Skip to main content
Log in

Bioefficacy of two indigenous Nigerian botanicals on the developmental stages of malaria vector, Anopheles gambiae Giles [Diptera: Culicidae]

  • Original Research Article
  • Published:
International Journal of Tropical Insect Science Aims and scope Submit manuscript

Abstract

The use of botanical insecticides in place of synthetic ones is gradually gaining traction in mosquito control. This research examined the potency of Clerodendrum volubile and Petivera alliacea ethanolic leaf extracts against different life stages of Anopheles gambiae. Each plant extracts were formulated into concentrations of 50, 100, 200, 400 and 800 mg/l. Mosquito bioassays namely oviposition deterrent, larvicidal, pupicidal, adulticidal and repellency effect were investigated. The highest concentrations of C. volubile and P. alliacea had oviposition active index of −0.60 and − 0.76 respectively. Larval mortality of 58.33 and 100% were recorded for 800 mg/l concentration of C. volubile and P. alliacea after 24 h of exposure. However, the same concentration for both plant extracts recorded 100% after 48 and 72 h. The pupicidal activity of 800 mg/l of C. volubile were 51.67, 71.67 and 100%, and for P. alliacea 85, 100, 100% after 24, 48 and 72 h respectively. The adult mortality for both plant extracts were 16.67% at the highest used concentration after 30 min of exposure. Nevertheless, after 120 min, the same concentration of C. volubile and P. alliacea extracts recorded mortalities of 75 and 100% separately. Clerodendrum volubile extract provided protection of 100% against An. gambiae bites for 90 min while P. alliacea lasted for about 120 min. Petivera alliacea recorded the lowest LC50 and LC90 values for all the various life stages. The efficacies of these plant extracts imply that they can be incorporated into the integrated management of mosquitoes.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Abbott WS (1925) A method of computing the effectiveness of an insecticide. J Econ Entomol 18:265–267

    CAS  Google Scholar 

  • Abdel-Tawab HM (2016) Green pesticides: Essential oils as biopesticides in insect-pest management. J Environ Sci Technol 9:354–378

    Google Scholar 

  • Abdul-Raheem AMP, Sulaiman FA, Malomo OL, Oyewo MM, Hassan A, Ahmed O, Alimi GO, Afolayan D (2018) Extraction, physicochemical, phytochemical, biochemical, GC-MS constituents and environmental effects of Petiveria alliacea leaves. Centrepoint Journal (Science edition) 24(2):141–174

    Google Scholar 

  • Abok JI, Ombugadu A (2018) Angbalaba GA (2018) Hyptis suaveolens extract exhibits Larvicidal activity against Anopheles gambiae larvae. Trop J Nat Prod Res 2(5):245–249

    CAS  Google Scholar 

  • Adesina J, Rajashekar Y (2018) Phytochemical composition and insecticidal potentials of some plant aqueous extracts in suppressing Podagrica spp.(Coleoptera: Chrysomelidae) infestation on okra (Abelmoschus esculentus L. Moench). Adv Hortic Sci 32(1):71–78

    Google Scholar 

  • Afolabi OJ, Simon-Oke IA, Elufisan OO, Oniya MO (2018) Adulticidal and repellent activities of some botanical oils against malaria mosquito: Anopheles gambiae (Diptera: Culicidae). Beni-Suef Uni J Bas Appl Sci 7(1):135–138

    Google Scholar 

  • Aktar MW, Sengupta D, Chowdhury A (2009) Impact of pesticides use in agriculture: their benefits and hazards. Interdisp Toxicol 2:1–12

    Google Scholar 

  • Alegre JC, Clavo M (2007) Petiveria alliacea L. Record from PROTA (Plant Resources of Tropical Africa) http://wwwprota4uorg/searchasp Acessed 7 November 2019

  • Alqasoumi SI, Radwan AM, Bur J, Craker LE (2012) Phytochemical screening and insecticidal activity of three plants from Chenopodiaceae family. J Med Plant Res 6(48):5863–5867

    Google Scholar 

  • Anupam G, Nandita C, Goutam C (2012) Plant extracts as potential mosquito larvicides. Indian J Med Res 135:581–598

    Google Scholar 

  • Asiry KA, Hassan SS, Ibrahim NA, Al-Khuraiji IA, Kehial MA, Al-Anazi NA, Al-nasser AS, Al-Shehri AZ (2017) Larvicidal efficacy of ethanolic leaf extracts of four selected local plants from hail region, northern Saudi Arabia, against the dengue fever vector, Aedes aegypti (l.) under laboratory conditions. Int J Mosq Res 4(3):81–87

    Google Scholar 

  • Bekele D. (2018) Review on insecticidal and repellent activity of plant products for malaria mosquito control. Biomed Res Rev. 2(2):1–7

    Google Scholar 

  • Belmain SR, Haggar J, Holt J, Stevenson PC (2013) Managing legume pests in sub-Saharan Africa. In: challenges and prospects for improving food security and nutrition through agro-ecological intensification. Natural Resources Institute, University of Greenwich, p 34

  • Burkill HM (1985). The Flora of west tropical Africa. Royal Botanic Gardens: Kew

  • Centers for Disease Control and Prevention (CDC) (2019) Lymphatic filariasis. https://wwwcdcgov/parasites/lymphaticfilariasis/ Accessed 13 November 2019

  • Dahchar Z, Bendali-Saoudi F, Soltani N (2016) Larvicidal activity of some plant extracts against two mosquito species Culex pipiens and Culiseta longiareolata. J Entomol Zool Stud 4(4):346–350

    Google Scholar 

  • Edwin UPM, Nyiutaha IG, Essien AE, Nnamdi OK, Sunday EM (2013) Larvicidal effect of aqueous and ethanolic extracts of Senna alata on Anopheles gambiae, Culex quinquefasciatus and Aedes aegypti. Pak J Pharm Sci 26(4):561–566

    CAS  PubMed  Google Scholar 

  • El-Sheikh TM, Al-Fifi ZI, Alabboud MA (2016) Larvicidal and repellent effect of some Tribulus terrestris L., (Zygophyllaceae) extracts against the dengue fever mosquito, Aedes aegypti (Diptera: Culicidae). J Saudi Chem Soc 20(1):13–19

    CAS  Google Scholar 

  • Erukainure OL, Oke OV, Ajiboye AJ, Okafor OY (2011) Nutritional qualities and phytochemical constituents of Clerodendrum volubile, a tropical non-conventional vegetable. Int Food Res J 18(4):1393–1399

    CAS  Google Scholar 

  • Erukainure OL, Ebuehi OA, Choudhary IM, Adhikari A, Hafizur RM, Perveen S, Muhammad A, Elemo GN (2014) Iridoid glycoside from the leaves of Clerodendrum volubile beauv. Shows potent antioxidant activity against oxidative stress in rat brain and hepatic tissues. J Diet Suppl 11:19–29

    CAS  PubMed  Google Scholar 

  • Fatima K, Bashar K, Rahman KMZ, Howlader AJ (2011) Oviposition deterrent activity of some indigenous plant leaf extracts on mosquito Culex quinquefasciatus Say (Diptera: Culicidae). Bangl J Life Sci 23(1):25–31

    Google Scholar 

  • Ferrer JI (2007) Main ethnomedical references on the anamú (Petiveria alliacea linn) and active ingredients found in the plant. An approach to the subject. CENIC Magazine Biol Sci 38(1):27–30

    Google Scholar 

  • Finney DJ (1971) Probit analysis, 3rd edn. Cambridge University press, Cambridge

    Google Scholar 

  • García-González M, Coto MT, Ocampo R, Pazos L (2006) Subchronic and acute preclinic toxicity and some pharmacological effects of the water extract from leaves of Petiveria alliacea (Phytolaccaceae). Rev Biol Trop 54(4):1323–1326

    PubMed  Google Scholar 

  • García-Mateos M, Elizalde SE, Espinosa-Robles P, Álvarez-Sánchez M (2007) Toxicity of Petiveria alliacea L. on greenhouse whitefly (Trialeurodes vaporariorum west.). Interciencia 32(2):121–124

    Google Scholar 

  • Gillies MT, De Meillon B (1968) The anophelinae of Africa south of the Sahara. S Afr Inst Med Res 54:1–343

    Google Scholar 

  • Gomes PB, da Silva Oliveira MM, Nogueira CR, Noronha EC, Carneiro LM, Bezerra JN, Neto MA, Vasconcelos SM, Fonteles MM, Viana GS, de SOUSA FC (2005) Study of antinociceptive effect of isolated fractions from Petiveria alliacea L.(tipi) in mice. Biol Pharm Bull 28(1):42–46

  • Govindarajan M, Sivakumar R (2011) Mosquito adulticidal and repellent activities of botanical extracts against malarial vector, Anopheles stephensi Liston (Diptera: Culicidae). Asian Pac J Trop Med 4(12):941–947

    CAS  PubMed  Google Scholar 

  • Habibullah B, Aminul I, Abdul M, Jashim U (2007) Effectiveness of some botanical extracts on bean aphids attacking yard-long beans. J Entomol 4:136–142

    Google Scholar 

  • Hartmann I, da Silva A, Walter ME, Jeremias WD (2018) Investigation of the Larvicidal effect of Guinea (Petiveria alliacea) on larvae of mosquitoes of the species Ae. Aegypti. Rev Virtual de Quimica 10(3):529–541

    Google Scholar 

  • Hernández JF, Urueña CP, Cifuentes MC (2014) A Petiveria alliacea standardized fraction induces breast adenocarcinoma cell death by modulating glycolytic metabolism. J Ethnopharmacol 153:641–649

    PubMed  Google Scholar 

  • Ileke KD (2018) Entomocidal properties of Monodora myristica (Dunal, 1831) and Conyza sumatrensis (Retzius, 1742-1821) extracts: studies on two dipterous insect pests Anopheles gambiae (Giles, 1902) and Culex quinquefasciatus (Say, 1823). Braz J Biol Sci 5(10):349–358

    Google Scholar 

  • Ileke KD, Adesina FP (2018) Bioefficacy of Larvicidal and Pupicidal properties of Clerodendrum capitatum and Bridelia machrantha leaves extracts against malaria vector, Anopheles gambiae Giles [Diptera: Culicidae]. J Biol Med 2:7–11

    Google Scholar 

  • Ileke KD, Adesina JM (2019) Toxicity of Ocimum basilicum and Ocimum gratissimum extract against main malaria vector Anopheles gambiae in Nigeria. J Arthropod-Borne Dis 13(4):362–368

    PubMed  PubMed Central  Google Scholar 

  • Ileke KD, Ogungbite OC (2015) Alstonia boonei De wild oil extract in the management of mosquito (Anopheles gambiae), a vector of malaria disease. J Coast Life Med 3(7):557–563

    CAS  Google Scholar 

  • Ileke KD, Olabimi IO (2019) Inseticidal activities of Chromolaena odorata and Vernonia amygdalina leaf extracts against Anopheles gambiae [Diptera: Culicidae]. Int J Trop Dis 2(1):1–7

    Google Scholar 

  • Ileke KD, Afolabi OJ, Ogungbite OC, Olayinka-Olagunju JO, Akanbi OM (2014) Mosquitocidal activity of Anacardium occidentale, Afromomum melegueta, Garcina kola and Citrus sinensis against the developmental stages of mosquito, Anopheles gambiae Giles. J Mosq Res 4:21–26

    Google Scholar 

  • Ileke KD, Adesina JM, Okunola OG (2017) Larvicidal and pupicidal potential of Afromomum melegueta K. Schum extracts against mosquito, Anopheles species. J Entomol Res Soc 19:121–127

    Google Scholar 

  • Kashte S, Walke S, Parwe N, Mulani R (2015) Agnimantha: an herbal larvicide and pupicide against malarial vector Anopheles stephensi. Int J Mosq Res 2:89–93

    Google Scholar 

  • Kim S, Kubec R, Musah RA (2006) Antibacterial and antifungal activity of sulfur-containing compounds from Petiveria alliacea L. J Ethnopharmacol 104(1–2):188–192

    CAS  PubMed  Google Scholar 

  • Kovendan K, Murugan K, Kumar PM, Thiyagarajan P, William SJ (2013) Ovicidal, repellent, adulticidal and field evaluations of plant extract against dengue, malaria and filarial vectors. Parasitol Res 112(3):1205–1219

    PubMed  Google Scholar 

  • Kramer WL, Mulla S (1979) Oviposition attractants and repellents of mosquitoes: oviposition responses of Culex mosquitoes to organic infusions. Environ Entomol 8:1111–1117

    Google Scholar 

  • Kubec R, Kim S, Musah RA (2002) S-substituted cysteine derivatives and thiosulfinate formation in Petiveria alliacea—part II. Phytochem 61(6):675–680

    CAS  Google Scholar 

  • Kubec R, Kim S, Musah RA (2003) The lachrymatory principle of Petiveria alliacea. Phytochem 63(1):37–40

    CAS  Google Scholar 

  • Lurdu MT, Thampi RS (2017) Biocidal activity of Scoparia dulcis and Clerodendrum phlomidis on human pathogens, mosquito larvae and storage pest. J Med Plants 5(5):186–190

    Google Scholar 

  • Mahmood I, Imadi SR, Shazadi K, Gul A, Hakeem KR (2016) Effects of pesticides on environment. In: Hakeem K, Akhtar M, Abdullah S (eds) Plant, soil and microbes. Springer, Cham, pp 253–269

    Google Scholar 

  • Mavundza EJ, Maharaj R, Chukwujekwu JC, Finnie JF, Van Staden J (2014) Screening for adulticidal activity against Anopheles arabiensis in ten plants used as mosquito repellent in South Africa. Malar J 13(1):173

    PubMed  PubMed Central  Google Scholar 

  • Molehin OR, Oloyede OI, Ajayi EI (2017) GC–MS analysis of bioactive compounds in three extracts of Clerodendrum volubile P. Beauv leaves. J Med Plants Stud 5(5):191–195

    Google Scholar 

  • Muthu C, Baskar K, Duraipandiyan V, Ignacimuthu S, Al-Dhabi NA (2015) Bioefficacy of pectolinaringenin from Clerodendrum phlomidis Linn. F. against Anopheles stephensi and bhendi fruit borer, Earias vittella fab. Braz Arch Biol Technol 58(3):358–366

    CAS  Google Scholar 

  • Nienaber MA, Thieret JW (2003) Phytoloccaceae. In: Flora of North America north of Mexico, 4 [ed. by Flora of North America Editorial Committee]. New York and Oxford: Flora of North America Editorial Committee, p. 3-5.

  • Ojo J (2016) Pesticides use and health in Nigeria. IFE J Sci 18(4):981–991

    Google Scholar 

  • Oluyemi OF, Ayodele AT, Oluyemi AK (2018) Repellence activity of Cymbopogon citratus (DC) extracts on Anopheles mosquitoes using Swiss albino rat and human volunteer. Open Parasitol J 6(1):32–40

  • Panneerselvam C, Murugan K, Kovendan K, Kumar PM (2012) Mosquito larvicidal, pupicidal, adulticidal, and repellent activity of Artemisia nilagirica (family: Compositae) against Anopheles stephensi and Aedes aegypti. Parasitol Res 111(6):2241–2251

    PubMed  Google Scholar 

  • Patil PB, Kallapur SV, Kallapur VL, Holihosur SN (2014) Clerodendron inerme Gaertn. Plant as an effective natural product against dengue and filarial vector mosquitoes. Asian Pac J Tropical Dis 4:453–462

    Google Scholar 

  • Pérez-Leal R, García-Mateos MR, Martínez-Vásquez M, Soto-Hernández M (2006) Cytotoxic and antioxidant activity of Petiveria alliacea L. Rev Chapingo Ser Hortic 12(1):51–56

    Google Scholar 

  • Prathibha KP, Raghavendra BS, Vijayan VA (2014) Larvicidal, ovicidal, and oviposition-deterrent activities of four plant extracts against three mosquito species. Environ Sci Pollut R 21(10):6736–6743

    CAS  Google Scholar 

  • Qiu YT, Smallegange RC, Van Loon JJA, Ter Braak CJF, Takken W (2006) Interindividual variation in the attractiveness of human odours to the malaria mosquito Anopheles gambiae ss. Med Vet Entomol 20(3):280–287

    CAS  PubMed  Google Scholar 

  • Ramkumar G, Karthi S, Muthusamy R, Suganya P, Natarajan D, Kweka EJ, Shivakumar MS (2016) Mosquitocidal effect of Glycosmis pentaphylla leaf extracts against three mosquito species (Diptera: Culicidae). PLoS One 11(7):1–12

    Google Scholar 

  • Ranganatha VL, Begum AB, Prashanth T, Gurupadaswamy HD, Madhu SK, Shivakumar S, Khanum SA (2013) Synthesis and larvicidal properties of benzophenone comprise indole analogues against Culex quinquefasciatus. Drug Invent Today 5(4):275–280

    Google Scholar 

  • Raveen R, Ahmed F, Pandeeswari M, Reegan D, Tennyson S, Arivoli S, Jayakumar M (2017) Laboratory evaluation of a few plant extracts for their ovicidal, larvicidal and pupicidal activity against medically important human dengue, chikungunya and zika virus vector, Aedes aegypti Linnaeus 1762 (Diptera: Culicidae). Int J Mosq Res 4(4):17–28

    Google Scholar 

  • Rawlins SC, Martinez R, Wiltshire S, Legall G (1998) A comparison of surveillance systems for the dengue vector Aedes aegypti in port of Spain, Trinidad. J Am Mosq Control Assoc 14:131–136

    CAS  PubMed  Google Scholar 

  • Schmelzer GH, Gurib-Fakim A (2008) Medicinal plants: plant resources of tropical Africa. PROTA 2:129

    Google Scholar 

  • Shaalan EAS, Canyon D, Younes MWF, Abdel-Wahab H, Mansour AH (2005) A review of botanical phytochemicals with mosquitocidal potential. Environ Int 31(8):1149–1166

    CAS  PubMed  Google Scholar 

  • Udo IO (2011) Potentials of Zanthoxylum xanthoxyloides as a model, in: Dr. Farzana Perveen (eds.). Insecticides-advances in integrated Pest management pp 367-390

  • Ullah Z, Ijaz A, Mughal TK, Zia K (2018) Larvicidal activity of medicinal plant extracts against Culex quinquefasciatus say.(Culicidae, Diptera). Int J Mosq Res 5:47–51

    Google Scholar 

  • Wangrawa DW, Badolo A, Guenne S, Sanon A (2016) Larvicidal and oviposition-deterrence activities of four local plant extracts from Burkina Faso against Anopheles gambiae S. l. (Diptera: Culicidae). Int J Mosq Res 3(6):11–19

    Google Scholar 

  • Williams LAD, Rosner H, Levy HG, Barton EN (2007) A critical review of the therapeutic potential of dibenzyl trisulphide isolated from Petiveria alliacea L (guinea hen weed, anamu). W Indian Med J 56(1):17–21

    CAS  PubMed  Google Scholar 

  • World Health Organization (WHO) (2005) Guidelines for laboratory and field testing of mosquito larvicides. WHO/CDC/WHOPES/GCDPP.13

  • World Health Organization (WHO) (2006) Guidelines for testing mosquito adulticides for indoor residual spraying and treatment of mosquito nets. WHO Bull 3:27–39

    Google Scholar 

  • World Health Organization (WHO) (2007) Malaria elimination: a field manual for low and moderate endemic countries. World Health organization, Geneva. http://www.who.init. Accessed 21 June 2018

  • Xue RD, Barnard DR, Ali A (2001) Laboratory and field evaluation of insect repellents as oviposition deterrents against the mosquito Aedes albopictus. Med Vet Entomol 15:126–131

    CAS  PubMed  Google Scholar 

Download references

Acknowledgements

We appreciate the Plant Taxonomist, Department of Crop, Soil and Pest Management, Federal University of Technology, Akure, Ondo State for the authentication of the plants.The authors also appreciate Mr. Akeju Adebayo Victor and Mr. Akintan Michael Olanrewaju for their various contributions to the success of this research work.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Isaac Omotayo Olabimi.

Ethics declarations

Ethical approval

The ethical permit for the animal assay used in this study was granted by the animal ethical review committee, Environmental Biology and Public Health Unit, Department of Biology, Federal University of Technology, Akure, Ondo State of Nigeria.

Conflict of interest

The authors declare that they have no conflict of interest.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ileke, K.D., Adu, B.W. & Olabimi, I.O. Bioefficacy of two indigenous Nigerian botanicals on the developmental stages of malaria vector, Anopheles gambiae Giles [Diptera: Culicidae]. Int J Trop Insect Sci 41, 999–1010 (2021). https://doi.org/10.1007/s42690-020-00281-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s42690-020-00281-x

Keywords

Navigation