Skip to main content
Log in

Recent Studies on the Multiscale Analysis of Polymer Nanocomposites

  • Review
  • Published:
Multiscale Science and Engineering Aims and scope Submit manuscript

Abstract

Ever since several formations of polymer-based nanocomposites were reported, research on their modeling, characterization, and computerized analysis methodology has been extensively investigated to become a major academic field of advanced material science and technology. This paper mainly summarizes the multiscale computational analysis methodology for polymer nanocomposites. We also introduce various computational modeling approaches to characterizing the physical behavior of polymer nanocomposites, which are the molecular dynamics approach, and the continuum approach. Based on the various computational analyses, we summarize how the material properties and phenomenological behaviors of polymer nanocomposites were analyzed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1

(Reproduced with permission from Yu et al. [186]; copyright © 2013 by AIP Publishing LLC)

Fig. 2

(Reproduced with permission from Moon et al. [2]; copyright © 2017 by Elsevier)

Fig. 3

(Reproduced with permission from Yu et al. [4]; copyright © 2009 by Elsevier)

Fig. 4

(Reproduced with permission from Yang et al. [1]; copyright © 2013 by Elsevier)

Fig. 5

(Reproduced with permission from Yang et al. [18]; copyright © 2012 by ACS Publications)

Fig. 6

(Reproduced with permission from Yu et al. [4]; copyright © 2009 by Elsevier)

Fig. 7
Fig. 8
Fig. 9
Fig. 10

(Reproduced with permission from Yang et al. [18]; copyright © 2012 by ACS Publications)

Fig. 11

(Reproduced with permission from Kim et al. [3]; copyright © 2015 by Elsevier)

Fig. 12

(Reproduced with permission from Yang et al. [18]; copyright © 2012 by ACS Publications)

Fig. 13

(Reproduced with permission from Moon et al. [2]; copyright © 2017 by Elsevier)

Fig. 14

(Reproduced with permission from Yang et al. [1]; copyright © 2013 by Elsevier)

Fig. 15

(Reproduced with permission from Moon et al. [28]; copyright © 2017 by Elsevier)

Fig. 16

(Reproduced with permission from Moon et al. [28]; copyright © 2017 by Elsevier)

Fig. 17

(Reproduced with permission from Moon et al. [28]; copyright © 2017 by Elsevier)

Fig. 18

(Reproduced with permission from Yu et al. [186]; copyright © 2013 by AIP Publishing LLC)

Fig. 19
Fig. 20
Fig. 21

(Reproduced with permission from Feng et al. [66]; copyright © 2013 by Elsevier)

Fig. 22

(Reproduced with permission from Feng et al. [66]; copyright © 2013 by Elsevier)

Fig. 23

(Reproduced with permission from Yasser Zare [49]; copyright © 2015 by Elsevier)

Fig. 24

(Reproduced with permission from Shin et al. [144]; copyright © 2017 by Elsevier)

Fig. 25

(Reproduced with permission from Shin et al. [144]; copyright © 2017 by Elsevier)

Fig. 26

(Reproduced with permission from Choi et al. [109]; copyright © 2012 by Elsevier)

Fig. 27

(Reproduced with permission from Choi et al. [109]; copyright © 2012 by Elsevier)

Fig. 28

(Reproduced with permission from Yu et al. [4]; copyright © 2009 by Elsevier)

Fig. 29

(Reproduced with permission from Choi et al. [109]; copyright © 2012 by Elsevier)

Fig. 30

(Reproduced with permission from Choi et al. [109]; copyright © 2012 by Elsevier)

Fig. 31

(Reproduced with permission from Kim et al. [3]; copyright © 2015 by Elsevier)

Fig. 32

(Reproduced with permission from Yu et al. [114]; copyright © 2011 by AIP Publishing LLC)

Fig. 33

(Reproduced with permission from Ren et al. [134]; copyright © 2013 by Taylor & Francis)

Fig. 34

(Reproduced with permission from Ren et al. [134]; copyright © 2013 by Taylor & Francis)

Similar content being viewed by others

References

  1. S. Yang, S. Yu, M. Cho, Influence of Thrower–Stone–Wales defects on the interfacial properties of carbon nanotube/polypropylene composites by a molecular dynamics approach. Carbon 55, 133–143 (2013)

    Google Scholar 

  2. J. Moon, S. Yang, M. Cho, Interfacial strengthening between graphene and polymer through Stone–Thrower–Wales defects: ab initio and molecular dynamics simulations. Carbon 118, 66–77 (2017)

    Google Scholar 

  3. B. Kim, J. Choi, S. Yang, S. Yu, M. Cho, Influence of crosslink density on the interfacial characteristics of epoxy nanocomposites. Polymer 50, 186–197 (2015)

    Google Scholar 

  4. S. Yu, S. Yang, M. Cho, Multi-scale modeling of cross-linked epoxy nanocomposites. Polymer 50(3), 945–952 (2009)

    Google Scholar 

  5. J.J. Burgos-Marmol, A. Patti, Unveiling the impact of nanoparticle size dispersity on the behavior of polymer nanocomposites. Polymer 113, 92–104 (2017)

    Google Scholar 

  6. Q. Li, H. Ardebili, Atomistic investigation of the nanoparticle size and shape effects on ionic conductivity of solid polymer electrolytes. Solid State Ionics 268(A), 156–161 (2014)

    Google Scholar 

  7. X. Zhou, Y. Jiang, J. Chen, L. He, L. Zhang, Size-dependent nanoparticle dynamics in semiflexible ring polymer nanocomposites. Polymer 131, 243–251 (2017)

    Google Scholar 

  8. J. Choi, H. Shin, M. Cho, A multiscale mechanical model for the effective interphase of SWNT/epoxy nanocomposite. Polymer 89, 159–171 (2016)

    Google Scholar 

  9. H. Chao, R.A. Riggleman, Effect of particle size and grafting density on the mechanical properties of polymer nanocomposites. Polymer 54(19), 5222–5229 (2013)

    Google Scholar 

  10. S. Zhang, Y. Feng, N. Ning, L. Zhang, M. Tian et al., Effects of dispersion and orientation of nanorods on electrical networks of block copolymer nanocomposites. Comput. Mater. Sci. 129, 107–114 (2017)

    Google Scholar 

  11. Y. Gao, J. Liu, J. Shen, L. Zhang, D. Cao, Molecular dynamics simulation of dispersion and aggregation kinetics of nanorods in polymer nanocomposites. Polymer 55(5), 1273–1281 (2014)

    Google Scholar 

  12. B. Arash, H.S. Park, T. Rabczuk, Mechanical properties of carbon nanotube reinforced polymer nanocomposites: a coarse-grained model. Compos. B Eng. 80, 92–110 (2015)

    Google Scholar 

  13. Y. Gao, J. Liu, J. Shen, L. Zhang, Z. Guo et al., Uniaxial deformation of nanorod filled polymer nanocomposites: a coarse-grained molecular dynamics simulation. Phys. Chem. Chem. Phys. 16(30), 16039–16048 (2014)

    Google Scholar 

  14. A.P. Holt, V. Bocharova, S. Cheng, A.M. Kisliuk, B.T. White et al., Controlling interfacial dynamics: covalent bonding versus physical adsorption in polymer nanocomposites. ACS Nano 10(7), 6843–6852 (2016)

    Google Scholar 

  15. M.R. Saeb, M. Nanahal, H. Rastin, M. Shabanian, M. Ghaffari et al., Calorimetric analysis and molecular dynamics simulation of cure kinetics of epoxy/chitosan-modified Fe3O4 nanocomposites. Prog. Org. Coat. 112, 176–186 (2017)

    Google Scholar 

  16. S. Mathesan, A. Rath, P. Ghosh, Molecular mechanisms in deformation of cross-linked hydrogel nanocomposite. Mater. Sci. Eng. C 59, 157–167 (2016)

    Google Scholar 

  17. M. Wang, N. Hu, L. Zhou, C. Yan, Enhanced interfacial transport across graphene-polymer interfaces by grafting polymer chains. Carbon 85, 414–421 (2015)

    Google Scholar 

  18. S. Yang, J. Choi, M. Cho, Elastic stiffness and filler size effect of covalently grafted nanosilica polyimide composites: molecular dynamics study. ACS Appl. Mater. Interfaces 4(9), 4792–4799 (2012)

    Google Scholar 

  19. Y. Feng, N. Ning, Z. Wei, L. Zhang, M. Tian et al., Towards optimization of electrical network and mechanical property of polymer nanocomposites with grafted nanoparticles. Polymer 55(14), 3178–3185 (2014)

    Google Scholar 

  20. S. Mogurampelly, V. Ganesan, Influence of nanoparticle surface chemistry on ion transport in polymer nanocomposite electrolytes. Solid State Ionics 286, 57–65 (2016)

    Google Scholar 

  21. M. Wang, D. Galpaya, Z.B. Lai, Y. Xu, C. Yan, Surface functionalization on the thermal conductivity of graphene-polymer nanocomposites. Int. J. Smart Nano Mater. 5(2), 123–132 (2014)

    Google Scholar 

  22. Y. Wang, C. Yang, Y.W. Mai, Y. Zhang, Effect of non-covalent functionalization on thermal and mechanical properties of graphene-polymer nanocomposites. Carbon 102, 311–318 (2016)

    Google Scholar 

  23. S. Yang, J. Choi, M. Cho, Intrinsic defect-induced tailoring of interfacial shear strength in CNT/polymer nanocomposites. Compos. Struct. 217, 108–119 (2015)

    Google Scholar 

  24. J. Choi, S. Yu, S. Yang, M. Cho, The glass transition and thermoelastic behavior of epoxy-based nanocomposites: a molecular dynamics study. Polymer 52(22), 5197–5203 (2011)

    Google Scholar 

  25. S.C. Shiu, J.L. Tsai, Characterizing thermal and mechanical properties of graphene/epoxy nanocomposites. Compos. B Eng. 56, 691–697 (2014)

    Google Scholar 

  26. K. Guru, S.B. Mishra, K.K. Shukla, Effect of temperature and functionalization on the interfacial properties of CNT reinforced nanocomposites. Appl. Surf. Sci. 349, 59–65 (2015)

    Google Scholar 

  27. M. Goswami, B.G. Sumpter, Effect of polymer-filler interaction strengths on the thermodynamic and dynamic properties of polymer nanocomposites. J. Chem. Phys. 130(13), 134910 (2009)

    Google Scholar 

  28. J. Moon, J. Choi, M. Cho, Opto-mechanical behavior and interfacial characteristics of crosslinked liquid crystalline polymer composites with carbon nanotube fillers. Carbon 121, 181–192 (2017)

    Google Scholar 

  29. K. Hagita, H. Morita, H. Takano, Molecular dynamics simulation study of a fracture of filler-filled polymer nanocomposites. Polymer 99, 368–375 (2016)

    Google Scholar 

  30. J. Shen, J. Liu, H. Li, Y. Gao, X. Li et al., Molecular dynamics simulations of the structural mechanical and visco-elastic properties of polymer nanocomposites filled with grafted nanoparticles. Phys. Chem. Chem. Phys. 17(11), 7196–7207 (2015)

    Google Scholar 

  31. Y. Gao, D. Gao, Y. Wu, J. Liu, L. Zhang, Controlling the conductive network formation of polymer nanocomposites filled with nanorods through the electric field. Polymer 101, 395–405 (2016)

    Google Scholar 

  32. A.I. Dmitriev, I. Hausler, W. Osterle, B. Wetzel, G. Zhang, Modeling of the stress–strain behavior of an epoxy-based nanocomposite filled with silica nanoparticles. Mater. Des. 89, 950–956 (2016)

    Google Scholar 

  33. F. Deng, K.J. Van Vliet, Prediction of elastic properties for polymer–particle nanocomposites exhibiting an interphase. Nanotechnology 22, 165703 (2011)

    Google Scholar 

  34. J.J. Luo, I.M. Daniel, Characterization and modeling of mechanical behavior of polymer/clay nanocomposites. Compos. Sci. Technol. 63, 1607–1616 (2003)

    Google Scholar 

  35. Y. Feng, N. Ning, Z. Wei, L. Zhang, M. Tian et al., Towards optimization of electrical network and mechanical property of polymer nanocomposites with grafted nanoparticles. Polymer 55, 3178–3185 (2014)

    Google Scholar 

  36. Y. Zare, K.Y. Rhee, Development and modification of conventional Ouali model for tensile modulus of polymer/carbon nanotubes nanocomposites assuming the roles of dispersed and networked nanoparticles and surrounding interphases. J. Colloid Interface Sci. 506, 283–290 (2017)

    Google Scholar 

  37. Y. Zare, K.Y. Rhee, Multistep modeling of Young’s modulus in polymer/clay nanocomposites assuming the intercalation/exfoliation of clay layers and the interphase between polymer matrix and nanoparticles. Compos. Part A 102, 137–144 (2017)

    Google Scholar 

  38. Y. Zare, Development of Halpin–Tsai model for polymer nanocomposites assuming interphase properties and nanofiller size. Polym. Test. 51, 67–73 (2016)

    Google Scholar 

  39. M. Bhattacharya, A.K. Bhowmick, Polymer–filler interaction in nanocomposites: new interface area function to investigate swelling behavior and Young’s modulus. Polymer 49, 4808–4818 (2008)

    Google Scholar 

  40. B. Mortazavi, J. Bardon, S. Ahzi, Interphase effect on the elastic and thermal conductivity response of polymer nanocomposite materials: 3D finite element study. Comput. Mater. Sci. 69, 100–106 (2013)

    Google Scholar 

  41. A.Z. Zakaria, K. Shelesh-Nezhad, Quantifying the particle size and interphase percolation effects on the elastic performance of semi-crystalline nanocomposites. Comput. Mater. Sci. 117, 502–510 (2016)

    Google Scholar 

  42. M.A. Msekh, N.H. Cuong, G. Zi, P. Areias, X. Zhuang et al., Fracture properties prediction of clay/epoxy nanocomposites with interphase zones using a phase field model. Eng. Fract. Mech. (2017). https://doi.org/10.1016/j.engfracmech.2017.08.002

    Google Scholar 

  43. R. Razavi, Y. Zare, K.Y. Rhee, A model for tensile strength of polymer/carbon nanotubes nanocomposites assuming the percolation of interphase regions. Colloids Surf. A 538, 148–154 (2018)

    Google Scholar 

  44. Y. Zare, Estimation of material and interfacial/interphase properties in clay/polymer nanocomposites by yield strength data. Appl. Clay Sci. 115, 61–66 (2015)

    Google Scholar 

  45. Y. Zare, Development of Nicolais–Narkis model for yield strength of polymer nanocomposites reinforced with spherical nanoparticles. Int. J. Adhes. Adhes. 70, 191–195 (2016)

    Google Scholar 

  46. Y. Zare, Modeling the yield strength of polymer nanocomposites based upon nanoparticle agglomeration and polymer–filler interphase. J. Colloid Interface Sci. 467, 165–169 (2016)

    Google Scholar 

  47. Y. Zare, K.Y. Rhee, Expansion of Kolarik model for tensile strength of polymer particulate nanocomposites as a function of matrix, nanoparticles and interphase properties. J. Colloid Interface Sci. 506, 582–588 (2017)

    Google Scholar 

  48. Y. Zare, K.Y. Rhee, A two-step technique for tensile strength of montmorillonite/polymer nanocomposites assuming filler morphology and interphase properties. Appl. Clay Sci. 150, 42–46 (2017)

    Google Scholar 

  49. Y. Zare, Effects of interphase on tensile strength of polymer/CNT nanocomposites by Kelly–Tyson theory. Mech. Mater. 85, 1–6 (2015)

    Google Scholar 

  50. Y. Zare, H. Garmabi, A developed model to assume the interphase properties in a ternary polymer nanocomposite reinforced with two nanofillers. Compos. B 75, 29–35 (2015)

    Google Scholar 

  51. K.M. Hamdia, T. Lahmer, T. Nguyen-Thoi, T. Rabczuk, Predicting the fracture toughness of PNCs: a stochastic approach based on ANN and ANFIS. Comput. Mater. Sci. 102, 304–313 (2015)

    Google Scholar 

  52. K.M. Hamdia, M.A. Msekh, M. Silani, N. Vu-Bac, X. Zhuang et al., Uncertainty quantification of the fracture properties of polymeric nanocomposites based on phase field modeling. Compos. Struct. 133, 1177–1190 (2015)

    Google Scholar 

  53. B. Yang, S. Kitipornchai, Y.F. Yang, J. Yang, 3D thermo-mechanical bending solution of functionally graded graphene reinforced circular and annular plates. Appl. Math. Model. 49, 69–86 (2017)

    MathSciNet  Google Scholar 

  54. W. Chen, H. Lu, S.R. Nutt, The influence of functionalized MWCNT reinforcement on the thermomechanical properties and morphology of epoxy nanocomposites. Compos. Sci. Technol. 68, 2535–2542 (2008)

    Google Scholar 

  55. T. Sain, J. Meaud, B. Yeom, A.M. Wass, E.M. Arruda, Rate dependent finite strain constitutive modeling of polyurethane and polyurethane–clay nanocomposites. Int. J. Solids Struct. 54, 147–155 (2015)

    Google Scholar 

  56. M. Bhattacharya, A.K. Bhowmick, Analysis of wear characteristics of natural rubber nanocomposites. Wear 269, 152–166 (2010)

    Google Scholar 

  57. A. Bouzidi, W. Jilani, H. Guermazi, Preparation and electrical properties in epoxy resin/In2O3: Sn nanocomposites materials for optoelectronics. Mater. Sci. Semicond. Process. 34, 334–342 (2015)

    Google Scholar 

  58. P. Murugaraj, N. Mora-Huertas, D.E. Mainwaring, Y. Ding, S. Agrawal, Influence of thermal stresses on electron transport in carbon–polymer nanocomposite films. Compos. Part A 39, 308–313 (2008)

    Google Scholar 

  59. S. Gong, Y. Wang, Z. Xiao, Z. Li, Z.X. Wang et al., Effect of temperature on the electrical property of epoxy composites with carbon nanotube. Compos. Sci. Technol. 149, 48–54 (2017)

    Google Scholar 

  60. R. Hashemi, G.J. Weng, A theoretical treatment of graphene nanocomposites with percolation threshold, tunneling-assisted conductivity and microcapacitor effect in AC and DC electrical settings. Carbon 96, 474–490 (2016)

    Google Scholar 

  61. M. Safdari, M.S. Al-Haik, Synergistic electrical and thermal transport properties of hybrid polymeric nanocomposites based on carbon nanotubes and graphite nanoplatelets. Carbon 64, 111–121 (2013)

    Google Scholar 

  62. V. Kumar, A. Rawal, Tuning the electrical percolation threshold of polymer nanocomposites with rod-like nanofillers. Polymer 97, 295–299 (2016)

    Google Scholar 

  63. A. Ehsani, F. Babaei, M. Nasrollahzadeh, Electrosynthesis and absorbance spectra of TiO2 nanoparticles dispersed in the conductive polymer. Appl. Surf. Sci. 283, 1060–1064 (2013)

    Google Scholar 

  64. F. Nilsson, M. Karlsson, L. Pallon, M. Giacinti, R.T. Olsson et al., Influence of water uptake on the electrical DC-conductivity of insulating LDPE/MgO nanocomposites. Compos. Sci. Technol. 152, 11–19 (2017)

    Google Scholar 

  65. E.Z. Meilikhov, Giant piezoresistivity of nanocomposites with the tunnel conductivity. Sens. Actuators A 153, 187–190 (2009)

    Google Scholar 

  66. C. Feng, L. Jiang, Micromechanics modeling of the electrical conductivity of carbon nanotube (CNT)–polymer nanocomposites. Compos. Part A 47, 143–149 (2013)

    Google Scholar 

  67. J. Silva, S. Ribeiro, S. Lanceros-Mendez, R. Simoes, The influence of matrix mediated hopping conductivity, filler concentration, aspect ratio and orientation on the electrical response of carbon nanotube/polymer nanocomposites. Compos. Sci. Technol. 71, 643–646 (2011)

    Google Scholar 

  68. W. Wang, A.H. Jayatissa, Computational and experimental study of electrical conductivity of graphene/poly(methyl methacrylate) nanocomposite using Monte Carlo method and percolation theory. Synth. Met. 204, 141–147 (2015)

    Google Scholar 

  69. W. Fang, H.W. Jang, S.N. Leung, Evaluation and modelling of electrically conductive polymer nanocomposites with carbon nanotube networks. Compos. B 83, 184–193 (2015)

    Google Scholar 

  70. X. Xia, Y. Wang, Z. Zhong, G.J. Weng, A frequency-dependent theory of electrical conductivity and dielectric permittivity for graphene-polymer nanocomposites. Carbon 111, 221–230 (2017)

    Google Scholar 

  71. X. Xia, Z. Zhong, G.J. Weng, Maxwell–Wagner–Sillars mechanism in the frequency dependence of electrical conductivity and dielectric permittivity of graphene-polymer nanocomposites. Mech. Mater. 109, 42–50 (2017)

    Google Scholar 

  72. X. Sun, M. Song, Numerical simulations of the effect of microstructure on AC conductivity of MWCNT/polymer nanocomposites. Macromol. Theory Simul. 19, 57–63 (2010)

    MathSciNet  Google Scholar 

  73. Y. Zare, K.Y. Rhee, Development of a conventional model to predict the electrical conductivity of polymer/carbon nanotubes nanocomposites by interphase, waviness and contact effects. Compos. Part A 100, 305–312 (2017)

    Google Scholar 

  74. Y. Zare, K.Y. Rhee, A simple model for electrical conductivity of polymer carbon nanotubes nanocomposites assuming the filler properties, interphase dimension, network level, interfacial tension and tunneling distance. Compos. Sci. Technol. 155, 252–260 (2017)

    Google Scholar 

  75. Z. Zabihi, H. Araghi, Monte Carlo simulations of effective electrical conductivity of graphene/poly(methyl methacrylate) nanocomposite: Landauer–Buttiker approach. Synth. Met. 217, 87–93 (2016)

    Google Scholar 

  76. Y. Feng, H. Zou, M. Tian, L. Zhang, J. Mi, Relationship between dispersion and conductivity of polymer nanocomposites: a molecular dynamics study. J. Phys. Chem. 116, 13081–13088 (2012)

    Google Scholar 

  77. Y. Shen, Y. Lin, Q.M. Zhang, Polymer nanocomposites with high energy storage densities. MRS Bull. 40(9), 753–759 (2015)

    Google Scholar 

  78. M. Baniassadi, A. Laachachi, A. Makradi, S. Belouettar, D. Ruch et al., Statistical continuum theory for the effective conductivity of carbon nanotubes filled polymer composites. Thermochim. Acta 520, 33–37 (2011)

    Google Scholar 

  79. J. Yu, T.E. Lacy Jr., H. Toghiani, C.U. Pittman Jr., Micromechanically-based effective thermal conductivity estimates for polymer nanocomposites. Compos. Part B 53, 267–273 (2013)

    Google Scholar 

  80. M. Cen-Puc, A.I. Oliva-Aviles, F. Aviles, Thermoresistive mechanisms of carbon nanotube/polymer composites. Phys. E 95, 41–50 (2018)

    Google Scholar 

  81. A. Tessema, D. Zhao, J. Moll, S. Xu, R. Yang et al., Effect of filler loading, geometry, dispersion and temperature on thermal conductivity of polymer nanocomposites. Polym. Test. 57, 101–106 (2017)

    Google Scholar 

  82. L.A. Utracki, Compressibility and thermal expansion coefficients of nanocomposites with amorphous and crystalline polymer matrix. Eur. Polym. J. 45, 1891–1903 (2009)

    Google Scholar 

  83. M.K. Hassanzadeh-Aghdam, R. Ansari, A. Darvizeh, Micromechanical modeling of thermal expansion coefficients for unidirectional glass fiber-reinforced polyimide composites containing silica nanoparticles. Compos. Part A 96, 110–121 (2017)

    Google Scholar 

  84. Y. Zare, A simple technique for determination of interphase properties in polymer nanocomposites reinforced with spherical nanoparticles. Polymer 72, 93–97 (2015)

    Google Scholar 

  85. Y. Zare, K.Y. Rhee, S.J. Park, Predictions of micromechanics models for interfacial/interphase parameters in polymer/metal nanocomposites. Int. J. Adhes. Adhes. 79, 111–116 (2017)

    Google Scholar 

  86. Y. Zare, An approach to study the roles of percolation threshold and interphase in tensile modulus of polymer/clay nanocomposites. J. Colloid Interface Sci. 486, 249–254 (2017)

    Google Scholar 

  87. Y. Zare, K.Y. Rhee, The mechanical behavior of CNT reinforced nanocomposites assuming imperfect interfacial bonding between matrix and nanoparticles and percolation of interphase regions. Compos. Sci. Technol. 144, 18–25 (2017)

    Google Scholar 

  88. Y. Zare, K.Y. Rhee, Development of Hashin–Shtrikman model to determine the roles and properties of interphases in clay/CaCO3/PP ternary nanocomposite. Appl. Clay Sci. 137, 176–182 (2017)

    Google Scholar 

  89. Y. Zare, “a” interfacial parameter in Nicolais–Narkis model for yield strength of polymer particulate nanocomposites as a function of material and interphase properties. J. Colloid Interface Sci. 470, 245–249 (2016)

    Google Scholar 

  90. Y. Zare, Modeling the strength and thickness of the interphase in polymer nanocomposite reinforced with spherical nanoparticles by a coupling methodology. J. Colloid Interface Sci. 465, 342–346 (2016)

    Google Scholar 

  91. Y. Zare, The roles of nanoparticles accumulation and interphase properties in properties of polymer particulate nanocomposites by a multi-step methodology. Compos. Part A 91, 127–132 (2016)

    Google Scholar 

  92. R. Qiao, H. Deng, K.W. Putz, L.C. Brinson, Effect of particle agglomeration and interphase on the glass transition temperature of polymer nanocomposites. J. Polym. Sci. Part B Polym. Phys. 49, 740–748 (2011)

    Google Scholar 

  93. R. Qiao, C. Brinson, Simulation of interphase percolation and gradients in polymer nanocomposites. Compos. Sci. Technol. 69, 491–499 (2009)

    Google Scholar 

  94. J.S. Meth, S.R. Lusting, Polymer interphase structure near nanoscale inclusions: comparison between random walk theory and experiment. Polymer 51, 4259–4266 (2010)

    Google Scholar 

  95. H.H. Le, K. Obwald, S. WieBner, A. Das, K.W. Stockelhuber et al., Location of dispersing agent in rubber nanocomposites during mixing process. Polymer 54, 7009–7021 (2013)

    Google Scholar 

  96. Y. Zare, K.Y. Rhee, D. Hui, Influences of nanoparticles aggregation/agglomeration on the interfacial/interphase and tensile properties of nanocomposites. Compos. B 122, 41–46 (2017)

    Google Scholar 

  97. R. Chakrabarti, J.Y. Delannoy, M. Couty, K.S. Schweizer, Packing correlations, collective scattering and compressibility of fractal-like aggregates in polymer nanocomposites and suspensions. Soft Matter 7, 5397–5407 (2011)

    Google Scholar 

  98. J.D. Eshelby, The determination of the elastic field of an ellipsoidal inclusion, and related problems. Proc. R. Soc. Lond. 252, 561–569 (1959)

    MathSciNet  MATH  Google Scholar 

  99. H. Wu, J. Yang, S. Kitipornchai, Dynamic instability of functionally graded multilayer graphene nanocomposite beams in thermal environment. Compos. Struct. 162, 244–254 (2017)

    Google Scholar 

  100. H. Wu, S. Kitipornchai, J. Yang, Thermal buckling and postbuckling of functionally graded graphene nanocomposite plates. Mater. Des. 132, 430–441 (2017)

    Google Scholar 

  101. A. Kumar, S. Roy, Modeling of anomalous moisture diffusion in nanographene reinforced thermoset plymers. Compos. Struct. 122, 1–7 (2015)

    Google Scholar 

  102. K. Rycerz, E. Ciepiela, G. Dyk, D. Groen, T. Gubala et al., Support for multiscale simulations with molecular dynamics. Proc. Comput. Sci. 18, 1116–1125 (2013)

    Google Scholar 

  103. S. Pfaller, M. Rahimi, G. Possart, P. Steinmann, F. Müller-Plathe et al., An Arlequin-based method to couple molecular dynamics and finite element simulations of amorphous polymers and nanocomposites. Comput. Methods Appl. Mech. Eng. 260, 109–129 (2013)

    MathSciNet  MATH  Google Scholar 

  104. A.R. Alian, S.I. Kundalwal, S.A. Meguid, Interfacial and mechanical properties of epoxy nanocomposites using different multiscale modeling schemes. Compos. Struct. 131, 545–555 (2015)

    Google Scholar 

  105. K. Karatasos, Graphene/hyperbranched polymer nanocomposites: insight from molecular dynamics simulations. Macromolecules 47(24), 8833–8845 (2014)

    Google Scholar 

  106. G. Scocchi, P. Posocco, A. Danani, S. Pricl, M. Fermeglia, To the nanoscale, and beyond!: multiscale molecular modeling of polymer-clay nanocomposites. Fluid Phase Equilib. 261(1), 366–374 (2007)

    Google Scholar 

  107. M. Silani, S. Ziaei-Rad, M. Esfahanian, V.B.C. Tan, On the experimental and numerical investigation of clay/epoxy nanocomposites. Compos. Struct. 94(11), 3142–3148 (2012)

    Google Scholar 

  108. S.K. Rath, V.K. Aswal, C. Sharma, K. Joshi, M. Patri et al., Mechanistic origins of multi-scale reinforcements in segmented polyurethane-clay nanocomposites. Polymer 55(20), 5198–5210 (2014)

    Google Scholar 

  109. J. Choi, S. Yang, S. Yu, H. Shin, M. Cho, Method of scale bridging for thermoelasticity of cross-linked epoxy/SiC nanocomposites at a wide range of temperatures. Polymer 53(22), 5178–5189 (2012)

    Google Scholar 

  110. R. Mangal, S. Srivastava, S. Narayanan, L.A. Archer, Size-dependent particle dynamics in entangled polymer nanocomposites. Langmuir 32(2), 596–603 (2015)

    Google Scholar 

  111. J. Choi, H. Shin, S. Yang, M. Cho, The influence of nanoparticle size on the mechanical properties of polymer nanocomposites and the associated interphase region: a multiscale approach. Compos. Struct. 119, 365–376 (2015)

    Google Scholar 

  112. S. Yang, S. Yu, W. Kyoung, D.S. Han, M. Cho, Multiscale modeling of size-dependent elastic properties of carbon nanotube/polymer nanocomposites with interfacial imperfections. Polymer 53(2), 623–633 (2012)

    Google Scholar 

  113. L. Parashkevova, N. Bontcheva, Micropolar-based modeling of size effects on stiffness and yield stress of nanoparticles-modified polymer composites. Comput. Mater. Sci. 67, 303–315 (2013)

    Google Scholar 

  114. S. Yu, S. Yang, M. Cho, Multiscale modeling of cross-linked epoxy nanocomposites to characterize the effect of particle size on thermal conductivity. J. Appl. Phys. 110(12), 124302 (2011)

    Google Scholar 

  115. V. Marcadon, D. Brown, E. Herve, P. Mele, N.D. Alberola et al., Confrontation between molecular dynamics and micromechanical approaches to investigate particle size effects on the mechanical behavior of polymer nanocomposites. Comput. Mater. Sci. 79, 495–505 (2013)

    Google Scholar 

  116. S. Yang, M. Cho, Scale bridging method to characterize mechanical properties of nanoparticle/polymer nanocomposites. Appl. Phys. Lett. 93(4), 043111 (2008)

    Google Scholar 

  117. S. Yang, M. Cho, A scale-bridging method for nanoparticulate polymer nanocomposites and their nondilute concentration effect. Appl. Phys. Lett. 94(22), 223104 (2009)

    Google Scholar 

  118. M. Cho, S. Yang, S. Chang, S. Yu, A study on the prediction of the mechanical properties of nanoparticulate composites using the homogenization method with the effective interface concept. Int. J. Numer. Methods Eng. 85(12), 1564–1583 (2011)

    MATH  Google Scholar 

  119. S. Chang, S. Yang, H. Shin, M. Cho, Multiscale homogenization model for thermoelastic behavior of epoxy-based composites with polydisperse SiC nanoparticles. Compos. Struct. 128, 342–353 (2015)

    Google Scholar 

  120. R. Rafiee, A. Ghorbanhosseini, Stochastic multi-scale modeling of randomly grown CNTs on carbon fiber. Mech. Mater. 106, 1–7 (2017)

    Google Scholar 

  121. B. Kim, J. Choi, S. Yang, S. Yu, M. Cho, Multiscale modeling of interphase in crosslinked epoxy nanocomposites. Compos. B Eng. 120, 128–142 (2017)

    Google Scholar 

  122. G.D. Seidel, A.S. Puydupin-Jamin, Analysis of clustering, interphase region, and orientation effects on the electrical conductivity of carbon nanotube-polymer nanocomposites via computational micromechanics. Mech. Mater. 43(12), 755–774 (2011)

    Google Scholar 

  123. H. Shin, S. Yang, J. Choi, S. Chang, M. Cho, Effect of interphase percolation on mechanical behavior of nanoparticle-reinforced polymer nanocomposite with filler agglomeration: a multiscale approach. Chem. Phys. Lett. 635, 80–85 (2015)

    Google Scholar 

  124. S. Yang, S. Yu, J. Ryu, J.M. Cho, W. Kyoung et al., Nonlinear multiscale modeling approach to characterize elastoplastic behavior of CNT/polymer nanocomposites considering the interphase and interfacial imperfection. Int. J. Plast. 41, 124–146 (2013)

    Google Scholar 

  125. S.A. Shandiz, A. Montazeri, A novel MD-based procedure to obtain the interphase Young’s modulus in nanocomposites. Comput. Mater. Sci. 113, 104–111 (2016)

    Google Scholar 

  126. T.T. Le, J. Guilleminot, C. Soize, Stochastic continuum modeling of random interphase from atomistic simulations. Application to a polymer nanocomposite. Comput. Methods Appl. Mech. Eng. 303, 430–449 (2016)

    MathSciNet  MATH  Google Scholar 

  127. M.R. Ayatollahi, S. Shadlou, M.M. Shokrieh, Multiscale modeling for mechanical properties of carbon nanotube reinforced nanocomposites subjected to different types of loading. Compos. Struct. 93(9), 2250–2259 (2011)

    Google Scholar 

  128. H. Shin, S. Chang, S. Yang, B.D. Youn, M. Cho, Statistical multiscale homogenization approach for analyzing polymer nanocomposites that include model inherent uncertainties of molecular dynamics simulations. Compos. B Eng. 87, 120–131 (2016)

    Google Scholar 

  129. R.M. Moghadam, S. Saber-Samandari, S.A. Hosseini, On the tensile behavior of clay-epoxy nanocomposite considering interphase debonding damage via mixed-mode cohesive zone material. Compos. B Eng. 89, 303–315 (2016)

    Google Scholar 

  130. Z. Liu, J.A. Moore, W.K. Liu, An extended micromechanics method for probing interphase properties in polymer nanocomposites. J. Mech. Phys. Solids 95, 663–680 (2016)

    MathSciNet  Google Scholar 

  131. H. Machrafi, G. Lebon, C.S. Lorio, Effect of volume-fraction dependent agglomeration of nanoparticles on the thermal conductivity of nanocomposites: applications to epoxy resins, filled by SiO2, AlN and MgO nanoparticles. Compos. Sci. Technol. 130, 78–87 (2016)

    Google Scholar 

  132. F. Dalmas, N. Genevaz, M. Roth, J. Jestin, E. Leroy, 3D dispersion of spherical silica nanoparticles in polymer nanocomposites: a quantitative study by electron tomography. Macromolecules 47(6), 2044–2051 (2014)

    Google Scholar 

  133. X. Ren, A.K. Chaurasia, A.I. Oliva-Aviles, J.J. Ku-Herrera, G.D. Seidel et al., Modeling of mesoscale dispersion effect on the piezoresistivity of carbon nanotube-polymer nanocomposites via 3D computational multiscale micromechanics methods. Smart Mater. Struct. 24, 065031 (2015)

    Google Scholar 

  134. X. Ren, G.D. Seidel, Computational micromechanics modeling of piezoresistivity in carbon nanotube-polymer nanocomposites. Compos. Interfaces 20(9), 693–720 (2013)

    Google Scholar 

  135. S.F. Ferdous, M.F. Sarker, A. Adnan, Role of nanoparticle dispersion and filler-matrix interface on the matrix dominated failure of rigid C60-PE nanocomposites: a molecular dynamics simulation study. Polymer 54(10), 2565–2576 (2013)

    Google Scholar 

  136. P.D. Spanos, A. Kontsos, A multiscale Monte Carlo finite element method for determining mechanical properties of polymer nanocomposites. Probab. Eng. Mech. 23(4), 456–470 (2008)

    Google Scholar 

  137. A. Montazeri, M. Sadeghi, R. Naghdabadi, H. Rafii-Tabar, Multiscale modeling of the effect of carbon nanotube orientation on the shear deformation properties of reinforced polymer-based composites. Phys. Lett. A 375(14), 1588–1597 (2011)

    Google Scholar 

  138. B. Natarajan, N.D. Orloff, R. Ashkar, S. Doshi, K. Twedt et al., Multiscale metrologies for process optimization of carbon nanotube polymer composites. Carbon 108, 381–393 (2016)

    Google Scholar 

  139. M.M. Shokrieh, Z. Shokrieh, S.M. Hashemianzadeh, A novel combined molecular dynamics–micromechanics method for modeling of stiffness of graphene/epoxy nanocomposites with randomly distributed graphene. Mater. Des. 64, 96–101 (2014)

    Google Scholar 

  140. R. Toth, F. Santese, S.P. Pereira, D.R. Nieto, S. Pricl et al., Size and shape matter! A multiscale molecular simulation approach to polymer nanocomposites. J. Mater. Chem. 22(12), 5398–5409 (2012)

    Google Scholar 

  141. Y.H. Lee, H.J. Kim, J.H. Park, Synthesis and characterization of polyester-based nanocomposites coatings for automotive pre-coated metal. Prog. Org. Coat. 76(10), 1329–1336 (2013)

    Google Scholar 

  142. S. Gong, Z.H. Zhu, S.A. Meguid, Carbon nanotube agglomeration effect on piezoresistivity of polymer nanocomposites. Polymer 55(21), 5488–5499 (2014)

    Google Scholar 

  143. N. Vu-Bac, R. Rafiee, X. Zhuang, T. Lahmer, T. Rabczuk, Uncertainty quantification for multiscale modeling of polymer nanocomposites with correlated parameters. Compos. B Eng. 68, 446–464 (2015)

    Google Scholar 

  144. H. Shin, K. Baek, J.G. Han, M. Cho, Homogenization analysis of polymeric nanocomposites containing nanoparticluate clusters. Compos. Sci. Technol. 138, 217–224 (2017)

    Google Scholar 

  145. H. Shin, J.G. Han, S. Chang, M. Cho, Local nanofiller volume concentration effect on elastic properties of polymer nanocomposites. Multiscale Multiphys. Mech. 1, 65–76 (2016)

    Google Scholar 

  146. Z. Zabihi, H. Araghi, Effect of functional groups on thermal conductivity of graphene/paraffin nanocomposite. Phys. Lett. A 380(45), 3828–3831 (2016)

    Google Scholar 

  147. N. Subramanian, A. Rai, A. Chattopadhyay, Atomistically informed stochastic multiscale model to predict the behavior of carbon nanotube-enhanced nanocomposites. Carbon 94, 661–672 (2015)

    Google Scholar 

  148. A. Greco, Numerical simulation and mathematical modeling of 2D multi-scale diffusion in lamellar nanocomposite. Comput. Mater. Sci. 90, 203–209 (2014)

    Google Scholar 

  149. J.T. Kalathi, U. Yamamoto, K.S. Schweizer, G.S. Grest, K. Kumar, Nanoparticle diffusion in polymer nanocomposites. Phys. Rev. Lett. 112(10), 108301 (2014)

    Google Scholar 

  150. Y. Zare, Effects of imperfect interfacial adhesion between polymer and nanoparticles on the tensile modulus of clay/polymer nanocomposites. Appl. Clay Sci. 129, 65–70 (2016)

    Google Scholar 

  151. S. Boutaleb, F. Zairi, A. Mesbah, M. Nait-Abdelaziz, J.M. Gloaguen et al., Micromechanical modelling of the yield stress of polymer-particulate nanocomposites with an inhomogeneous interphase. Proc. Eng. 1(1), 217–220 (2009)

    MATH  Google Scholar 

  152. Y. Zare, K.Y. Rhee, Accounting the reinforcing efficiency and percolating role of interphase regions in tensile modulus of polymer/CNT nanocomposites. Eur. Polym. J. 87, 389–397 (2017)

    Google Scholar 

  153. D. Weidt, L. Figiel, Effect of CNT waviness and van der Waals interaction on the nonlinear compressive behavior of epoxy/CNT nanocomposites. Compos. Sci. Technol. 115, 52–59 (2015)

    Google Scholar 

  154. A. Chakabarty, T. Cagin, Thermo-mechanical properties of a piezoelectric polyimide carbon nanotube composite: assessment of composite theories. Comput. Mater. Sci. 92, 185–191 (2014)

    Google Scholar 

  155. M. Bhattacharya, A.K. Bhowmick, Polymer-filler interaction in nanocomposites: new interface area function to investigate swelling behavior and Young’s modulus. Polymer 49(22), 4808–4818 (2008)

    Google Scholar 

  156. K. Anoukou, F. Zairi, M. Nait-Abdelaziz, A. Zaoui, T. Messager et al., On the overall elastic moduli of polymer-clay nanocomposite materials using a self-consistent approach. Part II: experimental verification. Compos. Sci. Technol. 71(2), 206–215 (2011)

    Google Scholar 

  157. F. Lin, Y. Xiang, H.S. Shen, Temperature dependent mechanical properties of graphene reinforced polymer nanocomposites—a molecular dynamics simulation. Compos. B Eng. 111, 261–269 (2017)

    Google Scholar 

  158. B. Mortazavi, F. Hassouna, A. Laachachi, A. Rajabpour, S. Ahzi et al., Experimental and multiscale modeling of thermal conductivity and elastic properties of PLA/expanded graphite nanocomposites. Thermochim. Acta 552, 106–113 (2013)

    Google Scholar 

  159. M. Baniassadi, A. Laachachi, F. Hassoua, F. Addiego, R. Muller et al., Mechanical and thermal behavior of nanoclay based polymer nanocomposites using statistical homogenization approach. Compos. Sci. Technol. 71(16), 1930–1935 (2011)

    Google Scholar 

  160. M.J. Mahmoodi, M. Vakilifard, A comprehensive micromechanical modeling of electro-thermo-mechanical behaviors of CNT reinforced smart nanocomposites. Mater. Des. 122, 347–365 (2017)

    Google Scholar 

  161. A. Montazeri, H. Rafii-Tabar, Multiscale modeling of graphene-and nanotube-based reinforced polymer nanocomposites. Phys. Lett. A 375(45), 4034–4040 (2011)

    Google Scholar 

  162. A.H. Mashhadzadeh, A. Fereidoon, A.M. Ghorbanzadeh, Combining density functional theory-finite element multi-scale method to predict mechanical properties of polypropylene/graphene nanocomposites: experimental study. Mater. Chem. Phys. 201, 214–223 (2017)

    Google Scholar 

  163. M.M. Shokrieh, M. Esmkhani, Z. Shokrieh, Z. Shokrieh, Z. Zhao, Stiffness prediction of graphene nanoplatelet/epoxy nanocomposites by a combined molecular dynamics–micromechanics method. Comput. Mater. Sci. 92, 444–450 (2014)

    Google Scholar 

  164. S. Yang, S. Yu, M. Cho, Sequential thermoelastic multiscale analysis of nanoparticulate composites. J. Appl. Phys. 108, 056102 (2010)

    Google Scholar 

  165. J. Zhao, H. Li, G. Cheng, Y. Cai, On predicting the effective elastic properties of polymer nanocomposites by novel numerical implementation of asymptotic homogenization method. Compos. Struct. 135, 297–305 (2016)

    Google Scholar 

  166. M. Pahlavanpour, P. Hubert, M. Levesque, Numerical and analytical modeling of the stiffness of polymer–clay nanocomposites with aligned particles: one- and two-step methods. Comput. Mater. Sci. 82, 122–130 (2014)

    Google Scholar 

  167. C. Feng, L.Y. Jiang, Investigation of uniaxial stretching effects on the electrical conductivity of CNT-polymer nanocomposites. J. Phys. D Appl. Phys. 47, 405103 (2014)

    Google Scholar 

  168. L. Chen, L.S. Schadler, R. Ozisik, An experimental and theoretical investigation of the compressive properties of multi-walled carbon nanotube/poly(methyl methacrylate) nanocomposite foams. Polymer 52(13), 2899–2909 (2011)

    Google Scholar 

  169. A.H. Esbati, S. Irani, Mechanical properties and fracture analysis of functionalized carbon nanotube embedded by polymer matrix. Aerosp. Sci. Technol. 55, 120–130 (2016)

    Google Scholar 

  170. A. Parashar, P. Mertiny, Multiscale model to investigate the effect of graphene on the fracture characteristics of graphene/polymer nanocomposites. Nanoscale Res. Lett. 7(1), 595 (2012)

    Google Scholar 

  171. R.B. Ladani, S. Wu, A.J. Kinloch, K. Ghorbani, J. Zhang et al., Improving the toughness and electrical conductivity of epoxy nanocomposites by using aligned carbon nanofibres. Compos. Sci. Technol. 117, 146–158 (2015)

    Google Scholar 

  172. M. Quaresimin, M. Salviato, M. Zappalorto, A multi-scale and multi-mechanism approach for the fracture toughness assessment of polymer nanocomposites. Compos. Sci. Technol. 91, 16–21 (2014)

    Google Scholar 

  173. H. Shin, B. Kim, J.G. Han, M.Y. Lee, J.K. Park et al., Fracture toughness enhancement of thermoplastic/epoxy blends by the plastic yield of toughening agents: a multiscale analysis. Compos. Sci. Technol. 145, 173–180 (2017)

    Google Scholar 

  174. M. Silani, H. Talebi, A.M. Hamouda, T. Rabczuk, Nonlocal damage modelling in clay/epoxy nanocomposites using a multiscale approach. J. Comput. Sci. 15, 18–23 (2016)

    Google Scholar 

  175. A.K. Chaurasia, G.D. Seidel, Computational micromechanics analysis of electron hopping and interfacial damage induced piezoresistive response in carbon nanotube-polymer nanocomposites subjected to cyclic loading conditions. Eur. J. Mech. A. Solids 64, 112–130 (2017)

    Google Scholar 

  176. B. Mortazavi, H. Yang, F. Mohebbi, G. Cuniberti, T. Rabczuk, Graphene or h-BN paraffin composite structures for the thermal management of Li-ion batteries: a multiscale investigation. Appl. Energy 202, 323–334 (2017)

    Google Scholar 

  177. G.D. Seidel, D.C. Lagoudas, A micromechanics model for the thermal conductivity of nanotube-polymer nanocomposites. J. Appl. Mech. 75(4), 041025 (2008)

    Google Scholar 

  178. H. Shin, S. Yang, S. Chang, S. Yu, M. Cho, Multiscale homogenization modeling for thermal transport properties of polymer nanocomposites with Kapitza thermal resistance. Polymer 54(5), 1543–1554 (2013)

    Google Scholar 

  179. B.J. Yang, J. Jang, S.H. Eem, S.Y. Kim, A probabilistic micromechanical modeling for electrical properties of nanocomposites with multi-walled carbon nanotube morphology. Compos. A Appl. Sci. Manuf. 92, 108–117 (2017)

    Google Scholar 

  180. N. Hu, Z. Masuda, G. Yamamoto, H. Fukunaga, T. Hashida et al., Effect of fabrication process on electrical properties of polymer/multi-wall carbon nanotube nanocomposites. Compos. A Appl. Sci. Manuf. 39(5), 893–903 (2008)

    Google Scholar 

  181. X. Lu, J. Yvonnet, F. Detrez, J. Bai, Multiscale modeling of nonlinear electric conductivity in graphene-reinforced nanocomposites taking into account tunneling effect. J. Comput. Phys. 337, 116–131 (2017)

    MathSciNet  MATH  Google Scholar 

  182. B. Hu, N. Hu, Y. Li, K. Akagi, W. Yuan et al., Multi-scale numerical simulations on piezoresistivity of CNT/polymer nanocomposites. Nanoscale Res. Lett. 7, 402 (2012)

    Google Scholar 

  183. N. Prakash, G.D. Seidel, Electromechanical peridynamics modeling of piezoresistive response of carbon nanotube nanocomposites. Comput. Mater. Sci. 113, 154–170 (2016)

    Google Scholar 

  184. T.C. Theodosiou, D.A. Saravanos, Numerical investigation of mechanisms affecting the piezoresistive properties of CNT-doped polymers using multi-scale models. Compos. Sci. Technol. 70(9), 1312–1320 (2010)

    Google Scholar 

  185. Alamusi, N. Hu, H. Fukunaga, S. Atobe, Y. Liu, J. Li, Piezoresistive strain sensors made from carbon nanotubes based polymer nanocomposites. Seonsors 11(11), 10691–10723 (2011)

    Google Scholar 

  186. S. Yu, S. Yang, M. Cho, Analysis of thermal conductivity of polymeric nanocomposites under mechanical loading. J. Appl. Phys. 114(21), 213503 (2013)

    Google Scholar 

  187. G.S. Jiao, H.J. Qian, Z.Y. Lu, Temperature induced transition from acceleration to deceleration of the diffusion of polymers by soft nanoparticles in their composite. Chem. Phys. Lett. 677, 152–155 (2017)

    Google Scholar 

  188. A. Karatrantos, N. Clarke, R.J. Composto, K.I. Winey, Polymer conformations in polymer nanocomposites containing spherical nanoparticles. Soft Matter 11, 382–388 (2015)

    Google Scholar 

  189. M. Terrones, O. Martin, M. Gonzalez, J. Pozuelo, B. Serrano et al., Interphases in graphene polymer-based nanocomposites: achievements and challenges. Adv. Mater. 23(44), 5302–5310 (2011)

    Google Scholar 

  190. J.T. Kalathi, S.K. Kumar, M. Rubinstein, G.S. Grest, Rouse mode analysis of chain relaxation in polymer nanocomposites. Soft Matter 11, 4123–4132 (2015)

    Google Scholar 

  191. A.S. Sarvestani, Modeling the solid-like behavior of entangled polymer nanocomposites at low frequency regimes. Eur. Polym. J. 44, 263–269 (2008)

    Google Scholar 

  192. M. Liu, M. Pu, H. Ma, Preparation, structure and thermal properties of polylactide/sepiolite nanocomposites with and without organic modifiers. Compos. Sci. Technol. 72(13), 1508–1514 (2012)

    Google Scholar 

  193. G.T. Wang, H.Y. Liu, N. Saintier, Y.W. Mai, Cyclic fatigue of polymer nanocomposites. Eng. Fail. Anal. 16(8), 2635–2645 (2009)

    Google Scholar 

  194. H. Shin, M. Cho, Multiscale model to predict fatigue crack propagation behavior of thermoset polymeric nanocomposites. Compos. A Appl. Sci. Manuf. 99, 23–31 (2017)

    Google Scholar 

  195. A.R. Shajari, R. Ghajar, M.M. Shokrieh, Multiscale modeling of the viscoelastic properties of CNT/polymer nanocomposites, using complex and time-dependent homogenizations. Comput. Mater. Sci. 142, 395–409 (2018)

    Google Scholar 

  196. J.T. Kalathi, G.S. Grest, S.K. Kumar, Universal viscosity behavior of polymer nanocomposites. Phys. Rev. Lett. 109(19), 198301 (2012)

    Google Scholar 

  197. A. Parashar, P. Mertiny, Representative volume element to estimate buckling behavior of graphene/polymer nanocomposite. Nanoscale Res. Lett. 7(1), 515 (2012)

    Google Scholar 

  198. M. Ahmadi, R. Ansari, H. Rouhi, Multi-scale bending, buckling and vibration analyses of carbon fiber/carbon nanotube-reinforced polymer nanocomposite plates with various shapes. Phys. E 93, 17–25 (2017)

    Google Scholar 

Download references

Acknowledgements

This work was supported by a Grant from the National Research Foundation of Korea (NRF) funded by the Korea government (MSIP) (No. 2012R1A3A2048841). This work was supported by the Technology Innovation Program (10074278, Development of a SHM system for UAV using CNT/Polymer hybrid fiber sensor network and simultaneous proof-of-concept of autonomous flight and diagnosis) funded By the Ministry of Trade, industry & Energy (MI, Korea).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Maenghyo Cho.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Chung, I., Cho, M. Recent Studies on the Multiscale Analysis of Polymer Nanocomposites. Multiscale Sci. Eng. 1, 167–195 (2019). https://doi.org/10.1007/s42493-019-00022-4

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s42493-019-00022-4

Keywords

Navigation