality. Soil Biol Biochem 89:24–34

    Article  CAS  Google Scholar 

  • Mehta MP, Baross JA (2006) Nitrogen fixation at 92°C by a hydrothermal vent archaeon. Science 314:1783–1786

    Article  CAS  PubMed  Google Scholar 

  • Merrington G, Nfa LW, Parkinson R, Redman M, Winder L (2002) Agricultural pollution: environmental problems and practical solutions. CRC

  • Murphy JA, Riley JP (1962) A modified single solution method for the determination of phosphate in natural waters. Anal Chim Acta 27:31–36

    Article  CAS  Google Scholar 

  • Nabiollahi K, Golmohamadi F, Taghizadeh-Mehrjardi R, Kerry R, Davari M (2018) Assessing the effects of slope gradient and land use change on soil quality degradation through digital mapping of soil quality indices and soil loss rate. 318:16–28

  • Navarrete AA, Soares T, Rossetto R, van Veen JA, Tsai SM, Kuramae EE (2015) Verrucomicrobial community structure and abundance as indicators for changes in chemical factors linked to soil fertility. Antonie Van Leeuwenhoek 108:741–752

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Nobile CM, Bravin MN, Becquer T, Paillat JM (2020) Phosphorus sorption and availability in an andosol after a decade of organic or mineral fertilizer applications: importance of pH and organic carbon modifications in soil as compared to phosphorus accumulation. Chemosphere 239:124709

    Article  CAS  PubMed  Google Scholar 

  • Olk DC, Organic Forms of Soil Nitrogen. In Nitrogen in Agricultural Systems, Monographs A (2008) 49, (ed. by J.S. Schepers & W.R. Raun), JohnWiley & Sons, Inc, Hoboken, NJ, USA, 57–100

  • Olsen SR, Cole CV, Watenabe F, Dean LA (1954) Estimation of available phosphorus in soils by extraction with sodium bicarbonate. U.S.D.A. Circ. 939, U.S. Govt. Printing Office, Washington, DC

  • Palatinszky M, Herbold C, Jehmlich N, Pogoda M, Han P, Von Bergen M, Lagkouvardos I, Karst SM, Galushko A, Koch H, Berry D (2015) Cyanate as an energy source for nitrifiers. Nature 524(7563):105–108

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Panwar S, Dwivedi AK, Dwivedi BS, Nagwanshi A (2017) Distribution of zinc pools as influenced by long term application of fertilizers and manure in a Vertisol. Int J Chem Stud 5:1931–1934

    CAS  Google Scholar 

  • Parker DR, Chaney RL, Norvell WA (1995) Chemical equilibrium models: applications to plant nutrition research, Chemical equilibrium and reaction models, 42:63–200

  • Peterson GW, Corey RB (1966) A modified Chang and Jackson procedure for routine fractionation of inorganic soil phosphates. Soil Sci Soc Am Proc 30:563–565

    Article  Google Scholar 

  • Qiu SJ, Ju XT, Ingwersen J, Guo ZD, Stange CF, Bisharat R, Streck T, Christie P, Zhang FS (2013) Role of carbon substrates added in the transformation of surplus nitrate to organic nitrogen in a calcareous soil. Pedosphere 23:205–212

    Article  Google Scholar 

  • Ramirez KS, Craine JM, Fierer N (2012) Consistent effects of nitrogen amendments on soil microbial communities and processes across biomes. Glob Change Biol 18(6):1918–1927

    Article  Google Scholar 

  • Reddy AR, Singh B, Narwal RP (2019) Effect of long term FYM and nitrogen application in bajra (pearl millet)-wheat cropping system on fractions of sulfur in soil. Annals Agricultural Bio Res 14:33–45

    Google Scholar 

  • Rengasamy P, Marchuk A (2011) Cation ratio of soil structural stability (CROSS). Soil Res 49:280–285

    Article  Google Scholar 

  • Richardson AE, Simpson RJ (2011) Soil microorganisms mediating phosphorus availability update on microbial phosphorus. Plant Physiol 156:989–996

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Rodríguez H, Han Y, Lei XG (1999) Cloning, sequencing and expression of an Escherichia. Coli acid phopshatase/phytase gene (app A2) isolated from pig colon. Biochem Biophys Res Commun 257:117–123

    Article  PubMed  Google Scholar 

  • Rosenblueth M, Ormeño-Orrillo E, López-López A, Rogel MA, Reyes-Hernández BJ, Martínez-Romero JC, Reddy PM, Martínez-Romero E (2018) Nitrogen fixation in cereals. Front Microbiol 9:1794

    Article  PubMed  PubMed Central  Google Scholar 

  • Sharma A, Johri BN (2003) Growth promoting influence of siderophore-producing Pseudomonas strains GRP3A and PRS9 in maize (Zea mays L.) under iron limiting conditions. Microbiol Res 158:243–248

    Article  CAS  PubMed  Google Scholar 

  • Shi S, Peng C, Wang M, Zhu Q, Yang G, Yang Y, Xi T, Zhang T (2016) A global meta-analysis of changes in soil carbon, nitrogen, phosphorus and sulfur, and stoichiometric shifts after forestation. Plant Soil 407:323–340

    Article  CAS  Google Scholar 

  • Sinha NK, Chopra UK, Singh AK, Mohanty M, Somasundaram J, Chaudhary RS (2014) Soil physical quality as affected by Management practices under Maize-Wheat System. Natl Acad Sci Lett 37:13–18. https://doi.org/10.1007/s40009-013-0194-3

    Article  CAS  Google Scholar 

  • Soares M, Rousk J (2019) Microbial growth and carbon use efficiency in soil: links to fungal-bacterial dominance, SOC quality and stoichiometry. Soil Biol Biochem 131:195–205

    Article  CAS  Google Scholar 

  • Soergel DA, Dey N, Knight R, Brenner SE (2012) Selection of primers for optimal taxonomic classification of environmental 16S rRNA gene sequences. ISME J 7:1440–1444

    Article  Google Scholar 

  • Stanford S, English L (1949) Use of flame photometer in rapid soil tests of K. Can J Agron 41:446–447

    Article  CAS  Google Scholar 

  • Subbiah BV, Asija GC (1956) A rapid procedure for estimation of available nutrients in soils. Curr Sci 25:259–260

    CAS  Google Scholar 

  • Tabatabai MA, Bremner JM (1972) Assay of urease activity in soils. Soil Biol Biochem 4:479–487

    Article  CAS  Google Scholar 

  • Tabatabai MA, Bremner JM (1969) Use of p-nitrophenyl phosphate for assay of soil phosphatase activity. Soil Biol Biochem, 1(4):301–307

  • Tabatabai MA, Soil enzymes (1994) Methods of soil analysis: Part 2 Microbiological and biochemical properties, 5:775–833

  • Tabatabai MA, Sulfur (1996) Methods of soil analysis: part 3 chemical methods, 5:921–960

  • Turner S, Mikutta R, Guggenberger G, Schaarschmidt F, Schippers A (2019) Distinct pattern of nitrogen functional gene abundances in top-and subsoil’s along a 120,000-year ecosystem development gradient. Soil Biol Biochem 132:111–119

    Article  CAS  Google Scholar 

  • Urkurkar JS, Chitale S, Tiwari A (2010) Effect of organic v/s chemical nutrient packages on productivity, economics and physical status of soil in rice (Oryza sativa) - potato (Solanum tuberosum) cropping system in Chhattisgarh. Ind J Agron 55(1):6–10

    CAS  Google Scholar 

  • Van Passel MWJ, Kant R, Palva A, Copeland A, Lucas S, Lapidus A et al (2011) Tijana Glavina del Rio., Genome sequence of the verrucomicrobium Opitutus terrae PB90-1, an abundant inhabitant of rice paddy soil ecosystems, 2367–2368

  • Vance ED, Brookes PC, Jenkinson DS (1987) An extraction method for measuring soil microbial biomass C. Soil Biol Biochem 19:703–707

    Article  CAS  Google Scholar 

  • Vejan P, Abdullah R, Khadiran T, Ismail S, Nasrulhaq Boyce A (2016) Role of plant growth promoting rhizobacteria in agricultural sustainability - a review. Molecules 21:573

    Article  PubMed  PubMed Central  Google Scholar 

  • Walkley A, Black IA (1934) An examination of the Degtjareff method for determining soil organic matter, and a proposed modification of the chromic acid titration method. Soil Sci 37:29–38

    Article  CAS  Google Scholar 

  • Wang H, Bier R, Zgleszewski L, Peipoch M, Omondi E, Mukherjee A, Chen F, Zhang C, Kan J (2020) Distinct distribution of Archaea from soil to freshwater to estuary: implications of archaeal composition and function in different environments. Front Microbiol 11:576661

    Article  PubMed  PubMed Central  Google Scholar 

  • Williams CH, Steinbergs A (1959) Soil sulphur fractions as chemical indices of available sulphur in some Australian soils. Aust J Agric Res 10:340–352

    Article  CAS  Google Scholar 

  • Xie W, Zhou J, Wang H, Chen X, Lu Z, Yu J, Chen X (2009) Short-term effects of copper, cadmium and cypermethrin on dehydrogenase activity and microbial functional diversity in soils after long-term mineral or organic fertilization. Agric Ecosyst Environ 129:450–456

    Article  CAS  Google Scholar 

  • Yan Z, Chen S, Dari B, Sihi D, Chen Q (2018) Phosphorus transformation response to soil properties changes induced by manure application in a calcareous soil. Geoderma 322:63–171

    Article  Google Scholar 

  • Zhang YG, Zhang YY, Cai JP, Zhu P, Gao HJ, Jiang Y (2014) Variation in available micronutrients in black soil after 30-year fertilization treatment. Plant Soil Environ 60:387–393

    Article  CAS  Google Scholar 

  • Zhang Q, Miao F, Wang Z, Shen Y, Wang G (2017) Effects of long-term fertilization management practices on soil microbial biomass in China’s cropland: a meta-analysis. Agron J 109:1183–1195

    Article  CAS  Google Scholar 

  • Zhu Z, Ge T, Luo Y, Liu S, Xu X, Tong C, Shibistova O, Guggenberger G, Wu J (2018) Microbial stoichiometric flexibility regulates rice straw mineralization and its priming effect in paddy soil. Soil Biol Biochem 121:67–76

    Article  CAS  Google Scholar 

Download references

Acknowledgements

We gratefully acknowledge the Indian Council of Agricultural Research (ICAR) and Tamil Nadu Agricultural University (TNAU) for providing the financial support to the All India Coordinated Project (AICRP) on Long Term Fertiliser Experiment (LTFE) operation in the Dept. of Soil Science and Agricultural Chemistry, TNAU, Coimbatore − 3.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Gokila Bagavthsingh.

Ethics declarations

Conflict of Interest

We declare that there were no conflicts of interest throughout the study.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Electronic Supplementary Material

Below is the link to the electronic supplementary material.

Supplementary Material 1

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Bagavthsingh, G., Duraisamy, J. Long Term Fertilization on Soil Nutrient Dynamics, Soil Quality and Soil Bacterial Community Structure in an Inceptisol Under Semi-arid Tropics of Finger Millet (Eleusine coracana) - Maize (Zea Mays) Cropping Sequence. J Soil Sci Plant Nutr (2024). https://doi.org/10.1007/s42729-024-01812-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s42729-024-01812-y

Keywords

Navigation