Skip to main content
Log in

Complete mitochondrial genomes of Lycosa grahami and Lycosa sp. (Araneae: Lycosidae): comparison within the family Lycosidae

  • Original Research Article
  • Published:
International Journal of Tropical Insect Science Aims and scope Submit manuscript

Abstract

Mitochondrial genome (mitogenome) sequencing is one of the most effective methods for studying spider phylogeny. In this study, the mitogenomes of wolf spiders (Lycosa grahami and Lycosa sp.) were sequenced and compared with those of other spiders to study their evolutionary trends. The mitogenomes of L. grahami and Lycosa sp. were 14,240 and 14,589 bp in length, respectively, and their adenine and thymine contents were 73.74% and 76.23%, respectively. The mitogenomes contained 13 protein-coding genes (PCGs), 22 transfer RNAs (tRNAs), two ribosomal RNAs (rRNAs), and a control region. We found that trnS1 and trnS2 of four Lycosa species lacked a dihydrouracil arm, most tRNAs lacked a TΨC arm, and there was a guanine-uracil wobble in the acceptor stem. Comparison of selective pressures on the 13 PCGs in the mitogenomes of Lycosidae showed the fastest evolution for ATP8 and the slowest for COI. Concatenated nucleotide sequences of the 13 PCGs and two rRNA genes were obtained from the mitogenomes of 63 spiders for phylogenetic analysis based on maximum likelihood and Bayesian inference methods. Phylogenetic relationships supported the monophyletic Mesothelae and Mygalomorphae. Lycosa clustered under a monophyletic group in Lycosidae. In addition, L. grahami and L. shansia were found to be more closely related to Lycosa sp. and L. singoriensis, respectively. This study provides crucial molecular information for further studies on the evolution and genetic diversity of the spider mitogenome.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

Data availability

The mitogenome sequences of L. grahami and Lycosa sp. were submitted to GenBank as ON951647 and ON951646, respectively. The infomation are presented in the section of “Bioinformatic analysis”.

References

  • Altschul SF, Madden TL, Schaffer AA, Zhang J, Zhang Z, Miller W, Lipman DJ (1997) Gapped BLAST and PSI-BLAST: a new generation of protein database search programs. Nucleic Acids Res 25(17):3389–3402

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Batra R, Saripalli G, Mohan A, Gupta S, Gill KS, Varadwaj PK, Balyan HS, Gupta PK (2017) Comparative analysis of AGPase genes and encoded proteins in eight monocots and three dicots with emphasis on wheat. Front Plant Sci 8:19

    Article  PubMed  PubMed Central  Google Scholar 

  • Bernt M, Donath A, Juhling F, Externbrink F, Florentz C, Fritzsch G, Putz J, Middendorf M, Stadler PF (2013) MITOS: Improved de novo metazoan mitochondrial genome annotation. Mol Phylogenet Evol 69(2):313–319

    Article  PubMed  Google Scholar 

  • Bjork A, Liu WM, Wertheim JO, Hahn BH, Worobey M (2011) Evolutionary history of chimpanzees inferred from complete mitochondrial genomes. Mol Biol Evol 28(1):615–623

    Article  CAS  PubMed  Google Scholar 

  • Burland TG (2000) DNASTAR’s Lasergene sequence analysis software. Methods Mol Biol 132:71–91

    CAS  PubMed  Google Scholar 

  • Chan PP, Lowe TM (2019) tRNAscan-SE: searching for tRNA genes in genomic sequences. Methods Mol Biol 1962:1–14

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Falah M, Farhadi M, Kamrava SK, Mahmoudian S, Daneshi A, Balali M, Asghari A, Houshmand M (2017) Association of genetic variations in the mitochondrial DNA control region with presbycusis. Clin Interv Aging 12:459–465

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Fang WY, Wang ZL, Li C, Yang XQ, Yu XP (2016) The complete mitogenome of a jumping spider Carrhotus xanthogramma (Araneae: Salticidae) and comparative analysis in four salticid mitogenomes. Genetica 144(6):699–709

    Article  CAS  PubMed  Google Scholar 

  • Fu YT, Zhang Y, Xun Y, Liu GH, Suleman, Zhao Y (2021) Characterization of the complete mitochondrial genomes of six horseflies (Diptera: Tabanidae). Infect Genet Evol 95:105054

    Article  CAS  PubMed  Google Scholar 

  • Garb JE, Hayashi CY (2013) Molecular evolution of alpha-latrotoxin, the exceptionally potent vertebrate neurotoxin in black widow spider venom. Mol Biol Evol 30(5):999–1014

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Hao YJ, Zou YL, Ding YR, Xu WY, Yan ZT, Li XD, Fu WB, Li TJ, Chen B (2017) Complete mitochondrial genomes of Anopheles stephensi and An. dirus and comparative evolutionary mitochondriomics of 50 mosquitoes. Sci Rep 7:7666

    Article  PubMed  PubMed Central  Google Scholar 

  • Hassanin A, Leger N, Deutsch J (2005) Evidence for multiple reversals of asymmetric mutational constraints during the evolution of the mitochondrial genome of Metazoa, and consequences for phylogenetic inferences. Syst Biol 54(2):277–298

    Article  PubMed  Google Scholar 

  • Herzig V, Wood DLA, Newell F, Chaumeil PA, Kaas Q, Binford GJ, Nicholson GM, Gorse D, King GF (2011) ArachnoServer 2.0, an updated online resource for spider toxin sequences and structures. Nucleic Acids Res 39:D653–D657

    Article  CAS  PubMed  Google Scholar 

  • Hopley T, Webber BL, Raghu S, Morin L, Byrne M (2021) Revealing the introduction history and phylogenetic relationships of Passiflora foetida sensu lato in Australia. Front Plant Sci 12:651805

    Article  PubMed  PubMed Central  Google Scholar 

  • Iwasaki W, Fukunaga T, Isagozawa R, Yamada K, Maeda Y, Satoh TP, Sado T, Mabuchi K, Takeshima H, Miya M, Nishida M (2013) Mitofish and mitoannotator: a mitochondrial genome database of fish with an accurate and automatic annotation pipeline. Mol Biol Evol 30(11):2531–2540

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Jex AR, Hall RS, Littlewood DTJ, Gasser RB (2010) An integrated pipeline for next-generation sequencing and annotation of mitochondrial genomes. Nucleic Acids Res 38(2):522–533

    Article  CAS  PubMed  Google Scholar 

  • Juhling F, Putz J, Bernt M, Donath A, Middendorf M, Florentz C, Stadler PF (2012) Improved systematic tRNA gene annotation allows new insights into the evolution of mitochondrial tRNA structures and into the mechanisms of mitochondrial genome rearrangements. Nucleic Acids Res 40(7):2833–2845

    Article  PubMed  Google Scholar 

  • Katoh K, Misawa K, Kuma K, Miyata T (2002) MAFFT: a novel method for rapid multiple sequence alignment based on fast Fourier transform. Nucleic Acids Res 30(14):3059–3066

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kearse M, Moir R, Wilson A, Stones-Havas S, Cheung M, Sturrock S, Buxton S, Cooper A, Markowitz S, Duran C, Thierer T, Ashton B, Meintjes P, Drummond A (2012) Geneious Basic: an integrated and extendable desktop software platform for the organization and analysis of sequence data. Bioinformatics 28(12):1647–1649

    Article  PubMed  PubMed Central  Google Scholar 

  • Konrad A, Thompson O, Waterston RH, Moerman DG, Keightley PD, Bergthorsson U, Katju V (2017) Mitochondrial mutation rate, spectrum and heteroplasmy in Caenorhabditis elegans spontaneous mutation accumulation lines of differing population size. Mol Biol Evol 34(3):778

    Article  Google Scholar 

  • Kumar S, Stecher G, Tamura K (2016) MEGA7: molecular evolutionary genetics analysis version 7.0 for bigger datasets. Mol Biol Evol 33(7):1870–1874

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Lee YS, Shibata Y, Malhotra A, Dutta A (2009) A novel class of small RNAs: tRNA-derived RNA fragments (tRFs). Genes Dev 23(22):2639–2649

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Leger MM, Kolisko M, Kamikawa R, Stairs CW, Kume K, Cepicka I, Silberman JD, Andersson JO, Xu FF, Yabuki A, Eme L, Zhang QQ, Takishita K, Inagaki Y, Simpson AGB, Hashimoto T, Roger AJ (2017) Organelles that illuminate the origins of Trichomonas hydrogenosomes and Giardia mitosomes. Nat Ecol Evol 1(4):0092

    Article  PubMed  PubMed Central  Google Scholar 

  • Li M, Chen WT, Zhang QL, Liu M, Xing CW, Cao Y, Luo FZ, Yuan ML (2022) Mitochondrial phylogenomics provides insights into the phylogeny and evolution of spiders (Arthropoda: Araneae). Zool Res 43(4):566–584

    PubMed  PubMed Central  Google Scholar 

  • Liu D, Zhou Y, Fei Y, Xie C, Hou S (2021) Mitochondrial genome of the critically endangered Baer’s Pochard, Aythya baeri, and its phylogenetic relationship with other Anatidae species. Sci Rep 11(1):24302

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Lorenz R, Bernhart SH, Siederdissen CHZ, Tafer H, Flamm C, Stadler PF, Hofacker IL (2011) ViennaRNA Package 2.0. Algorithms Mol Biol 6:26

    Article  PubMed  PubMed Central  Google Scholar 

  • Ma XX, Wang FF, Wu TT, Li Y, Sun XJ, Wang CR, Chang QC (2022) First description of the mitogenome and phylogeny: aedes vexansand Ochlerotatus caspius of the tribe aedini (Diptera: Culicidae). Infect Genet Evol 102:105311

    Article  CAS  PubMed  Google Scholar 

  • Masta SE, Boore JL (2008) Parallel evolution of truncated transfer RNA genes in arachnid mitochondrial genomes. Mol Biol Evol 25(5):949–959

    Article  CAS  PubMed  Google Scholar 

  • Meng GL, Li YY, Yang CT, Liu SL (2019) MitoZ: a toolkit for animal mitochondrial genome assembly, annotation and visualization. Nucleic Acids Res 47(11):e63

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Nei M, Gojobori T (1986) Simple methods for estimating the numbers of synonymous and nonsynonymous nucleotide substitutions. Mol Biol Evol 3(5):418–426

    CAS  PubMed  Google Scholar 

  • Oliveira DC, Raychoudhury R, Lavrov DV, Werren JH (2008) Rapidly evolving mitochondrial genome and directional selection in mitochondrial genes in the parasitic wasp nasonia (hymenoptera: pteromalidae). Mol Biol Evol 25(10):2167–2180

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Perna NT, Kocher TD (1995) Patterns of nucleotide composition at fourfold degenerate sites of animal mitochondrial genomes. J Mol Evol 41(3):353–358

    Article  CAS  PubMed  Google Scholar 

  • Pons J, Bauza-Ribot MM, Jaume D, Juan C (2014) Next-generation sequencing, phylogenetic signal and comparative mitogenomic analyses in Metacrangonyctidae (Amphipoda: Crustacea). BMC Genomics 15:566

    Article  PubMed  PubMed Central  Google Scholar 

  • Pons J, Bover P, Bidegaray-Batista L, Arnedo MA (2019) Arm-less mitochondrial tRNAs conserved for over 30 millions of years in spiders. BMC Genomics 20(1):665

    Article  PubMed  PubMed Central  Google Scholar 

  • Qiu Y, Song DX, Zhou KY, Sun HY (2005) The mitochondrial sequences of Heptathela hangzhouensis and Ornithoctonus huwena reveal unique gene arrangements and atypical tRNAs. J Mol Evol 60(1):57–71

    Article  CAS  PubMed  Google Scholar 

  • Rubio MAT, Paris Z, Gaston KW, Fleming IMC, Sample P, Trotta CR, Alfonzo JD (2013) Unusual noncanonical intron editing is important for tRNA splicing in Trypanosoma brucei. Mol Cell 52(2):184–192

    Article  CAS  PubMed  Google Scholar 

  • Sheffield NC, Song H, Cameron L, Whiting MF (2008) A comparative analysis of mitochondrial genomes in Coleoptera (Arthropoda: Insecta) and genome descriptions of six new beetles. Mol Biol Evol 25(11):2499–2509

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Shen YY, Liang L, Zhu ZH, Zhou WP, Irwin DM, Zhang YP (2010) Adaptive evolution of energy metabolism genes and the origin of flight in bats. Proc Natl Acad Sci USA 107(19):8666–8671

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Stokkan M, Jurado-Rivera JA, Juan C, Jaume D, Pons J (2016) Mitochondrial genome rearrangements at low taxonomic levels: three distinct mitogenome gene orders in the genus Pseudoniphargus (Crustacea: Amphipoda). Mitochondrial DNA Part A 27(5):3579–3589

    Article  CAS  Google Scholar 

  • Stoneking M, Hedgecock D, Higuchi RG, Vigilant L, Erlich HA (1991) Population variation of human mtDNA control region sequences detected by enzymatic amplification and sequence-specific oligonucleotide probes. Am J Hum Genet 48(2):370–382

    CAS  PubMed  PubMed Central  Google Scholar 

  • Tyagi K, Kumar V, Poddar N, Prasad P, Tyagi I, Kundu S, Chandra K (2020) The gene arrangement and phylogeny using mitochondrial genomes in spiders (Arachnida: Araneae). Int J Biol Macromol 146:488–496

    Article  CAS  PubMed  Google Scholar 

  • Wang ZL, Li C, Fang WY, Yu XP (2016a) Characterization of the complete mitogenomes of two Neoscona spiders (Araneae: Araneidae) and its phylogenetic implications. Gene 590(2):298–306

    Article  CAS  PubMed  Google Scholar 

  • Wang ZL, Li C, Fang WY, Yu XP (2016b) The complete mitochondrial genome of two Tetragnatha Spiders (Araneae: Tetragnathidae): severe truncation of tRNAs and novel gene rearrangements in Araneae. Int J Biol Sci 12(1):109–119

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Wang L, Lu T, Cai D, Barrion AT, Heong KL, Li S, Zhang Z (2021) Review of the wolf spiders from Hainan Island, China (Araneae: Lycosidae). Zoological Systematics 46(1):16–74

    CAS  Google Scholar 

  • Weterings R, Umponstira C, Buckley HL (2018) Landscape variation influences trophic cascades in dengue vector food webs. Sci Adv 4(2):eaap9534

    Article  PubMed  PubMed Central  Google Scholar 

  • Xie DF, Yu HX, Price M, Xie C, Deng YQ, Chen JP, Yu Y, Zhou SD, He XJ (2019) Phylogeny of chinese allium species in section daghestanica and adaptive evolution of Allium (Amaryllidaceae, Allioideae) species revealed by the chloroplast complete genome. Front Plant Sci 10:460

    Article  PubMed  PubMed Central  Google Scholar 

  • Yang ZH, Nielsen R (2002) Codon-substitution models for detecting molecular adaptation at individual sites along specific lineages. Mol Biol Evol 19(6):908–917

    Article  CAS  PubMed  Google Scholar 

  • Ye WT, Wang JC, Zhao XY, Liu HY, Zhu S (2022) Mitochondrial genomes of two Lycosa spiders (Araneae, Lycosidae): genome description and phylogenetic implications. Diversity 14(7):538

    Article  CAS  Google Scholar 

  • Zhang D, Gao FL, Jakovlic I, Zou H, Zhang J, Li WX, Wang GT (2020) PhyloSuite: an integrated and scalable desktop platform for streamlined molecular sequence data management and evolutionary phylogenetics studies. Mol Ecol Resour 20(1):348–355

    Article  PubMed  Google Scholar 

  • Zhang WM, Fang D, Cheng XZ, Cao J, Tan XL (2021) Insights into the molecular evolution of AT-Hook motif nuclear localization genes in Brassica napus. Front Plant Sci 12:714305

    Article  PubMed  PubMed Central  Google Scholar 

  • Zhang YQ, Chen JJ, Tang X, Wang F, Jiang LP, Xiong X, Wang MC, Rong MQ, Liu ZH, Liang SP (2010) Transcriptome analysis of the venom glands of the Chinese wolf spider Lycosa singoriensis. Zoology 113(1):10–18

    Article  PubMed  Google Scholar 

  • Zhao YB, Yin JL, Guo HY, Zhang YY, Xiao W, Sun C, Wu JY, Qu XB, Yu J, Wang XM, Xiao JF (2015) The complete chloroplast genome provides insight into the evolution and polymorphism of Panax ginseng. Front Plant Sci 5:696

    Article  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

This study was supported by the Postdoctoral Science Foundation of Jiangsu Province (2019K253), and the Priority Academic Program Development of Jiangsu Higher Education Institutions (PAPD).

Author information

Authors and Affiliations

Authors

Contributions

Wentao Ye: Methodology; data curation; formal analysis; writing-original draft. Xinyi Zhao: Methodology; resources. Tangjun Xu: Data curation. Jiachen Wang: Writing-review & editing. Hongyi Liu: Conceptualization; funding acquisition; writing-review & editing.

Corresponding author

Correspondence to Hongyi Liu.

Ethics declarations

Conflict of interests

The authors declare that there is no conflict of interests.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (DOCX 33 KB)

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ye, W., Zhao, X., Xu, T. et al. Complete mitochondrial genomes of Lycosa grahami and Lycosa sp. (Araneae: Lycosidae): comparison within the family Lycosidae. Int J Trop Insect Sci 43, 533–545 (2023). https://doi.org/10.1007/s42690-023-00965-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s42690-023-00965-0

Keywords

Navigation