Skip to main content
Log in

Bayesian deep learning on a quantum computer

  • Research Article
  • Published:
Quantum Machine Intelligence Aims and scope Submit manuscript

Abstract

Bayesian methods in machine learning, such as Gaussian processes, have great advantages compared to other techniques. In particular, they provide estimates of the uncertainty associated with a prediction. Extending the Bayesian approach to deep architectures has remained a major challenge. Recent results connected deep feedforward neural networks with Gaussian processes, allowing training without backpropagation. This connection enables us to leverage a quantum algorithm designed for Gaussian processes and develop a new algorithm for Bayesian deep learning on quantum computers. The properties of the kernel matrix in the Gaussian process ensure the efficient execution of the core component of the protocol, quantum matrix inversion, providing at least a polynomial speedup over classical algorithms. Furthermore, we demonstrate the execution of the algorithm on contemporary quantum computers and analyze its robustness with respect to realistic noise models.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

Notes

  1. https://gitlab.com/apozas/bayesian-dl-quantum/

  2. Information about performance measures of Rigetti’s QPUs can be found in http://docs.rigetti.com/en/1.9/qpu.html.

  3. Information about performance measures of IBM’s QPUs can be found in http://www.research.ibm.com/ibm-q/technology/devices/.

References

Download references

Acknowledgements

We would like to thank Piotr Gawron (Polish Academy of Sciences), Will Zeng and Ryan Karle (Rigetti Computing), and Joseph Fitzsimons (SUTD and CQT) for discussions.

Funding

Z. Z. received support from Singapore’s Ministry of Education and National Research Foundation under NRF Award NRF-NRFF2013-01. The work of A. P.-K. is supported by Fundación Obra Social “la Caixa” (LCF/BQ/ES15/10360001), the Spanish MINECO (QIBEQI FIS2016-80773-P and Severo Ochoa SEV-2015-0522), Fundació Privada Cellex, and the Generalitat de Catalunya (SGR1381 and CERCA Program). This research was supported by Perimeter Institute for Theoretical Physics. Research at Perimeter Institute is supported by the Government of Canada through Industry Canada and by the Province of Ontario through the Ministry of Economic Development and Innovation.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Alejandro Pozas-Kerstjens.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhao, Z., Pozas-Kerstjens, A., Rebentrost, P. et al. Bayesian deep learning on a quantum computer. Quantum Mach. Intell. 1, 41–51 (2019). https://doi.org/10.1007/s42484-019-00004-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s42484-019-00004-7

Keywords

Navigation