Skip to main content
Log in

The Impact of Water Quality on the Production of Lettuce (Lactuca sativaL.) Using Polyculture Effluent in ASTAF−Pro Aquaponic System

  • Short Communication
  • Published:
Journal of Soil Science and Plant Nutrition Aims and scope Submit manuscript

Abstract

Aquaponics farming provides an alternative farming method in land-limited areas by combining aquatic and hydroponic systems in a symbiotic environment. This study aims to evaluate the effects of the water used and the quality provided by the cultured fish and crayfish on the growth, productivity, and biomass of lettuce in an aquaponic system. The waters derived from (1) Nile tilapia monoculture, (2) crayfish monoculture, and (3 and 4) Nile tilapia and crayfish with and without physical separation polycultures were used in the cultivation of lettuce for 60 days. In the current study, the water temperature ranged from 18.1 to 24.5 °C, the dissolved oxygen ranged from 4.0 to 5.2 mg L−1, the pH ranged from 7.0 to 7.8, and the nitrite content ranged from 0.04 to 0.5 mg L−1. Thus, the water quality was maintained within appropriate ranges for both fish and plant production. In this study, the polyculture water increased plant production, indicating a considerable promise for using aquatic polyculture in aquaponics to support sustainable agricultural production in adverse climate conditions.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Data Availability

The datasets generated during and/or analyzed during the current study are available from the corresponding author on reasonable request.

References

  • Al Tawaha A, Wahab P, Jaafar H, Zuan A, Hassan M (2021) Effects of fish stocking density on water quality, growth performance of tilapia and yield of butterhead lettuce grown in decoupled recirculation aquaponic systems. J Ecol Eng 22(1):8–19. https://doi.org/10.12911/22998993/128692

    Article  Google Scholar 

  • Amin A, Khater E, Ali S, Kamal S (2022) Nutrients consumption of lettuce plants in hydroponic and aquaponic system. MJAE 39(2):299–322. https://doi.org/10.21608/mjae.2022.112353.1061

    Article  Google Scholar 

  • Baganz G, Junge R, Portella M, Goddek S, Keesman K, Baganz D, Kloas W (2022) The aquaponic principle—it is all about coupling. Rev Aquac 14(1):252–264. https://doi.org/10.1111/raq.12596

    Article  Google Scholar 

  • Boyd C, Torrans E, Tucker C (2018) Dissolved oxygen and aeration in ictalurid catfish aquaculture. J World Aquac Soc 49(1):7–70. https://doi.org/10.1111/jwas.12469

  • Boyd C (1982) Water quality management for pond fish culture. Elsevier Scientific Publishing Co. vol. 9 of Pharmacochemistry Library, Elsevier, p 318

  • Caliskan S, Yetisir H, Karanlik S (2014) Combined use of green manure and farmyard manure allows better nutrition of organic lettuce. Not Bot Horti Agrobot Cluj Napoca 42(1):248–254. https://doi.org/10.15835/nbha4219328

  • Cervantes-Santiago E, Hernández-Vergara M, Pérez-Rostro C (2007) Sustitución de harina de pescado por harina de soya en dietas para crecimiento y supervivencia del acocil Procambarus (Austrocambarus) acanthophorus, en condiciones de laboratorio. In: LangoReynoso FMR, Castañeda-Chávez (Eds.). Impulso Tecnológico. Aquamar Internacional Symposium Memorium. Special edition.Veracruz, México, pp 107–114

  • da Silva Cerozi B, Fitzsimmons K (2016) The effect of pH on phosphorus availability and speciation in an aquaponics nutrient solution. Bio Tech 219:778–781. https://doi.org/10.1016/j.biortech.2016.08.079

    Article  CAS  Google Scholar 

  • de Holanda Cavalcante D, Caldini N, da Silva J, dos Santos Lima F, do Carmo M (2014) Imbalances in the hardness/alkalinity ratio of water and Nile tilapia’s growth performance. Acta Sci Technol 36(1):49–54. https://doi.org/10.4025/actascitechnol.v36i1.18995

    Article  CAS  Google Scholar 

  • Delaide B, Goddek S, Gott J, Soyeurt H, Jijakli M (2016) Lettuce (Lactuca sativa L. var. Sucrine) growth performance in complemented aquaponic solution outperforms hydroponics. Water 8(10):467. https://doi.org/10.3390/w8100467

    Article  Google Scholar 

  • Effendi H, Wahyuningsih S, Wardiatno Y (2017) The use of nile tilapia (Oreochromis niloticus) cultivation wastewater for the production of romaine lettuce (Lactuca sativa L. var. longifolia) in water recirculation system. Appl Water Sci 7:3055–3063. https://doi.org/10.1007/s13201-016-0418-z

    Article  CAS  Google Scholar 

  • FAO (2016) Fishery and aquaculture statistics yearbook 2014. Food and agriculture organization of the United Nations, Rome, Italy

  • Fariudin R, Sulistyaningsih E, Waluyo S (2013) Pertumbuhan dan hasil dua kultivar selada (Lactuca sativa L.) dalam akuaponika pada kolam gurami dan kolam nila. Vegetalika 2(1):66–81. https://doi.org/10.22146/veg.1619

    Article  Google Scholar 

  • Fatema K, Begum M, Al Zahid M, Hossain M (2018) Water quality assessment of the river Buriganga Bangladesh. J Biodivers 4(1):47–54. https://doi.org/10.3329/jbcbm.v4i1.37876

    Article  Google Scholar 

  • Goddek S, Schmautz Z, Scott B, Delaide B, Keesman K, Wuertz S, Junge R (2016) The effect of anaerobic and aerobic fish sludge supernatant on hydroponic lettuce. AGRON 6(2):37. https://doi.org/10.3390/agronomy6020037

    Article  Google Scholar 

  • Graber A, Junge R (2009) Aquaponic Systems: Nutrient recycling from fish wastewater by vegetable production. Desal 246(1–3):147–156. https://doi.org/10.1016/j.desal.2008.03.048

    Article  CAS  Google Scholar 

  • Hambrey J, Evans S, Pantanella E (2013) The relevance of aquaponics to the New Zealand aid programme, particularly in the Pacific. Environ Sci

  • Hargreaves J, Tucker C (2004) Managing ammonia in fish ponds, vol 4603. Southern Regional Aquaculture Center, Stoneville

    Google Scholar 

  • Harmon T (2009) Methods for reducing stressors and maintaining water quality associated with live fish transport in tanks: a review of the basics. Rev Aquac 1(1):58–66. https://doi.org/10.1111/j.1753-5131.2008.01003.x

    Article  Google Scholar 

  • Hu Z, Lee J, Chandran K, Kim S, Brotto A, Khanal S (2015) Effect of plant species on nitrogen recovery in aquaponics. Bioresour Technol 188:92–98. https://doi.org/10.1016/j.biortech.2015.01.013

    Article  CAS  PubMed  Google Scholar 

  • Huner J, Barr (1991) Red swamp crawfish: Biology and exploitation. Center for Wetland Resources, Lousiana State Univ, Louisiana sea grant college program

    Google Scholar 

  • Ibrahim L, Ramzy E (2013) Water quality and its impact on Tilapia zilli (case study) Qarun Lake-Egypt. Int Water Technol J 3(4):170–191. https://www.researchgate.net/publication/313887520

  • Khalil A, Badrey A, Harabawy A, Ibrahim AT, Kloas W, Osman A (2022) Effect of polyculture and monoculture of Nile tilapia (Oreochromis niloticus) and common carp (Cyprinus carpio) on water quality, growth performance and productivity of vegetables in an aquaponics system (ASTAF-PRO). Aquac Aquar Conserv Legis 15(6):3171–3180

    Google Scholar 

  • Kloas W, Groß R, Baganz D, Graupner J, Monsees H, Schmidt U, Staaks G, Suhl J, Tschirner M, Wittstock B (2015) A new concept for aquaponic systems to improve sustainability, increase productivity, and reduce environmental impacts. Aquac Environ Interact 7(2):179–192. https://doi.org/10.3354/aei00146

    Article  Google Scholar 

  • König B, Janker J, Reinhardt T, Villarroel M, Junge R (2018) Analysis of aquaponics as an emerging technological innovation system. J Clean Prod 180:232–243. https://doi.org/10.1016/j.jclepro.2018.01.037

    Article  Google Scholar 

  • Lee A, Liao F, Lo H (2012) Taoyuan No. 1’: a high-yielding Batavia lettuce cultivar high in total phytochemicals and dietary fiber. HortScience 47(12):1815–1816. https://doi.org/10.21273/HORTSCI.47.12.1815

    Article  Google Scholar 

  • Liang JY, Chien YH (2013) Effects of feeding frequency and photoperiod on water quality and crop production in a tilapia–water spinach raft aquaponics system. Int Biodeterior 85:693–700. https://doi.org/10.1016/j.ibiod.2013.03.029

    Article  Google Scholar 

  • Liu CG, Sun C, Li D (2022) Effects of aquaponic system on fish locomotion by image-based YOLO v4 deep learning algorithm. Comput Electron Agric 194:106785. https://doi.org/10.1016/j.compag.2022.106785

    Article  Google Scholar 

  • Mariscal-Lagarda M, Páez-Osuna F, Esquer-Méndez J, Guerrero-Monroy I, del Vivar A, Félix-Gastelum R (2012) Integrated culture of white shrimp (Litopenaeus vannamei) and tomato (Lycopersicon esculentum Mill) with low salinity groundwater: management and production. Aquac 366:76–84. https://doi.org/10.1016/j.aquaculture.2012.09.003

    Article  CAS  Google Scholar 

  • Maynard D, Hochmuth G (2007) Knott’s Handbook for Vegetable Growers. John Willy & Sons, Inc, Hoboken, NJ, USA

    Google Scholar 

  • Milstein A, Wahab M, Rahman M (2002) Environmental effects of common carp Cyprinus carpio (L.) and mrigal Cirrhinus mrigala (Hamilton) as bottom feeders in major Indian carp polycultures. Aquac Res 33(14):1103–1117. https://doi.org/10.1046/j.1365-2109.2002.00753.x

    Article  Google Scholar 

  • Milstein A, Wahab M, Kadir A, Sagor M, Islam M (2009) Effects of intervention in the water column and/or pond bottom through species composition on polycultures of large carps and small indigenous species. Aquac 286(3–4):246–253. https://doi.org/10.1016/j.aquaculture.2008.09.036

    Article  Google Scholar 

  • Munar A, Alridiwirsah A, Nisa C (2018) Utilization of various fish dung on the growth and production of lettuce (Lactuca sativa L.) in the aquaponic system. In: Proceeding International Conference Sustainable Agriculture and Natural Resources Management (ICoSAaNRM), vol. 2, no. 01

  • Osman A, Farrag M, Badrey A, Khedr Z, Kloas W (2021) Water quality and health status of the monosex Nile Tilapia, Oreochromis niloticus cultured in aquaponics system (ASTAF-PRO). J Aquat Biol Fish 25(2):785–802. https://doi.org/10.21608/ejabf.2021.169899

    Article  Google Scholar 

  • Palm H, Knaus U, Appelbaum S, Goddek S, Strauch S, Vermeulen T, Haїssam Jijakli M, Kotzen B (2018) Towards commercial aquaponics: a review of systems, designs, scales and nomenclature. Aquac Int 26:813–842. https://doi.org/10.1007/s10499-018-0249-z

    Article  Google Scholar 

  • Pineda-Pineda J, Miranda-Velázquez I, Rodríguez-Pérez J, Ramírez-Arias J, Pérez-Gómez E, García-Antonio I, Morales-Parada J (2015) Nutrimental balance in aquaponic lettuce production, pp 1093–1100. https://doi.org/10.17660/ActaHortic.2017.1170.141

  • Popma T, Lovshin L (1996) Worldwide prospects for commercial production of tilapia. Agric Food Sci

  • Rahmawati A, Dailami M, Eka Supriatin F (2021) The performance of water quality in tilapia pond using Dutch bucket and deep flow technique. J Aquat Biol Fish 25(1):885–897. https://doi.org/10.21608/ejabf.2021.156606

    Article  Google Scholar 

  • Salam M, Asadujjaman M, Rahman M (2013) Aquaponics for improving high density fish pond water quality through raft and rack vegetable production. WJFMS 5(3):251–256. https://doi.org/10.5829/idosi.wjfms.2013.05.03.7274

    Article  CAS  Google Scholar 

  • Schmautz Z, Loeu F, Liebisch F, Graber A, Mathis A, Griessler Bulc T, Junge R (2016) Tomato productivity and quality in aquaponics: Comparison of three hydroponic methods. Water 8(11):533. https://doi.org/10.3390/w8110533

    Article  Google Scholar 

  • Soliman H, Osman A, Abbass M, Badrey A (2023) Paired production of the Nile Tilapia (Oreochromis niloticus) and lettuce (Lactuca sativa) within an aquaponics system in Sohag Governorate. Sohag J Sci 8(1):35–40. https://doi.org/10.21608/sjsci.2022.165767.1037

    Article  Google Scholar 

  • Stone N, Thomforde H (2004) Understanding your fish pond water analysis report: Cooperative Extension Program. University of Arkansas at Pine Bluff, US

    Google Scholar 

  • Sunny A, Naznin S, Rahman M, Nahiduzzaman M, Wahab M (2017) Assessment of the river water quality parameters and pollution: an insight from Dhaka city. In: International symposium on sustainable urban environment

  • Syafiqah S, Abentin E, Masran T, Amran H, Salleh O, Saleem M (2015) Growth performance of tomato plant and Genetically Improved Farmed Tilapia in combined aquaponic systems. Asian J Agric Res 9(3):95–103. https://doi.org/10.3923/ajar.2015.95.103

    Article  CAS  Google Scholar 

  • Timmons M, Ebeling J, Wheaton F, Summerfelt S, Vinci B (2002) Recirculating aquaculture systems: Northeastern Regional Aquaculture Center. Cayuga Aqua Ventures, Ithaca (New York), p 650

  • Valdez-Sandoval C, Guerra-Centeno D, Lepe-López M, Díaz-Rodríguez M, Pineda-Alvizuris L (2020) Survival and productivity of culinary herb species in a nutrient film technique-type aquaponic system with Nile tilapia. World’s Vet J 10(4):578–586. https://doi.org/10.54203/scil.2020.wvj69

    Article  Google Scholar 

  • Wahyuningsih S, Effendi H, Wardiatno Y (2015) Nitrogen removal of aquaculture wastewater in aquaponic recirculation system. Aquacultor Aquac Aquar Conserv Legis 8(4):491–499

    Google Scholar 

  • Welbaum G (2015) Vegetable production and practices. UK, International, Wallingforth, Oxfordshire, p 486

  • Wongkiew S, Hu Z, Chandran K, Lee JW, Khanal SK (2017) Nitrogen transformations in aquaponic systems: a review. Aquac Eng 76:9–19. https://doi.org/10.1016/j.aquaeng.2017.01.004

    Article  Google Scholar 

  • Zhang S-Y, Li G, Wu H-B, Liu X-G, Yao Y-H, Tao L, Liu H (2011) An integrated recirculating aquaculture system (RAS) for land-based fish farming: the effects on water quality and fish production. Aquac Eng 45(3):93–102. https://doi.org/10.1016/j.aquaeng.2011.08.001

    Article  Google Scholar 

Download references

Acknowledgements

This work was conducted in the framework of an Alexander von Humboldt Foundation Digital Cooperation Fellowship (Ref 3.4—EGY / 1134716) for Prof. Alaa Osman and his German partner Prof. Werner Kloas hosted by the Faculty of Science, Al-Azhar University, Assiut, Egypt.

Author information

Authors and Affiliations

Authors

Contributions

Mohamed F. El-Sawy and Mahmoud M. S. Farrag performed the experiment, performed lab analysis, and analyzed the data. Ahmed El-Sayed Ali Badrey, Aldoushy Mahdy, and Alaa Gadelkarem Mahmoud Osman, planned and supervised the experiments, prepared the manuscript and original draft, and completed the final draft writing, review, and editing.

Corresponding author

Correspondence to Ahmed E. A. Badrey.

Ethics declarations

Ethics Approval and Consent to Participate

This document represents the authors’ original work, which has never been published before and is not currently under consideration for publication elsewhere. This work accurately and completely reflects the authors’ own research and analysis. All the sources utilized are correctly credited. The authors declare that no environmental risks have been included in the current investigation. All materials and animals used in the current study were handled in line with the scientific ethics committee, Faculty of Science, Al-Azhar University (Assiut Branch), 71524 Assiut, Egypt.

Competing Interests

The authors declare no competing interests.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Badrey, A.E.A., El-Sawy, M.F., Mahdy, A. et al. The Impact of Water Quality on the Production of Lettuce (Lactuca sativaL.) Using Polyculture Effluent in ASTAF−Pro Aquaponic System. J Soil Sci Plant Nutr (2024). https://doi.org/10.1007/s42729-024-01669-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s42729-024-01669-1

Keywords

Navigation