Skip to main content
Log in

Equivariant \({\mathbb {R}}\)-Test Configurations and Semistable Limits of \({\mathbb {Q}}\)-Fano Group Compactifications

  • Original Article
  • Published:
Peking Mathematical Journal Aims and scope Submit manuscript

Abstract

Let G be a connected, complex reductive group. In this paper, we classify \(G\times G\)-equivariant normal \({\mathbb {R}}\)-test configurations of a polarized G-compactification. Then, for \({\mathbb {Q}}\)-Fano G-compactifications, we express the H-invariants of their equivariant normal \({\mathbb {R}}\)-test configurations in terms of the combinatory data. Based on Han and Li “Algebraic uniqueness of Kähler–Ricci flow limits and optimal degenerations of Fano varieties”, we compute the semistable limit of a K-unstable Fano G-compactification. As an application, we show that for the two smooth K-unstable Fano SO\(_4({\mathbb {C}})\)-compactifications, the corresponding semistable limits are indeed the limit spaces of the normalized Kähler–Ricci flow.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

We’re sorry, something doesn't seem to be working properly.

Please try refreshing the page. If that doesn't work, please contact support so we can address the problem.

Notes

  1. Our convention of the H-invariant follows [17] and differs from [12] by a sign. See Sect. 2.2 for detail.

  2. This differs from [17,  Definition 2.12] by a sign.

  3. Precisely, to apply Proposition 3.2, one needs to rescale \(\Gamma (\mathcal F')\), so that it coincides with the standard lattice \({\mathbb {Z}}\). Hence, \((\Lambda ,0,m)\) in Proposition 3.2 should be taken as \((k'\nabla f',0,1)\) for some sufficiently large \(k'\).

  4. In fact, we apply the argument of [24, Proposition 4.5] to the convex function \(u=-f\) and weight \(e^{\Lambda _0(y)}\pi (y)\).

  5. We thank Ziquan Zhuang for introducing us the paper [42].

  6. In fact, using [37, Theorem 9], we can check that there are three smooth Fano \(\textrm{SO}_4({\mathbb {C}})\)-compactifications. Furthermore, by [11, Theorem A], we see that one of them is K-stable and the other two are K-unstable.

References

  1. Alexeev, V.A., Brion, M.: Stable reductive varieties II: projective case. Adv. Math. 184, 382–408 (2004)

    Article  MathSciNet  MATH  Google Scholar 

  2. Alexeev, V.A., Katzarkov, L.V.: On K-stability of reductive varieties. Geom. Funct. Anal. 15, 297–310 (2005)

    Article  MathSciNet  MATH  Google Scholar 

  3. Bamler, R.: Convergence of Ricci flows with bounded scalar curvature. Ann. Math. 188, 753–831 (2018)

    Article  MathSciNet  MATH  Google Scholar 

  4. Blum, H., Liu, Y.C., Xu, C.Y., Zhuang, Z.Q.: The existence of the Kähler–Ricci soliton degeneration. arXiv:2103.15278 (2021)

  5. Boucksom, S., Hisamoto, T., Jonsson, M.: Uniform K-stability, Duistermaat–Heckman measures and singularities of pairs. Ann. Inst. Fourier (Grenoble) 67, 743–841 (2017)

    Article  MathSciNet  MATH  Google Scholar 

  6. Brion, M.: Groupe de Picard et nombres caractéristiques des variétés sphériques. Duke. Math. J. 58, 397–424 (1989)

    Article  MathSciNet  MATH  Google Scholar 

  7. Cao, H.D.: Deformation of Kähler metrics to Kähler–Einstein metrics on compact Kähler manifolds. Invent. Math. 81, 359–372 (1985)

    Article  MathSciNet  MATH  Google Scholar 

  8. Chen, X.X., Sun, S., Wang, B.: Kähler–Ricci flow, Kähler–Einstein metric, and K-stability. Geom. Topol. 22, 3145–3173 (2018)

    Article  MathSciNet  MATH  Google Scholar 

  9. Chen, X.X., Wang, B.: Space of Ricci flows (II)—Part B: weak compactness of the flows. J. Differ. Geom. 116, 1–123 (2020)

    Article  MathSciNet  MATH  Google Scholar 

  10. Delcroix, T.: K-Stability of Fano spherical varieties. Ann. Sci. Éc. Norm. Supér. 4(53), 615–662 (2020)

    Article  MathSciNet  MATH  Google Scholar 

  11. Delcroix, T.: Kähler geometry of horosymmetric varieties, and application to Mabuchi’s K-energy functional. J. Reine Angew. Math. 763, 129–199 (2020)

    Article  MathSciNet  MATH  Google Scholar 

  12. Dervan, R., Szekélyhidi, G.: The Kähler–Ricci flow and optimal degenerations. J. Differ. Geom. 116, 187–203 (2020)

    Article  MATH  Google Scholar 

  13. Ding, W.Y., Tian, G.: Kähler–Einstein metrics and the generalized Futaki invariants. Invent. Math. 110, 315–335 (1992)

    Article  MathSciNet  MATH  Google Scholar 

  14. Donaldson, S.K.: Scalar curvature and stability of toric varieties. J. Differ. Geom. 62, 289–349 (2002)

    Article  MathSciNet  MATH  Google Scholar 

  15. Gagliardi, G., Hofscheier, J.: Gorenstein spherical Fano varieties. Geom. Dedicata 178, 111–133 (2015)

    Article  MathSciNet  MATH  Google Scholar 

  16. Han, J.Y., Li, C.: On the Yau–Tian–Donaldson conjecture for generalized Kähler–Ricci soliton equations. arXiv:2006.00903 (To appear in Comm. Pure Appl. Math.)

  17. Han, J.Y., Li, C.: Algebraic uniqueness of Kähler–Ricci flow limits and optimal degenerations of Fano varieties. arXiv:2009.01010 (To appear in Geom. Topol.)

  18. Kirichenko, V.A., Smirnov, E.Yu., Timorin, V.A.: Schubert calculus and Gel’fand–Tsetlin polytopes (in Russian). Uspekhi Mat. Nauk 67, 89–128 (2012)

  19. Knop, F.: The Luna–Vust theory of spherical embeddings. In: Proceedings of the Hyderabad Conference on Algebraic Groups (Hyderabad, 1989), pp. 225–249. Manoj Prakashan, Madras (1991)

  20. Li, C., Wang, X.W., Xu, C.Y.: Algebracity of metric tangent cones and equivariant K-stability. J. Am. Math. Soc. 34, 1175–1214 (2021)

    Article  MATH  Google Scholar 

  21. Li, Y., Li, Z.Y.: Finiteness of \({\mathbb{Q}}\)-Fano compactifications of semisimple group with Kähler–Einstein metrics. Int. Math. Res. Not. IMRN 2022(15), 11776–11795 (2022)

  22. Li, Y., Tian, G., Zhu, X.H.: Singular limits of Kähler–Ricci flow on Fano \(G\)-manifolds. arXiv:1807.09167 (To appear in Amer. J. Math.)

  23. Li, Y., Tian, G., Zhu, X.H.: Singular Kähler–Einstein metrics on \({\mathbb{Q}}\)-Fano compactifications of Lie groups. arXiv:2001.11320 (To appear in Math. in Engineering)

  24. Li, Y., Zhou, B.: Mabuchi metrics and properness of modified Ding functional. Pac. J. Math. 302, 659–692 (2019)

    Article  MathSciNet  MATH  Google Scholar 

  25. Li, Y., Zhou, B., Zhu, X.H.: K-energy on polarized compactifications of Lie groups. J. Funct. Anal. 275, 1023–1072 (2018)

    Article  MathSciNet  MATH  Google Scholar 

  26. Luna, D., Vust, T.: Plongements d’espaces homogeněs. Comment. Math. Helv. 58, 186–245 (1983)

    Article  MathSciNet  MATH  Google Scholar 

  27. Okounkov, A.Yu.: Note on the Hilbert polynomial of a spherical variety (in Russian). Funktsional. Anal. i Prilozhen. 31, 82–85 (1997)

  28. Perelman, G.: The entropy formula for the Ricci flow and its geometric applications. arXiv:math/0211159 (2002)

  29. Pukhlikov, A.V., Khovanskiǐ, A.G.: The Riemann–Roch theorem for integrals and sums of quasipolynomials on virtual polytopes (in Russian). Algebra i Analiz 4, 188–216 (1992)

    MATH  Google Scholar 

  30. Teissier, B.: Valuations, deformations, and toric geometry. In: Valuation theory and its applications, Vol. II (Saskatoon, SK, 1999), pp. 361–459, Fields Inst. Commun., Vol. 33, Amer. Math. Soc., Providence (2003)

  31. Tian, G.: Kähler–Einstein metrics with positive scalar curvature. Invent. Math. 130, 1–37 (1997)

    Article  MathSciNet  MATH  Google Scholar 

  32. Tian, G., Zhang, S.J., Zhang, Z.L., Zhu, X.H.: Perelman’s entropy and Kähler–Ricci flow on a Fano manifold. Trans. Amer. Math. Soc. 365, 6669–6695 (2013)

    Article  MathSciNet  MATH  Google Scholar 

  33. Tian, G., Zhang, Z.L.: Regularity of Kähler–Ricci flows on Fano manifolds. Acta Math. 216, 127–176 (2016)

    Article  MathSciNet  MATH  Google Scholar 

  34. Tian, G., Zhu, X.H.: Uniqueness of Kähler–Ricci solitons. Acta Math. 184, 271–305 (2000)

  35. Tian, G., Zhu, X.H.: Convergence of the Kähler–Ricci flow. J. Am. Math. Sci. 17, 675–699 (2006)

    Article  MATH  Google Scholar 

  36. Tian, G., Zhu, X.H.: Convergence of the Kähler–Ricci flow on Fano manifolds. J. Reine Angew. Math. 678, 223–245 (2013)

    MathSciNet  MATH  Google Scholar 

  37. Timashëv, D.A.: Equivariant compactifications of reductive groups (in Russian). Mat. Sb. 194, 119–146 (2003)

    MathSciNet  MATH  Google Scholar 

  38. Timashëv, D. A.: Homogeneous Spaces and Equivariant Embeddings. Invariant Theory and Algebraic Transformation Groups VIII, Encyclopaedia of Mathematical Sciences, Vol. 138. Springer, Berlin (2011)

  39. Yao, Y.: Mabuchi Solitons and Relative Ding Stability of Toric Fano Varieties. arXiv:1701.04016 (To appear in Int. Math. Res. Not. IMRN)

  40. Zhang, Q.: A uniform Sobolev inequality under Ricci flow. Int. Math. Res. Not. IMRN 2007(17), rnm056 (2007)

  41. Zhang, Q.: Bounds on volume growth of geodesic balls under Ricci flow. Math. Res. Lett. 19, 245–253 (2012)

    Article  MathSciNet  MATH  Google Scholar 

  42. Zhuang, Z.Q.: Optimal destabilizing centers and equivariant K-stability. Invent. Math. 226, 195–223 (2021)

    Article  MathSciNet  MATH  Google Scholar 

  43. Zhelobenko, D.P., Shtern, A.I.: Representations of Lie Groups (in Russian). Nauka, Moscow (1983)

Download references

Acknowledgements

We are grateful to Prof. Gang Tian for his interests in this paper and sharing his insights on Kähler geometry. We would also like to thank Prof. D. A. Timashëv for kindly introducing us his book [38], Prof. Chi Li and Feng Wang for helpful discussions and comments. Finally, we thank the referees for their helpful suggestions to an early version of this paper.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Zhenye Li.

Additional information

Yan Li partially supported by NSFC Grant 12101043 and the Beijing Institute of Technology Research Fund Program for Young Scholars.

Appendix: An Algebraic Proof of Corollary 4.6

Appendix: An Algebraic Proof of Corollary 4.6

In this Appendix, we give an algebraic proof of Corollary 4.6. Recall that a \({\hat{G}}\)-equivariant normal \({\mathbb {R}}\)-test configuration \({\mathcal {F}}\) with reduced central fibre is special if and only if \(\textrm{Gr}({\mathcal {F}})\) is an integral ring. It suffices to show

Proposition 7.1

Suppose that (4.28) holds. Then, the algebra \(\textrm{Gr}({\mathcal {F}})\) defined by (2.3) is integral if and only if f is affine on \(P_+\).

Proof

Assume that \(\textrm{Gr}({\mathcal {F}})\) is integral. We show that f is affine. Otherwise, we can take two domains of linearity \(Q_1,Q_2\subset P_+\), so that they intersect along a common facet. Take \(\lambda _i\in Q_i\cap {\mathfrak {M}}_{\mathbb {Q}}\), so that the line segment \(\overline{\lambda _1\lambda _2}\subset Q_1\cup Q_2\). Up to replacing \(P_+\) by some \(k_0P_+\), we can assume \(\lambda _i\in Q_i\cap {\mathfrak {M}}\) for \(i=1,2\).

Let \(\sigma _i\in {\textrm{End}}(V_{\lambda _i})\) be a highest weight vector. Then, \(\sigma _i\) has real weight \(t^{-s_{\lambda _i}^{(1)}}\). Consequently, \(\sigma _1\otimes \sigma _2\in {\textrm{End}}(V_{\lambda _1+\lambda _2})\) has real weight \(t^{-s_{\lambda _1}^{(1)}-s_{\lambda _2}^{(1)}}\). On the other hand, for \(\lambda _1+\lambda _2\in \overline{2P_+}\cap {\mathfrak {M}}\), by (4.28)

$$\begin{aligned} s_{\lambda _1+\lambda _2}^{(2)}=2f\left( \frac{1}{2}(\lambda _1+\lambda _2)\right) >s_{\lambda _1}^{(1)}+s_{\lambda _1}^{(2)}, \end{aligned}$$

where the last inequality follows from the concavity of f and the fact that \(\lambda _i\)’s lie in different domains of linearity. Hence, \(\sigma _1\cdot \sigma _2=0\) in \(\textrm{Gr}({\mathcal {F}})\). A contradiction to the assumption that \(\textrm{Gr}({\mathcal {F}})\) is integral.

Conversely, assume that f is affine. We will show that \(\textrm{Gr}({\mathcal {F}})\) is integral. Otherwise, there are \((0\not =)\sigma _i\in {\textrm{End}}(V_{\lambda _i}),i=1,2\), so that \(\sigma _1\cdot \sigma _2=0\) in \(\textrm{Gr}({\mathcal {F}})\). By Lemma 4.2, we can assume that each \(\sigma _i\) is a highest weight vector. Assume that \(\lambda _i\in \overline{k_iP_+}\). Then, by (4.28), \(\sigma _i\) has real weight \(t^{-k_if(\lambda _i/k_i)}\). Consequently, \(\sigma _1\otimes \sigma _2\in {\textrm{End}}(V_{\lambda _1+\lambda _2})\) has real weight \(t^{-k_1f(\lambda _1/k_1)-k_2f(\lambda _2/k_2)}\) with

$$\begin{aligned} k_1f\left( \frac{\lambda _1}{k_1}\right) +k_2f\left( \frac{\lambda _2}{k_2}\right) =(k_1+k_2)f\left( \frac{\lambda _1+\lambda _2}{k_2+k_2}\right) . \end{aligned}$$

Here, we used the fact that f is affine. Note that the right-hand side is just the real weight of the \({\textrm{End}}(V_{\lambda _1+\lambda _2})\)-piece in \(\textrm{Gr}({\mathcal {F}})\). Hence, \(\sigma _1\cdot \sigma _2\not =0\), a contradiction. The proposition is proved. \(\square \)

Rights and permissions

Springer Nature or its licensor holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Li, Y., Li, Z. Equivariant \({\mathbb {R}}\)-Test Configurations and Semistable Limits of \({\mathbb {Q}}\)-Fano Group Compactifications. Peking Math J 6, 559–607 (2023). https://doi.org/10.1007/s42543-022-00054-0

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s42543-022-00054-0

Keywords

Mathematics Subject Classification

Navigation