Skip to main content
Log in

Polypharmazie bei der Behandlung von Parkinsonsymptomen: eine Nutzen-Risiko Abwägung

Polypharmacy in the treatment of Parkinsonʼs symptoms: a risk–benefit analysis

  • Arzneimitteltherapie
  • Published:
DGNeurologie Aims and scope

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Literatur

  1. Leibson CL, Maraganore DM, Bower JH, Ransom JE, O’Brien PC, Rocca WA (2006) Comorbid conditions associated with Parkinson’s disease: a population-based study. Mov Disord 21:446–455

    Article  PubMed  Google Scholar 

  2. Santiago JA, Potashkin JA (2023) Biological and Clinical Implications of Sex-Specific Differences in Alzheimer’s Disease. In: Handbook of Experimental Pharmacology. Springer, Berlin, Heidelberg. https://doi.org/10.1007/164_2023_672

  3. Athauda D, Maclagan K, Skene SS, Bajwa-Joseph M, Letchford D, Chowdhury K et al (2017) Exenatide once weekly versus placebo in Parkinson’s disease: a randomised, double-blind, placebo-controlled trial. Lancet 390:1664–1675

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. Hölscher C (2018) Novel dual GLP-1/GIP receptor agonists show neuroprotective effects in Alzheimer’s and Parkinson’s disease models. Neuropharmacology 136:251–259

    Article  PubMed  Google Scholar 

  5. Calne DB, Reid JL, Vakil SD, Rao S, Petrie A, Pallis CA et al (1971) Idiopathic Parkinsonism treated with an extracerebral decarboxylase inhibitor in combination with levodopa. BMJ 3:729–732

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Xie Y, Feng H, Peng S, Xiao J, Zhang J (2017) Association of plasma homocysteine, vitamin B12 and folate levels with cognitive function in Parkinson’s disease: a meta-analysis. Neurosci Lett 636:190–195

    Article  CAS  PubMed  Google Scholar 

  7. Müller T (2008) Role of homocysteine in the treatment of Parkinson’s disease. Expert Rev Neurother 8:957–967

    Article  PubMed  Google Scholar 

  8. Paul R, Borah A (2016) L‑DOPA-induced hyperhomocysteinemia in Parkinson’s disease: elephant in the room. Biochim Biophys Acta 1860:1989–1997

    Article  CAS  PubMed  Google Scholar 

  9. Warren Olanow C, Kieburtz K, Rascol O, Poewe W, Schapira AH, Emre M et al (2013) Factors predictive of the development of levodopa-induced dyskinesia and wearing-off in Parkinson’s disease. Mov Disord 28:1064–1071

    Article  CAS  PubMed  Google Scholar 

  10. Palhagen S, Heinonen E, Hagglund J, Kaugesaar T, Maki-Ikola O, Palm R (2006) Selegiline slows the progression of the symptoms of Parkinson disease. Neurology 66:1200–1206

    Article  CAS  PubMed  Google Scholar 

  11. Shoulson I (1998) DATATOP: a decade of neuroprotective inquiry. Parkinson study group. Deprenyl and tocopherol antioxidative therapy of Parkinsonism. Ann Neurol 44(3 Suppl 1):S160–S166

    CAS  PubMed  Google Scholar 

  12. Dezsi L, Vecsei L (2017) Monoamine Oxidase B Inhibitors in Parkinson’s Disease. CNS Neurol Disord Drug Targets. 16(4):425–439. https://doi.org/10.2174/1871527316666170124165222. PMID: 28124620

  13. Gray R, Patel S, Ives N, Rick C, Woolley R, Muzerengi S et al (2022) Long-term effectiveness of adjuvant treatment with catechol-O-methyltransferase or monoamine oxidase B inhibitors compared with dopamine agonists among patients with Parkinson disease uncontrolled by levodopa therapy. JAMA Neurol 79:131

    Article  PubMed  Google Scholar 

  14. Aboukarr A, Giudice M (2018) Interaction between monoamine oxidase B inhibitors and selective serotonin reuptake inhibitors. Can J Hosp Pharm 71:196–207

    PubMed  PubMed Central  Google Scholar 

  15. Finberg JP, Rabey JM (2016) Inhibitors of MAO-A and MAO-B in Psychiatry and Neurology. Front Pharmacol 18;7:340. https://doi.org/10.3389/fphar.2016.00340. PMID: 27803666; PMCID: PMC5067815

  16. Shannon KM (2008) Long-term outcome in Parkinson disease: no advantage to initiating therapy with dopamine agonists. Nat Clin Pract Neurol 4:590–591

    Article  CAS  PubMed  Google Scholar 

  17. Encarnacion EV, Hauser RA (2008) Levodopa-induced dyskinesias in Parkinson’s disease: etiology, impact on quality of life, and treatments. Eur Neurol 60:57–66

    Article  CAS  PubMed  Google Scholar 

  18. Möller JC, Eggert KM, Unger M, Odin P, Chaudhuri KR, Oertel WH (2008) Clinical risk-benefit assessment of dopamine agonists. Eur J Neurol 15:15–23

    Article  PubMed  Google Scholar 

  19. Ahmed I, Bose SK, Pavese N, Ramlackhansingh A, Turkheimer F, Hotton G et al (2011) Glutamate NMDA receptor dysregulation in Parkinson’s disease with dyskinesias. Brain 134:979–986

    Article  PubMed  Google Scholar 

  20. Kim A, Kim YE, Yun JY, Kim H‑J, Yang H‑J, Lee W‑W et al (2018) Amantadine and the risk of dyskinesia in patients with early Parkinson’s disease: an open-label, pragmatic trial. J Mov Disord 11:65–71

    Article  PubMed  PubMed Central  Google Scholar 

  21. Uitti RJ, Rajput AH, Ahlskog JE, Offord KP, Schroeder DR, Ho MM et al (1996) Amantadine treatment is an independent predictor of improved survival in Parkinson’s disease. Neurology 46:1551–1556

    Article  CAS  PubMed  Google Scholar 

  22. Coles LD, Tuite PJ, Öz G, Mishra UR, Kartha RV, Sullivan KM et al (2018) Repeated-dose oral N‑acetylcysteine in Parkinson’s disease: pharmacokinetics and effect on brain glutathione and oxidative stress. J Clin Pharmacol 58:158–167

    Article  CAS  PubMed  Google Scholar 

  23. McNeill A, Magalhaes J, Shen C, Chau K‑Y, Hughes D, Mehta A et al (2014) Ambroxol improves lysosomal biochemistry in glucocerebrosidase mutation-linked Parkinson disease cells. Brain 137:1481–1495

    Article  PubMed  PubMed Central  Google Scholar 

  24. Mullin S, Smith L, Lee K, D’Souza G, Woodgate P, Elflein J et al (2020) Ambroxol for the treatment of patients with Parkinson disease with and without glucocerebrosidase gene mutations. JAMA Neurol 77:427

    Article  PubMed  PubMed Central  Google Scholar 

  25. Henderson EJ, Lord SR, Brodie MA, Gaunt DM, Lawrence AD, Close JCT et al (2016) Rivastigmine for gait stability in patients with Parkinson’s disease (reSPonD): a randomised, double-blind, placebo-controlled, phase 2 trial. Lancet Neurol 15:249–258

    Article  CAS  PubMed  Google Scholar 

  26. Li Z, Yu Z, Zhang J, Wang J, Sun C, Wang P et al (2015) Impact of rivastigmine on cognitive dysfunction and falling in Parkinson’s disease patients. Eur Neurol 74:86–91

    Article  CAS  PubMed  Google Scholar 

  27. Leentjens AF (2015) Depression—Risk factor or early symptom in Parkinson disease? Nat Rev Neurol 11:432–433

    Article  PubMed  Google Scholar 

  28. Menza M, Dobkin RD, Marin H, Mark MH, Gara M, Buyske S et al (2009) A controlled trial of antidepressants in patients with Parkinson disease and depression. Neurology 72:886–892

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Collier TJ, Srivastava KR, Justman C, Grammatopoulous T, Hutter-Paier B, Prokesch M et al (2017) Nortriptyline inhibits aggregation and neurotoxicity of alpha-synuclein by enhancing reconfiguration of the monomeric form. Neurobiol Dis 106:191–204

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Corrigan MH, Denahan AQ, Wright CE, Ragual RJ, Evans DL (2000) Comparison of pramipexole, fluoxetine, and placebo in patients with major depression. Depress Anxiety 11:58–65

    Article  CAS  PubMed  Google Scholar 

  31. Santiago JA, Potashkin JA (2013) Shared dysregulated pathways lead to Parkinson’s disease and diabetes. Trends Mol Med 19:176–186

    Article  CAS  PubMed  Google Scholar 

  32. Brundin P, Wyse R (2015) Laying the foundations for disease-modifying therapies in PD. Nat Rev Neurol 11:553–555

    Article  CAS  PubMed  Google Scholar 

  33. Kuan Y‑C. Taipei Medical University, New Taipei City, Taiwan; abstract at AD/PD. 2017

  34. Shi Q, Liu S, Fonseca VA, Thethi TK, Shi L (2019) Effect of metformin on neurodegenerative disease among elderly adult US veterans with type 2 diabetes mellitus. BMJ Open 9:e24954

    Article  PubMed  PubMed Central  Google Scholar 

  35. Huang X, Auinger P, Eberly S, Oakes D, Schwarzschild M, Ascherio A et al (2011) Serum cholesterol and the progression of Parkinson’s disease: results from DATATOP. PLoS ONE 6:e22854

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Seifar F, Dinasarapu AR, Jinnah HA (2022) Uric acid in Parkinson’s disease: what is the connection? Mov Disord 37:2173–2183

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Goel A, Sugumaran R, Narayan SK (2021) Zonisamide in Parkinson’s disease: a current update. Neurol Sci 42:4123–4129

    Article  PubMed  Google Scholar 

  38. Murata M, Hasegawa K, Kanazawa I, Shirakura K, Kochi K, Shimazu R et al (2016) Randomized placebo-controlled trial of zonisamide in patients with Parkinson’s disease. Neurol Clin Neurosci 4:10–15

    Article  CAS  Google Scholar 

  39. Swart T, Hurley MJ (2016) Calcium channel antagonists as disease-modifying therapy for Parkinson’s disease: therapeutic rationale and current status. CNS Drugs 30:1127–1135

    Article  CAS  PubMed  Google Scholar 

  40. Chan CS, Guzman JN, Ilijic E, Mercer JN, Rick C, Tkatch T et al (2007) ‘Rejuvenation’ protects neurons in mouse models of Parkinson’s disease. Nature 447:1081–1086

    Article  CAS  PubMed  Google Scholar 

  41. Venuto CS, Yang L, Javidnia M, Oakes D, James Surmeier D, Simuni T (2021) Isradipine plasma pharmacokinetics and exposure-response in early Parkinson’s disease. Ann Clin Transl Neurol 8:603–612

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  42. Cai R, Zhang Y, Simmering JE, Schultz JL, Li Y, Fernandez-Carasa I et al (2019) Enhancing glycolysis attenuates Parkinson’s disease progression in models and clinical databases. J Clin Invest 129:4539–4549

    Article  PubMed  PubMed Central  Google Scholar 

  43. Richard IH, Kurlan R, Tanner C, Factor S, Hubble J, Suchowersky O et al (1997) Serotonin syndrome and the combined use of deprenyl and an antidepressant in Parkinson’s disease. Neurology 48:1070–1076

    Article  CAS  PubMed  Google Scholar 

  44. Vautier S, Milane A, Fernandez C, Buyse M, Chacun H, Farinotti R (2008) Interactions between antiparkinsonian drugs and ABCB1/P-glycoprotein at the blood-brain barrier in a rat brain endothelial cell model. Neurosci Lett 442:19–23

    Article  CAS  PubMed  Google Scholar 

  45. Lam JR, Schneider JL, Zhao W, Corley DA (2013) Proton pump inhibitor and histamine 2 receptor antagonist use and vitamin B 12 deficiency. JAMA 310:2435

    Article  CAS  PubMed  Google Scholar 

Download references

Danksagung

Eine ältere Version dieses Artikels wurde 2019 in einem Sonderheft des JoNT veröffentlicht (https://doi.org/10.1007/s00702-019-02026-8); wir danken Wolfgang Jost für die fruchtbaren Kommentare.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to J. Bedarf or U. Wüllner.

Ethics declarations

Interessenkonflikt

J. Bedarf, I. Csoti, H. Herbst, P. Urban, D. Woitalla und U. Wüllner geben an, dass kein Interessenkonflikt besteht.

Für diesen Beitrag wurden von den Autor/-innen keine Studien an Menschen oder Tieren durchgeführt. Für die aufgeführten Studien gelten die jeweils dort angegebenen ethischen Richtlinien.

Additional information

Redaktion

F. Block, Schwerin

S.G. Meuth, Düsseldorf

Supplementary Information

42451_2023_598_MOESM1_ESM.docx

eTabelle 1 zeigt die wichtigsten Wechselwirkungen zwischen Arzneimitteln zur Behandlung von PD sowie von Begleiterkrankungen

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Bedarf, J., Csoti, I., Herbst, H. et al. Polypharmazie bei der Behandlung von Parkinsonsymptomen: eine Nutzen-Risiko Abwägung. DGNeurologie 6, 504–509 (2023). https://doi.org/10.1007/s42451-023-00598-0

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s42451-023-00598-0

Navigation