Skip to main content
Log in

Selenium Increases Photosynthetic Pigments, Flavonoid Biosynthesis, Nodulation, and Growth of Soybean Plants (Glycine max L.)

  • Original Paper
  • Published:
Journal of Soil Science and Plant Nutrition Aims and scope Submit manuscript

Abstract

This study aimed to investigate the physiological roles of selenium (Se) in the photosynthetic pigment, antioxidant metabolism, flavonoid biosynthesis, nodulation, and its relationship with soybean production. The treatments consisted of five doses of Se (0 μg kg−1, 7.5 μg kg−1, 15 μg kg−1, 30 μg kg−1, and 45 μg kg−1) applied via soil and in the form of sodium selenate at the V2 phenological stage of soybean. The concentration of chlorophyll b and carotenoids, the activity of antioxidant enzymes (superoxide dismutase, catalase, ascorbate peroxidase), and the concentration of total sugars in soybean leaves increased in response to Se fertilization. In addition, Se increased ureide concentration in leaves and activity of nitrate reductase, resulting in greater bioavailability of amino acids and proteins in the leaves, generating greater stimulation of plant growth and root dry weight, but did not increase yield. The number of nodules and the synthesis of rutin and genistein in the roots were significantly increased by the Se application. Se also stimulated the translocation of amino acids from leaves to the nodules and of ureides from nodules to leaves, increasing efficiency in biological nitrogen fixation. This study presents fundamental new insights regarding Se effect on nitrogen metabolism, flavonoid synthesis, antioxidant metabolism, and nodulation of soybean that can be helpful in increasing the crop tolerance to abiotic stress.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

Data Availability

The datasets are available from the corresponding author upon request.

References

Download references

Funding

This research was supported by FAPESP (2020/10053-8).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to André Rodrigues dos Reis.

Ethics declarations

Competing Interests

The authors declare no competing interests.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

ESM 1:

Figures S1-S4 (DOCX 801 kb)

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Cunha, M.L.O., de Oliveira, L.C.A., Mendes, N.A.C. et al. Selenium Increases Photosynthetic Pigments, Flavonoid Biosynthesis, Nodulation, and Growth of Soybean Plants (Glycine max L.). J Soil Sci Plant Nutr 23, 1397–1407 (2023). https://doi.org/10.1007/s42729-023-01131-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s42729-023-01131-8

Keywords

Navigation