Skip to main content
Log in

CAV driving safety monitoring and warning via V2X-based edge computing system

  • Research Article
  • Published:
Frontiers of Engineering Management Aims and scope Submit manuscript

Abstract

Driving safety and accident prevention are attracting increasing global interest. Current safety monitoring systems often face challenges such as limited spatiotemporal coverage and accuracy, leading to delays in alerting drivers about potential hazards. This study explores the use of edge computing for monitoring vehicle motion and issuing accident warnings, such as lane departures and vehicle collisions. Unlike traditional systems that depend on data from single vehicles, the cooperative vehicle-infrastructure system collects data directly from connected and automated vehicles (CAVs) via vehicle-to-everything communication. This approach facilitates a comprehensive assessment of each vehicle’s risk. We propose algorithms and specific data structures for evaluating accident risks associated with different CAVs. Furthermore, we examine the prerequisites for data accuracy and transmission delay to enhance the safety of CAV driving. The efficacy of this framework is validated through both simulated and real-world road tests, proving its utility in diverse driving conditions.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Antonio F (1992). Faster line segment intersection. In: Kirk D, ed. Graphics Gems III (IBM Version). San Francisco, CA: Morgan Kaufmann, 199–202

    Chapter  Google Scholar 

  • Barrios C, Motai Y (2011). Improving estimation of vehicle’s trajectory using the latest global positioning system with Kalman filtering. IEEE Transactions on Instrumentation and Measurement, 60(12): 3747–3755

    Article  Google Scholar 

  • Batista G E A P A, Carvalho A C P L F, Monard M C (2000). Applying one-sided selection to unbalanced datasets. In: Mexican International Conference on Artificial Intelligence. Mexico: Springer, 315–325

    Google Scholar 

  • Brännström M, Sandblom F, Hammarstrand L (2013). A probabilistic framework for decision-making in collision avoidance systems. IEEE Transactions on Intelligent Transportation Systems, 14(2): 637–648

    Article  Google Scholar 

  • Chang C, Cao D, Chen L, Su K, Su K, Su Y, Wang F Y, Wang J, Wang P, Wei J, Wu G, Wu X, Xu H, Zheng N, Li L (2023a). Metascenario: A framework for driving scenario data description, storage and indexing. IEEE Transactions on Intelligent Vehicles, 8(2): 1156–1175

    Article  Google Scholar 

  • Chang C, Zhang J, Zhang K, Zhong W, Peng X, Li S, Li L (2023b). BEV-V2X: Cooperative birds-eye-view fusion and grid occupancy prediction via V2X-based data sharing. IEEE Transactions on Intelligent Vehicles, 8(11): 4498–4514

    Article  Google Scholar 

  • Chang C, Zhang K, Zhang J, Li S, Li L (2022). Driving safety monitoring and warning for connected and automated vehicles via edge computing. In: IEEE 25th International Conference on Intelligent Transportation Systems (ITSC). Macao: IEEE, 3940–3947

    Google Scholar 

  • Chen S, Hu J, Shi Y, Zhao L (2016). LTE-V: A TD-LTE-based V2X solution for future vehicular network. IEEE Internet of Things Journal, 3(6): 997–1005

    Article  Google Scholar 

  • Choi J W, Curry R, Elkaim G (2008). Path planning based on Bézier curve for autonomous ground vehicles. In: Advances in Electrical and Electronics Engineering–IAENG Special Edition of the World Congress on Engineering and Computer Science. San Francisco, CA: IEEE, 158–166

    Google Scholar 

  • Cualain D O, Hughes C, Glavin M, Jones E (2012). Automotive standards-grade lane departure warning system. IET Intelligent Transport Systems, 6(1): 44–57

    Article  Google Scholar 

  • Cui H, Radosavljevic V, Chou F C, Lin T H, Nguyen T, Huang T K, Schneider J, Djuric N (2019). Multimodal trajectory predictions for autonomous driving using deep convolutional networks. In: International Conference on Robotics and Automation (ICRA). Montreal, QC: IEEE, 2090–2096

    Chapter  Google Scholar 

  • Di X, Shi R (2021). A survey on autonomous vehicle control in the era of mixed-autonomy: From physics-based to AI-guided driving policy learning. Transportation Research Part C: Emerging Technologies, 125: 103008

    Article  Google Scholar 

  • Dupuis M, Strobl M, Grezlikowski H (2010). OpenDRIVE 2010 and beyond: Status and future of the de facto standard for the description of road networks. In: Proceedings of the Driving Simulation Conference Europe. Paris: INRETS, 231–242

    Google Scholar 

  • Feng J, Li J (2013). Google protocol buffers research and application in online game. In: IEEE Conference Anthology. Chongqing: IEEE, 1–4

    Google Scholar 

  • Fernández-Caballero A, Gomez F J, Lopez-Lopez J (2008). Road-traffic monitoring by knowledge-driven static and dynamic image analysis. Expert Systems with Applications, 35(3): 701–719

    Article  Google Scholar 

  • Figueiredo A, Rito P, Luís M, Sargento S (2022). Mobility sensing and V2X communication for emergency services. Mobile Networks and Applications, in press, doi:https://doi.org/10.1007/s11036-022-02056-9

  • Gao Z, Huang H J, Guo J, Yang L, Wu J (2023). Future urban transport management. Frontiers of Engineering Management, 10(3): 534–539

    Article  Google Scholar 

  • Guyonvarch L, Lecuyer E, Buffat S (2020). Evaluation of safety critical event triggers in the UDrive data. Safety Science, 132: 104937

    Article  Google Scholar 

  • Haklay M, Weber P (2008). Openstreetmap: User-generated street maps. IEEE Pervasive Computing, 7(4): 12–18

    Article  Google Scholar 

  • He Q, Xu J, Wang T, Chan A P (2021). Identifying the driving factors of successful megaproject construction management: Findings from three Chinese cases. Frontiers of Engineering Management, 8(1): 5–16

    Article  Google Scholar 

  • Hou L, Li S E, Yang B, Wang Z, Nakano K (2023). Integrated graphical representation of highway scenarios to improve trajectory prediction of surrounding vehicles. IEEE Transactions on Intelligent Vehicles, 8(2): 1638–1651

    Article  Google Scholar 

  • Jiang L, Molnár T G, Orosz G (2021). On the deployment of V2X roadside units for traffic prediction. Transportation Research Part C: Emerging Technologies, 129: 103238

    Article  Google Scholar 

  • Jo Y, Jang J, Park S, Oh C (2021). Connected vehicle-based road safety information system (CROSS): Framework and evaluation. Accident: Analysis and Prevention, 151: 105972

    Article  PubMed  Google Scholar 

  • Kang L, Li H, Li C, Xiao N, Sun H, Buhigiro N (2021). Risk warning technologies and emergency response mechanisms in Sichuan-Tibet Railway construction. Frontiers of Engineering Management, 8(4): 582–594

    Article  Google Scholar 

  • Kim B, Park S H, Lee S, Khoshimjonov E, Kum D, Kim J, Kim J S, Choi J W (2021). Lapred: Lane-aware prediction of multi-modal future trajectories of dynamic agents. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition. Nashville, TN: IEEE, 14631–14640

    Google Scholar 

  • Lee D, Yeo H (2016). Real-time rear-end collision-warning system using a multilayer perceptron neural network. IEEE Transactions on Intelligent Transportation Systems, 17(11): 3087–3097

    Article  Google Scholar 

  • Lee K, Peng H (2005). Evaluation of automotive forward collision warning and collision avoidance algorithms. Vehicle System Dynamics, 43(10): 735–751

    Article  Google Scholar 

  • Li L, Zhao C, Wang X, Li Z, Chen L, Lv Y, Zheng N, Wang F Y (2022a). Three principles to determine the right-of-way for AVs: Safe interaction with humans. IEEE Transactions on Intelligent Transportation Systems, 23(7): 7759–7774

    Article  Google Scholar 

  • Li Y, Pan B, Xing L, Yang M, Dai J (2022b). Developing dynamic speed limit strategies for mixed traffic flow to reduce collision risks at freeway bottlenecks. Accident: Analysis and Prevention, 175: 106781

    Article  PubMed  Google Scholar 

  • Li Y, Zhang L, Song Y (2016). A vehicular collision warning algorithm based on the time-to-collision estimation under connected environment. In: 14th International Conference on Control, Automation, Robotics and Vision (ICARCV). Phuket: IEEE, 1–4

    Google Scholar 

  • Lyu N, Wen J, Duan Z, Wu C (2022). Vehicle trajectory prediction and cut-in collision warning model in a connected vehicle environment. IEEE Transactions on Intelligent Transportation Systems, 23(2): 966–981

    Article  Google Scholar 

  • Ma Y, Liu Q, Fu J, Liufu K, Li Q (2023). Collision-avoidance lane change control method for enhancing safety for connected vehicle platoon in mixed traffic environment. Accident: Analysis and Prevention, 184: 106999

    Article  PubMed  Google Scholar 

  • Meng Y, Li L, Wang F Y, Li K, Li Z (2018). Analysis of cooperative driving strategies for nonsignalized intersections. IEEE Transactions on Vehicular Technology, 67(4): 2900–2911

    Article  Google Scholar 

  • Messaoud K, Yahiaoui I, Verroust-Blondet A, Nashashibi F (2021). Attention based vehicle trajectory prediction. IEEE Transactions on Intelligent Vehicles, 6(1): 175–185

    Article  Google Scholar 

  • Miao L, Chen S F, Hsu Y L, Hua K L (2022). How does C-V2X help autonomous driving to avoid accidents? Sensors, 22(2): 686

    Article  PubMed  PubMed Central  Google Scholar 

  • Miucic R, Sheikh A, Medenica Z, Kunde R (2018). V2X applications using collaborative perception. In: IEEE 88th Vehicular Technology Conference (VTC-Fall). Chicago, IL: IEEE, 1–6

    Google Scholar 

  • Poggenhans F, Pauls J H, Janosovits J, Orf S, Naumann M, Kuhnt F, Mayr M (2018). Lanelet2: A high-definition map framework for the future of automated driving. In: 21st International Conference on Intelligent Transportation Systems (ITSC). Maui, HI: IEEE, 1672–1679

    Google Scholar 

  • Saligrama V, Konrad J, Jodoin P M (2010). Video anomaly identification. IEEE Signal Processing Magazine, 27(5): 18–33

    Article  Google Scholar 

  • Sentouh C, Nguyen A T, Benloucif M A, Popieul J C (2019). Driver-automation cooperation oriented approach for shared control of lane keeping assist systems. IEEE Transactions on Control Systems Technology, 27(5): 1962–1978

    Article  Google Scholar 

  • Shang M, Stern R E (2021). Impacts of commercially available adaptive cruise control vehicles on highway stability and throughput. Transportation Research Part C: Emerging Technologies, 122: 102897

    Article  Google Scholar 

  • Shehata M S, Cai J, Badawy W M, Burr T W, Pervez M S, Johannesson R J, Radmanesh A (2008). Video-based automatic incident detection for smart roads: The outdoor environmental challenges regarding false alarms. IEEE Transactions on Intelligent Transportation Systems, 9(2): 349–360

    Article  Google Scholar 

  • Tahir M N, Katz M (2022). Performance evaluation of IEEE 802.11p, LTE and 5G in connected vehicles for cooperative awareness. Engineering Reports, 4(4): e12467

    Article  Google Scholar 

  • Tan H S, Huang J (2006). DGPS-based vehicle-to-vehicle cooperative collision warning: Engineering feasibility viewpoints. IEEE Transactions on Intelligent Transportation Systems, 7(4): 415–428

    Article  Google Scholar 

  • Tapia-Espinoza R, Torres-Torriti M (2013). Robust lane sensing and departure warning under shadows and occlusions. Sensors, 13(3): 3270–3298

    Article  PubMed  PubMed Central  Google Scholar 

  • Tavani S, Pignalosa A, Corradetti A, Mercuri M, Smeraglia L, Riccardi U, Seers T, Pavlis T, Billi A (2020). Photogrammetric 3D model via smartphone GNSS sensor: Workflow, error estimate, and best practices. Remote Sensing, 12(21): 3616

    Article  Google Scholar 

  • Wang C, Xie Y, Huang H, Liu P (2021). A review of surrogate safety measures and their applications in connected and automated vehicles safety modeling. Accident: Analysis and Prevention, 157: 106157

    Article  PubMed  Google Scholar 

  • Wang H, Wang W, Yuan S, Li X, Sun L (2022). On social interactions of merging behaviors at highway on-ramps in congested traffic. IEEE Transactions on Intelligent Transportation Systems, 23(8): 11237–11248

    Article  Google Scholar 

  • Wang Q, Li Z, Li L (2014). Investigation of discretionary lane-change characteristics using next-generation simulation data sets. Journal of Intelligent Transport Systems, 18(3): 246–253

    Article  Google Scholar 

  • Wang S, Wang Y, Zheng Q, Li Z (2020a). Guidance-oriented advanced curve speed warning system in a connected vehicle environment. Accident: Analysis and Prevention, 148: 105801

    Article  PubMed  Google Scholar 

  • Wang X, Liu J, Qiu T, Mu C, Chen C, Zhou P (2020b). A real-time collision prediction mechanism with deep learning for intelligent transportation system. IEEE Transactions on Vehicular Technology, 69(9): 9497–9508

    Article  Google Scholar 

  • Wang Y, Wenjuan E, Tian D, Lu G, Yu G, Wang Y (2011). Vehicle collision warning system and collision detection algorithm based on vehicle infrastructure integration. In: 7th Advanced Forum on Transportation of China. Beijing: IEEE, 216–220

    Google Scholar 

  • Xin L, Wang P, Chan C Y, Chen J, Li S E, Cheng B (2018). Intention-aware long horizon trajectory prediction of surrounding vehicles using dual LSTM networks. In: 21st International Conference on Intelligent Transportation Systems (ITSC). Maui, HI: IEEE, 1441–1446

    Google Scholar 

  • Yu H, Chang C, Li S, Li L (2023). CD-DB: A data storage model for cooperative driving. IEEE Transactions on Intelligent Vehicles, 8(1): 492–501

    Article  Google Scholar 

  • Zhan W, Sun L, Wang D, Shi H, Clausse A, Naumann M, Kummerle J, Konigshof H, Stiller C, de La Fortelle A, Tomizuka M (2019). Interaction dataset: An international, adversarial and cooperative motion dataset in interactive driving scenarios with semantic maps. arXiv preprint. arXiv:1910.03088

  • Zhang J, Chang C, He Z, Zhong W, Yao D, Li S, Li L (2023). CAVSim: A microscopic traffic simulator for evaluation of connected and automated vehicles. IEEE Transactions on Intelligent Transportation Systems, 24(9): 10038–10054

    Article  Google Scholar 

  • Zhang K, Chang C, Zhong W, Li S, Li Z, Li L (2022). A systematic solution of human driving behavior modeling and simulation for automated vehicle studies. IEEE Transactions on Intelligent Transportation Systems, 23(11): 21944–21958

    Article  Google Scholar 

  • Zhang K, Li L (2022). Explainable multimodal trajectory prediction using attention models. Transportation Research Part C: Emerging Technologies, 143: 103829

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Shen Li or Li Li.

Ethics declarations

Competing Interests The authors declare that they have no competing interests.

Additional information

This work was supported in part by the National Key Research and Development Program of China (Grant No. 2021YFB2501200).

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Chang, C., Zhang, J., Zhang, K. et al. CAV driving safety monitoring and warning via V2X-based edge computing system. Front. Eng. Manag. 11, 107–127 (2024). https://doi.org/10.1007/s42524-023-0293-x

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s42524-023-0293-x

Keywords

Navigation