Skip to main content
Log in

Nonlinear contact mechanics for the indentation of hyperelastic cylindrical bodies

  • Original Paper
  • Published:
Mechanics of Soft Materials Aims and scope Submit manuscript

Abstract

The mechanical properties of biological materials are commonly found through the application of Hertzian theory to force-displacement data obtained through micro-indentation techniques. Due to their soft nature, biological specimens are often subjected to large indentations, resulting in a nonlinear deformation behavior that can no longer be accurately described by Hertzian contact. Useful models for studying the large deformation response of cylindrical specimens under indentation are not readily available, and the morphologies of biological materials are often closer to cylinders than spheres (e.g., cellular processes, fibrin, collagen fibrils, etc.). In this study, a computational model is used to analyze the large deformation indentation of an incompressible hyperelastic cylinder in order to provide a generalized formulation that can be used to extract mechanical properties from indentation into soft cylindrical bodies. The effects of specimen size and indentation depth are examined in order to quantify the deformation at which the proposed force-displacement relationship remains accurate.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11

Similar content being viewed by others

References

  1. Lutolf, M.P., Gilbert, P.M., Blau, H.M.: Designing materials to direct stem-cell fate. Nature 462(7272), 433 (2009)

    Article  Google Scholar 

  2. Ethier, C.R., Simmons, C.A.: Introductory Biomechanics: From Cells to Organisms. Cambridge University Press (2007)

  3. Suresh, S., Spatz, J., Mills, J., Micoulet, A., Dao, M., Lim, C., Beil, M., Seufferlein, T.: Connections between single-cell biomechanics and human disease states: gastrointestinal cancer and malaria. Acta biomaterialia 1(1), 15 (2005)

    Article  Google Scholar 

  4. Moeendarbary, E., Weber, I.P., Sheridan, G.K., Koser, D.E., Soleman, S., Haenzi, B., Bradbury, E.J., Fawcett, J., Franze, K.: The soft mechanical signature of glial scars in the central nervous system. Nat. Commun. 8, 14787 (2017)

    Article  Google Scholar 

  5. Suresh, S.: Biomechanics and biophysics of cancer cells. Acta Mater. 55(12), 3989 (2007)

    Article  Google Scholar 

  6. Darling, E.M., Di Carlo, D.: High-throughput assessment of cellular mechanical properties. Ann. Rev. Biomed. Eng. 17, 35 (2015)

    Article  Google Scholar 

  7. Zahalak, G., McConnaughey, W., Elson, E.: Determination of cellular mechanical properties by cell poking, with an application to leukocytes. J. Biomech. Eng. 112(3), 283 (1990)

    Article  Google Scholar 

  8. Zahalak, G.I., Wagenseil, J.E., Wakatsuki, T., Elson, E.L.: A cell-based constitutive relation for bio-artificial tissues. Biophys. J. 79(5), 2369 (2000)

    Article  Google Scholar 

  9. Heidemann, S.R., Wirtz, D.: Towards a regional approach to cell mechanics. Trends Cell Biol. 14(4), 160 (2004)

    Article  Google Scholar 

  10. Petersen, N.O., McConnaughey, W.B., Elson, E.L.: Dependence of locally measured cellular deformability on position on the cell, temperature, and cytochalasin b. Proc. Natl. Acad. Sci. 79(17), 5327 (1982)

    Article  Google Scholar 

  11. Binnig, G., Quate, C.F., Gerber, C.: Atomic force microscope. Phys. Rev. Lett. 56(9), 930 (1986)

    Article  Google Scholar 

  12. McConnaughey, W.B., Petersen, N.O.: An apparatus for stress-strain measurements on living cells. Rev. Sci. Instrum. 51(5), 575 (1980)

    Article  Google Scholar 

  13. Radmacher, M., Tillamnn, R., Fritz, M., Gaub, H.: From molecules to cells: imaging soft samples with the atomic force microscope. Science 257(5078), 1900 (1992)

    Article  Google Scholar 

  14. Hoh, J.H., Schoenenberger, C.A: Surface morphology and mechanical properties of mdck monolayers by atomic force microscopy. J. Cell Sci. 107(5), 1105 (1994)

    Google Scholar 

  15. Vinckier, A., Semenza, G.: Measuring elasticity of biological materials by atomic force microscopy. FEBS Lett. 430(1-2), 12 (1998)

    Article  Google Scholar 

  16. Azeloglu, E.U., Costa, K.D.: Atomic force microscopy in mechanobiology: measuring microelastic heterogeneity of living cells. Atomic Force Microscopy in Biomedical Research, pp. 303–329. Springer (2011)

  17. Lim, C., Zhou, E., Quek, S.: Mechanical models for living cells: a review. J. Biomech. 39(2), 195 (2006)

    Article  Google Scholar 

  18. Sen, S., Subramanian, S., Discher, D.E.: Indentation and adhesive probing of a cell membrane with AFM. Biophys. J. 89(5), 3203 (2005)

    Article  Google Scholar 

  19. Digiuni, S., Berne-Dedieu, A., Martinez-Torres, C., Szecsi, J., Bendahmane, M., Arneodo, A., Argoul, F.: Single cell wall nonlinear mechanics revealed by a multiscale analysis of AFM forceindentation curves. Biophys. J. 108(9), 2235 (2015)

    Article  Google Scholar 

  20. Humphrey, J.D.: Continuum biomechanics of soft biological tissues. Proceedings of the Royal Society of London A: Mathematical, Physical and Engineering Sciences, vol. 459, pp. 3–46. The Royal Society (2003)

  21. Mow, V.C., Guilak, F., Tran-Son-Tay, R., Hochmuth, R.M.: Cell mechanics and cellular engineering. Springer Science & Business Media (2012)

  22. Levental, I., Georges, P.C., Janmey, P.A.: Soft biological materials and their impact on cell function. Soft Matter 3(3), 299 (2007)

    Article  Google Scholar 

  23. Hertz, H.: On the contact of solid elastic bodies and on hardness. J. Math 92, 156 (1881)

    Google Scholar 

  24. Johnson, K.L.: Contact Mechanics. Cambridge University Press (1987)

  25. Williams, J.A., Dwyer-Joyce, R.S.: Contact between solid surfaces. Modern Tribol. Handbook 1, 121 (2001)

    Google Scholar 

  26. Liu, D., Zhang, Z., Sun, L.: Nonlinear elastic load-displacement relation for spherical indentation on rubberlike materials. J. Mater. Res. 25(11), 2197 (2010)

    Article  Google Scholar 

  27. Lin, D.C., Shreiber, D.I., Dimitriadis, E.K., Horkay, F.: Spherical indentation of soft matter beyond the hertzian regime: numerical and experimental validation of hyperelastic models. Biomech. Modeling Mechanobiol. 8 (5), 345 (2009)

    Article  Google Scholar 

  28. Giannakopoulos, A., Triantafyllou, A: Spherical indentation of incompressible rubber-like materials. J. Mech. Phys. Solids 55(6), 1196 (2007)

    Article  MathSciNet  MATH  Google Scholar 

  29. Zhang, M.G., Cao, Y.P., Li, G.Y., Feng, X.Q.: Spherical indentation method for determining the constitutive parameters of hyperelastic soft materials. Biomech. Model. Mechanobiol. 13(1), 1 (2014)

    Article  Google Scholar 

  30. Ding, Y., Xu, G.K., Wang, G.F.: On the determination of elastic moduli of cells by AFM based indentation. Sci. Rep. 7, 45575 (2017)

    Article  Google Scholar 

  31. Bernick, K.B., Prevost, T.P., Suresh, S., Socrate, S.: Biomechanics of single cortical neurons. Acta biomaterialia 7(3), 1210 (2011)

    Article  Google Scholar 

  32. Kang, I., Panneerselvam, D., Panoskaltsis, V.P., Eppell, S.J., Marchant, R.E., Doerschuk, C.M.: Changes in the hyperelastic properties of endothelial cells induced by tumor necrosis factor-α. Biophys. J. 94(8), 3273 (2008)

    Article  Google Scholar 

  33. Mahaffy, R., Shih, C., MacKintosh, F., Käs, J.: Scanning probe-based frequency-dependent microrheology of polymer gels and biological cells. Phys. Rev. Lett. 85(4), 880 (2000)

    Article  Google Scholar 

  34. Guz, N., Dokukin, M., Kalaparthi, V., Sokolov, I.: If cell mechanics can be described by elastic modulus: study of different models and probes used in indentation experiments. Biophys. J. 107(3), 564 (2014)

    Article  Google Scholar 

  35. Sokolov, I., Iyer, S., Woodworth, C.D.: Recovery of elasticity of aged human epithelial cells in vitro. Nanomed.: Nanotechnol. Biol. Med. 2(1), 31 (2006)

    Article  Google Scholar 

  36. Codan, B., Del Favero, G., Martinelli, V., Long, C., Mestroni, L., Sbaizero, O.: Exploring the elasticity and adhesion behavior of cardiac fibroblasts by atomic force microscopy indentation. Mater. Sci. Eng. C 40, 427 (2014)

    Article  Google Scholar 

  37. Berdyyeva, T.K., Woodworth, C.D., Sokolov, I.: Human epithelial cells increase their rigidity with ageing in vitro: direct measurements. Phys. Med. Biol. 50(1), 81 (2004)

    Article  Google Scholar 

  38. Park, S., Koch, D., Cardenas, R., Käs, J., Shih, C.K.: Cell motility and local viscoelasticity of fibroblasts. Biophys. J. 89(6), 4330 (2005)

    Article  Google Scholar 

  39. Sokolov, I., Dokukin, M.E., Guz, N.V.: Method for quantitative measurements of the elastic modulus of biological cells in AFM indentation experiments. Methods 60(2), 202 (2013)

    Article  Google Scholar 

  40. Magdesian, M.H., Sanchez, F.S., Lopez, M., Thostrup, P., Durisic, N., Belkaid, W., Liazoghli, D., Grütter, P., Colman, D.R.: Atomic force microscopy reveals important differences in axonal resistance to injury. Biophys. J. 103(3), 405 (2012)

    Article  Google Scholar 

  41. Charras, G.T., Horton, M.A.: Single cell mechanotransduction and its modulation analyzed by atomic force microscope indentation. Biophys. J. 82(6), 2970 (2002)

    Article  Google Scholar 

  42. Brewe, D.E., Hamrock, B.J.: Elastic compression of spheres and cylinders at point and line contact. J. Lubr. Technol. 99(4), 485 (1977)

    Article  Google Scholar 

  43. Hamrock, B.J., Brewe, D.: Simplified solution for stresses and deformations. J. Lubricat. Technol. 105(2), 171 (1983)

    Article  Google Scholar 

  44. Puttock, M., Thwaite, E.: Elastic Compression of Spheres and Cylinders at Point and Line Contact. Commonwealth Scientific and Industrial Research Organization, Melbourne Australia (1969)

  45. Horgan, C.O., Smayda, M.G.: The importance of the second strain invariant in the constitutive modeling of elastomers and soft biomaterials. Mech. Mater. 51, 43 (2012)

    Article  Google Scholar 

  46. Mahaffy, R., Park, S., Gerde, E., Käs, J., Shih, C.: Quantitative analysis of the viscoelastic properties of thin regions of fibroblasts using atomic force microscopy. Biophys. J. 86(3), 1777 (2004)

    Article  Google Scholar 

  47. Dimitriadis, E.K., Horkay, F., Maresca, J., Kachar, B., Chadwick, R.S.: Determination of elastic moduli of thin layers of soft material using the atomic force microscope. Biophys. J. 82(5), 2798 (2002)

    Article  Google Scholar 

  48. Chadwick, R.S.: Axisymmetric indentation of a thin incompressible elastic layer. SIAM J. Appl. Math. 62(5), 1520 (2002)

    Article  MathSciNet  MATH  Google Scholar 

  49. Pereira, C.M., Ramalho, A.L., Ambrósio, J.A.: A critical overview of internal and external cylinder contact force models. Nonlin. Dyn. 63(4), 681 (2011)

    Article  Google Scholar 

  50. Moeendarbary, E., Valon, L., Fritzsche, M., Harris, A.R., Moulding, D.A., Thrasher, A.J., Stride, E., Mahadevan, L., Charras, G.T.: The cytoplasm of living cells behaves as a poroelastic material. Nat. Mater. 12(3), 253 (2013)

    Article  Google Scholar 

  51. Pan, Y., Zhan, Y., Ji, H., Niu, X., Zhong, Z.: Can hyperelastic material parameters be uniquely determined from indentation experiments? RSC Adv. 6(85), 81958 (2016)

    Article  Google Scholar 

  52. Cartagena, A., Raman, A.: Local viscoelastic properties of live cells investigated using dynamic and quasi-static atomic force microscopy methods. Biophys. J. 106(5), 1033 (2014)

    Article  Google Scholar 

  53. Andriotis, O.G., Manuyakorn, W., Zekonyte, J., Katsamenis, O.L., Fabri, S., Howarth, P.H., Davies, D.E., Thurner, P.J.: Nanomechanical assessment of human and murine collagen fibrils via atomic force microscopy cantilever-based nanoindentation. J. Mech. Behav. Biomed. Mater. 39, 9 (2014)

    Article  Google Scholar 

Download references

Funding

This work was funded by the DoD SMART Scholarship Program and the US Army Research Lab (Aberdeen Proving Ground, MD), under Cooperative Agreement Number W911NF-12-2-0022.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Amy M. Dagro.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Disclaimer

The views and conclusions contained in this document are those of the authors and should not be interpreted as representing the official policies, either expressed or implied, of the Army Research Laboratory or the US Government. The US Government is authorized to reproduce and distribute reprints for Government purposes notwithstanding any copyright notation herein.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Dagro, A.M., Ramesh, K.T. Nonlinear contact mechanics for the indentation of hyperelastic cylindrical bodies. Mech Soft Mater 1, 7 (2019). https://doi.org/10.1007/s42558-019-0006-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s42558-019-0006-0

Keywords

Navigation