Skip to main content

Advertisement

Log in

Faba Bean (Vicia faba L.) physiological, biochemical and agronomic traits responses to tillage systems under rainfed Mediterranean conditions

  • Research Articles
  • Published:
Vegetos Aims and scope Submit manuscript

Abstract

Conservation tillage practices, especially no-till, can improve soil quality, productivity, and environmental protection compared to conventional tillage practices. This research evaluated the impact of different tillage practices: deep ploughing (DP), chisel ploughing (CP), minimum till (MT), and no-till (NT) on faba bean (Vicia faba L.) agronomic, physiological, and biochemical traits. The experiment was implemented on a vertisol under Mediterranean conditions during two cropping seasons (2019–2020 and 2020–2021). The experimental design was a randomized complete block with three replications. The results revealed a significant effect on faba bean grain yield (GY) and its components: above-ground biomass (AGB), number of pods plant− 1 (NPP), 100-kernel weight (100-KW) and number of grains plant− 1 (NGPT). No-till showed the highest grain yield (1087 kg ha− 1) compared to conventional tillage (806 kg ha− 1). Tillage systems significantly influenced production and nodulation at the flowering stage, with the highest biomass production found under conventional tillage (11.750 kg ha− 1). No-till significantly increased the number (68) and dry weight (1.34 g) of nodules compared to other practices. The highest stomatal conductance was registered under conventional tillage compared to no-till. However, the maximum chlorophyll content appeared under no-till. Regarding proline and betaines content, it decreased significantly under no-till except for sugars, which increased compared to other practices. Results concluded that the application of no-till was more beneficial for improving faba bean yield.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

Data availability

The datasets generated during and/or analyzed during the current study are available from the corresponding author.

Abbreviations

DP:

Deep ploughing

CH:

Chisel ploughing

MT:

Minimum till

NT:

No-till

CT:

Conventional tillage

NPP:

Number of pods plant− 1

NGP:

Number of grains pods− 1

NGPT:

Number of grains plant− 1

KW:

100-kernel weight

AGB:

Aboveground biomass

GY:

Grain yield

HI:

Harvest index

gs:

Stomatal conductance

References

  • Ahmed M, Qadir G, Shaheen FA, Aslam MA (2017) Response of proline accumulation in bread wheat (Triticum aestivum L.) under rainfed conditions. J Agricultural Meteorol 73:147–155. https://doi.org/10.2480/agrmet.D-14-00047

    Article  Google Scholar 

  • Alarcón R, Hernández-Plaza E, Navarrete L, Sánchez MJ, Escudero A, Hernanz JL, Sánchez-Giron V, Sánchez AM (2018) Effects of no-tillage and non-inversion tillage on weed community diversity and crop yield over nine years in a Mediterranean cereal-legume cropland. Soil Tillage Res 179:54–62

    Article  Google Scholar 

  • Amanuel G, Kühne RF, Tanner DG, Vlek PLG (2000) Biological nitrogen fixation in faba bean (Vicia faba L.) in the Ethiopian highlands as affected by P fertilization and inoculation. Biol Fertil Soils 32:353–359

    Article  Google Scholar 

  • Andrade DS, Colozzi-Filho A, Giller KE (2003) The Soil Microbial Community and Soil Tillage. Soil Tillage Agroecosystems 51–81

  • Ashworth AJ, Allen FL, Wight JP, Saxton AM, Tyler DD, Sams CE (2014) Soil organic carbon sequestration rates under crop sequence diversity, bio-covers, and no-tillage. Soil Sci Soc Am J 78:1726–1733. https://doi.org/10.2136/sssaj2013.09.0422

    Article  CAS  Google Scholar 

  • Ashworth AJ, Allen FL, DeBruyn JM, Owens PR, Sams C (2018) Crop rotations and poultry litter affect dynamic soil chemical properties and soil biota long term. J Environ Qual 47:1327–1338. https://doi.org/10.2134/jeq2017.12.0465

    Article  CAS  PubMed  Google Scholar 

  • Avižienytė D, Romaneckas K, Pališkytė R, Bogužas V, Pilipavičius V, Šarauskis E, Adamavičienė A, Vaiciukevičius E (2013) The impact of long-term reduced primary soil tillage on maize (Zea mays L.) productivity. Zemdirbyste-Agriculture 100:377–382. https://doi.org/10.13080/z-a.2013.100.048

    Article  Google Scholar 

  • Badagliacca G, Benítez E, Amato G, Badalucco L, Giambalvo D, Laudicina VA, Ruisi P (2018) Long-term no-tillage application increases soil organic carbon, nitrous oxide emissions and faba bean (Vicia faba L.) yields under rain-fed Mediterranean conditions. Sci Total Environ 639:350–359. https://doi.org/10.1016/j.scitotenv.2018.05.157

    Article  CAS  PubMed  ADS  Google Scholar 

  • Baudoin E, Benizri E, Guckert A (2001) Metabolic fingerprint of microbial communities from distinct maize rhizosphere compartments. Eur J Soil Biol 37:85–93

    Article  Google Scholar 

  • Boomsma CR, Santini JB, Tollenaar M, Vyn TJ (2009) Maize morphophysiological responses to intense crowding and low Nitrogen availability: an analysis and review. Agron J 101:1426–1452. https://doi.org/10.2134/agronj2009.0082

    Article  CAS  Google Scholar 

  • Buczek J, Migut D, Jańczak-Pieniążek M (2021) Effect of Soil Tillage practice on Photosynthesis, Grain Yield and Quality of Hybrid Winter Wheat. Agriculture 11:479. https://doi.org/10.3390/agriculture11060479

    Article  CAS  Google Scholar 

  • Confalone A, Lizaso JI, Ruiz-Nogueira B, López-Cedrón F-X, Sau F (2010) Growth, PAR use efficiency, and yield components of field-grown Vicia faba L. under different temperature and photoperiod regimes. Field Crops Res 115:140–148

    Article  Google Scholar 

  • Daoui K (2007) Recherche de stratégies d’amélioration de l’efficience d’utilisation du phosphore chez la fève (Vicia faba L.) dans les conditions d’agriculture pluviale Au Maroc. Mémoire De thèse 156–201

  • Daoui K, Fatemi ZA (2019) Augmentation de la production des légumineuses alimentaires entre opportunités et défis. INRA Meknès Magazine. https://mag.inrameknes.info/?p=1979. Accessed 30 Sep 2022

  • Dhull SB, Kidwai MK, Noor R, Chawla P, Rose PK (2021) A review of nutritional profile and processing of faba bean. Vicia faba

  • Du P, Luo H, He J, Mao T, Du B, Hu L (2019) Different tillage induces regulation in 2-acetyl-1-pyrroline biosynthesis in direct-seeded fragrant rice. BMC Plant Biol 19:1–10

    Article  Google Scholar 

  • DuBois M, Gilles KA, Hamilton JK, Rebers PT, Smith F (1956) Colorimetric method for determination of sugars and related substances. Analytical chemistry 28(3):350–356

  • Duc G, Aleksić JM, Marget P, Mikic A, Paull J, Redden RJ, Sass O, Stoddard FL, Vandenberg A, Vishnyakova M (2015) Faba bean. Grain legumes 141–178

  • Etemadi F, Hashemi M, Zandvakili O, Dolatabadian A, Sadeghpour A (2018) Nitrogen Contribution from Winter-killed Faba Bean Cover Crop to Spring‐Sown Sweet Corn in Conventional and No‐Till systems. Agron J 110:455–462. https://doi.org/10.2134/agronj2017.08.0501

    Article  CAS  Google Scholar 

  • Etemadi F, Hashemi M, Barker AV, Zandvakili OR, Liu X (2019) Agronomy, nutritional value, and medicinal application of faba bean (Vicia faba L). Hortic Plant J 5:170–182

    Article  Google Scholar 

  • Evans J, McNeill AM, Unkovich MJ, Fettell NA, Heenan DP (2001) Net nitrogen balances for cool-season grain legume crops and contributions to wheat nitrogen uptake: a review. Aust J Exp Agric 41:347–359

    Article  CAS  Google Scholar 

  • Fatemi ZA (2019) Amélioration du potentiel et de la stabilité du rendement de la fève et de la féverole Vicia faba L. INRA Meknès Magazine. https://mag.inrameknes.info/?p=1954. Accessed 3 Oct 2022

  • Giambalvo D, Ruisi P, Saia S, Di Miceli G, Frenda AS, Amato G (2012) Faba bean grain yield, N2 fixation, and weed infestation in a long-term tillage experiment under rainfed Mediterranean conditions. Plant Soil 360:215–227. https://doi.org/10.1007/s11104-012-1224-5

    Article  CAS  Google Scholar 

  • Grieve CM, Grattan SR (1983) Rapid assay for determination of water soluble quaternary ammonium compounds. Plant and soil 70:303–307

  • Hiywotu AM, Abate A, Worede F (2023) Correlation and path coefficient analysis of yield and yield components of some Ethiopian faba bean (Vicia faba L.) accessions. Acta Agriculturae Slov 119:1–11

    Article  Google Scholar 

  • Hou X, Li R, Jia Z, Han Q (2013) Rotational tillage improves photosynthesis of Winter Wheat during Reproductive Growth stages in a Semiarid Regio. Agron J 105:215–221. https://doi.org/10.2134/agronj2012.0201

    Article  Google Scholar 

  • Janusauskaite D, Feisziene D, Feiza V (2022) The effect of tillage, fertilization and residue management on winter wheat and spring wheat physiological performance. Acta Physiol Plant 44:75

    Article  CAS  Google Scholar 

  • Jensen ES, Peoples MB, Hauggaard-Nielsen H (2010) Faba bean in cropping systems. Field Crops Res 115:203–216

    Article  Google Scholar 

  • Karkanis A, Ntatsi G, Lepse L, Fernández JA, Vågen IM, Rewald B, Alsiņa I, Kronberga A, Balliu A, Olle M (2018) Faba bean cultivation–revealing novel managing practices for more sustainable and competitive European cropping systems. Frontiers in plant science 1115

  • Kertész Á, Madarász B (2014) Conservation agriculture in Europe. Int Soil Water Conserv Res 2:91–96

    Article  Google Scholar 

  • Kimbirauskienė R, Sinkevičienė A, Jonaitis R, Romaneckas K (2023) Impact of Tillage Intensity on the development of Faba Bean Cultivation. Sustainability 15:8956

    Article  Google Scholar 

  • Kumar B, Tiwari A, Saharawat Y, Mcdonald A (2015) Proline content as a stress indicator to quantify conservation agriculture effect in wheat crop. Res Crops 16:422. https://doi.org/10.5958/2348-7542.2015.00058.3

    Article  Google Scholar 

  • Lal R (2015) Sequestering carbon and increasing productivity by conservation agriculture. J Soil Water Conserv 70:55A–62A

    Article  Google Scholar 

  • Lal K (2019) Genetic variability and diversity analysis in faba bean (Vicia faba L). Trends Biosci 12:754–760

    Google Scholar 

  • Lampurlanés J, Cantero-Martínez C (2006) Hydraulic conductivity, residue cover and soil surface roughness under different tillage systems in semiarid conditions. Soil Tillage Res 85:13–26

    Article  Google Scholar 

  • Lampurlanés J, Plaza-Bonilla D, Álvaro-Fuentes J, Cantero-Martínez C (2016) Long-term analysis of soil water conservation and crop yield under different tillage systems in Mediterranean rainfed conditions. Field Crops Res 189:59–67

    Article  Google Scholar 

  • López-Bellido L, López‐Bellido RJ, Castillo JE, López‐Bellido FJ (2000) Effects of Tillage, Crop Rotation, and Nitrogen Fertilization on Wheat under Rainfed Mediterranean conditions. Agron J 92:1054–1063. https://doi.org/10.2134/agronj2000.9261054x

    Article  Google Scholar 

  • López-Bellido L, Benítez-Vega J, García P, Redondo R, López-Bellido RJ (2011a) Tillage system effect on nitrogen rhizodeposited by faba bean and chickpea. Field Crops Res 120:189–195

    Article  Google Scholar 

  • López-Bellido RJ, López-Bellido L, Benítez-Vega J, Muñoz-Romero V, López-Bellido FJ, Redondo R (2011b) Chickpea and faba bean nitrogen fixation in a Mediterranean rainfed Vertisol: Effect of the tillage system. Eur J Agron 34:222–230. https://doi.org/10.1016/j.eja.2011.01.005

    Article  CAS  Google Scholar 

  • Mínguez MI, Rubiales D (2021) Faba bean. Crop physiology case histories for major crops. Elsevier, pp 452–481

  • Mo Z, Tang Y, Ashraf U, Pan S, Duan M, Tian H, Wang S, Tang X (2019) Regulations in 2-acetyl-1-pyrroline contents in fragrant rice are associated with water-nitrogen dynamics and plant nutrient contents. J Cereal Sci 88:96–102. https://doi.org/10.1016/j.jcs.2019.05.013

    Article  CAS  Google Scholar 

  • Monneveux P, Nemmar M (1986) Contribution à l'étude de la résistance à la sécheresse chez le blé tendre (Triticum aestivum L.) et chez le blé dur (Triticum durum Desf.): étude de l'accumulation de la proline au cours du cycle de développement. Agronomie 6(6):583–590

  • Munoz-Romero V, Lopez-Bellido L, Lopez-Bellido RJ (2011) Faba bean root growth in a Vertisol: Tillage effects. Field Crops Res 120(3):338–344

    Article  Google Scholar 

  • Omondi J (2014) Effect of tillage on biological nitrogen fixation and yield of soybean (Glycine max L. Merril) varieties. Aust J Crop Sci 8:1140–1146

    Google Scholar 

  • Peoples MB, Hauggaard-Nielsen H, Jensen ES (2009) The potential environmental benefits and risks derived from legumes in Rotations. Nitrogen fixation in Crop Production. Wiley, Ltd, pp 349–385

    Google Scholar 

  • Pittelkow CM, Liang X, Linquist BA, Groenigen LJV, Lee J, Lundy ME, Gestel NV, Six J, Venterea RT, Kessel CV (2015) Productivity limits and potentials of the principles of conservation agriculture. Nature 517:365–368. https://doi.org/10.1038/nature13809

    Article  CAS  PubMed  ADS  Google Scholar 

  • Poole P, Ramachandran V, Terpolilli J (2018) Rhizobia: from saprophytes to endosymbionts. Nat Rev Microbiol 16:291–303. https://doi.org/10.1038/nrmicro.2017.171

    Article  CAS  PubMed  Google Scholar 

  • Püschel D, Janoušková M, Voříšková A, Gryndlerová H, Vosátka M, Jansa J (2017) Arbuscular mycorrhiza stimulates biological nitrogen fixation in two Medicago spp. through improved phosphorus acquisition. Front Plant Sci 8:390

    Article  PubMed  PubMed Central  Google Scholar 

  • Ren Y, Cheng S, Pan S, Tian H, Duan M, Wang S, Tang X (2021) Effect of conservation tillage practices on aroma, yield and quality of mechanical-transplanting fragrant rice. J Plant Interact 16:522–532. https://doi.org/10.1080/17429145.2021.1999511

    Article  CAS  Google Scholar 

  • Robertson GP, Swinton SM (2005) Reconciling agricultural productivity and environmental integrity: a grand challenge for agriculture. Front Ecol Environ 3:38–46

    Article  Google Scholar 

  • Romaneckas K, Kimbirauskiene R, Adamaviciene A, Jasinskas A, Sarauskis E (2018) Impact of soil tillage intensity on faba bean cultivation. https://doi.org/10.22616/ERDev2018.17.N034

  • Romaneckas K, Kimbirauskienė R, Adamavičienė A, Buragiene S, Sinkevičienė A, Sarauskis E, Jasinskas A, Minajeva A (2019) Impact of sustainable tillage on biophysical properties of Planosol and on faba bean yield. AFSci 28. https://doi.org/10.23986/afsci.83337

  • Saleem MF, Ghaffar A, Rahman MH, ur, Imran M, Iqbal R, Soufan W, Danish S, Datta R, Rajendran K, EL Sabagh A (2022) Effect of short-term Zero Tillage and Legume intercrops on Soil Quality, agronomic and physiological aspects of cotton under Arid Climate. Land 11:289. https://doi.org/10.3390/land11020289

    Article  Google Scholar 

  • Stubbs T, Kennedy A, Schillinger W (2004) Soil ecosystem changes during the transition to No-Till cropping. J Crop Improv 11. https://doi.org/10.1300/J411v11n01_06

  • Tedone L, Alhajj Ali S, De Mastro G (2023) The Effect of Tillage on Faba Bean (Vicia faba L.) Nitrogen fixation in Durum Wheat ((Triticum turgidum L. Subsp. Durum (Desf))-Based rotation under a Mediterranean Climate. Agronomy 13:105

    Article  CAS  Google Scholar 

  • Tekalign A, Derera J, Sibiya J, Fikre A (2016) Participatory assessment of production threats, farmers desired traits and selection criteria of faba bean (Viciafaba L.) varieties: opportunities for faba bean breeding in Ethiopia. Indian J Agric Res 50(4):295–302

  • Volpi I, Antichi D, Ambus P, Bonari E, NN Di Nasso o, Bosco S (2018) Minimum tillage mitigated soil N2O emissions and maximized crop yield in faba bean in a Mediterranean environment. Soil Tillage Res 178:11–21

    Article  Google Scholar 

  • Zhou R, Hyldgaard B, Yu X, Rosenqvist E, Ugarte RM, Yu S, Wu Z, Ottosen C-O, Zhao T (2018) Phenotyping of faba beans (Vicia faba L.) under cold and heat stresses using chlorophyll fluorescence. Euphytica 214:1–13

    Article  CAS  Google Scholar 

Download references

Acknowledgements

We wish to thank the technicians and all staff of Douyet experimental of station for their assistance during installation and collection of data.

Funding

This research was financed by INRA-ICARDA project (MGCP).

Author information

Authors and Affiliations

Authors

Contributions

The conception or design of the work; BA, DK et WS contributed to acquisition, analysis and interpretation of data and material preparation. WS was drafted the first version of the manuscript, DK and BA substantively revised it. All authors WS, DK, BA, RM, EB and IM approved the version to be published.

Corresponding author

Correspondence to Khalid Daoui.

Ethics declarations

Declaration of competing interest

The authors declare no competing known financial interests as well as no personal relationships that could have appeared to impact the work reported in this article.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wafae, S., Daoui, K., Bendidi, A. et al. Faba Bean (Vicia faba L.) physiological, biochemical and agronomic traits responses to tillage systems under rainfed Mediterranean conditions. Vegetos (2024). https://doi.org/10.1007/s42535-024-00843-1

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s42535-024-00843-1

Keywords

Navigation