Skip to main content
Log in

Dynamic Analysis of a Three-Layered Sandwich Plate with Composite Layers and Leptadenia Pyrotechnica Rheological Elastomer-Based Viscoelastic Core

  • Original Paper
  • Published:
Journal of Vibration Engineering & Technologies Aims and scope Submit manuscript

Abstract

Purpose

The three-layered sandwich plate with thin composite skins and leptadenia pyrotechnica rheological elastomer (LPRE) core is used to reduce the vibration in the structural system.

Method

The governing equation of motion for the composite sandwich plate is obtained by the Lagrange principle based on first order shear deformation theory and presented in the finite element form. The natural frequencies and loss factors of the system have been obtained by finding the eigenvalues of the dynamic matrix. Further forced vibration response has been obtained. For numerical analysis, experimentally obtained mechanical properties of the LPRE core are used in this investigation.

Results and Conclusions

The natural frequencies and loss factors of the LPRE-based sandwich plate are determined by varying the thicknesses of the core and the constraining composite layers with five boundary conditions. The results are compared with those of similar structures with different core materials and boundary conditions and are found to be in good agreements. The forced vibration response of the three-layered composite sandwich plate is also investigated in the presence of harmonic excitation force. The natural frequencies and loss factors of LPRE-based composite sandwich plate are compared with LPRE-based isotropic sandwich plate (Ojha et al., Int J Struct Stab Dyn 19(3):81048, 2019). It is found that the fundamental frequency of the LPRE-based composite sandwich plate are almost 1.90 times higher than the LPRE-based isotropic sandwich plate even if the composite sandwich plate has 45% lesser weight than the isotropic sandwich plate. The loss factors of the LPRE composite sandwich plate are also more than the LPRE isotropic sandwich plate. This study supports the application of the LPRE-based sandwich plates with composite skins potentially to the passive vibration suppression of the structural systems.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Mojumder P, Mondal SB, Mukhopadhya S, Sen KK (2001) Chemical characterization of khimp fibre (Leptadenia pyrotechnica). J Sci Ind Res 60(8):675–677

    Google Scholar 

  2. Kerwin EM (1959) Damping of flexural waves by a constrained viscoelastic layer. J AcoustSocAm 31:952–962

    Google Scholar 

  3. Ditaranto RA (1965) Theory of the vibratory bending for elastic and viscoelastic layered finite length beams. J Appl Mech 32:881–886

    Article  Google Scholar 

  4. Mead DJ, Markus S (1969) The forced vibration of a three layer damped sandwich beam with arbitrary boundary conditions. J Sound Vib 10:163–175

    Article  MATH  Google Scholar 

  5. AsnaniN T, Nakra BC (1976) Vibration damping characteristics of multilayered beams with constrained viscoelastic layers. J Eng Ind ASME 98(3):895–901

    Article  Google Scholar 

  6. Nayak B, Dwivedy SK, Murthy KSRK (2011) Dynamic analysis of magnetorheological elastomer based sandwich beam with conductive skins under various boundary conditions. J Sound Vib 330:1837–1859

    Article  Google Scholar 

  7. Nayak B, Dwivedy SK, Murthy KSRK (2013) Dynamic stability of magnetorheological elastomer based adaptive sandwich beam with conductive skins using FEM and the harmonic balance method. Int J Mech Sci 77:205–216

    Article  Google Scholar 

  8. Nayak B, Dwivedy SK, Murthy KSRK (2012) Multi-frequency of magnetorheological elastomer-based sandwich beam with conductive skins. Int J Non-Linear Mech 47:448–460

    Article  Google Scholar 

  9. Khatua TP, Cheung YK (1973) Bending and vibration of multilayer sandwich beams and plates. Int J Numer Methods Eng 6:11–24

    Article  MATH  Google Scholar 

  10. Rao MD, Raghu E, Satish N (1997) Dynamic analysis and damping of composite structures embedded with viscoelastic layers. Compos B 28B:547–554

    Article  Google Scholar 

  11. Yim JH, Cho SY, Seo YJ, Jang BZ (2003) A study on material damping of 0 laminated composite sandwich cantilever beams with a viscoelastic layer. Compos Struct 60:367–374

    Article  Google Scholar 

  12. Ross D, Ungar EE, Kerwin J (1959) Damping of plate flexural vibrations by means of viscoelastic laminate, structural damping. ASME, New York

    Google Scholar 

  13. Abdulhadi F (1969) Transverse vibrations of laminated plates with viscoelastic layer damping. Shock Vib Bull 40:90–104

    Google Scholar 

  14. Johnson CD, Kienholz DA (1982) Finite element prediction of damping in structures with constrained viscoelastic layers. AIAAJ 20:1284–1290

    Article  Google Scholar 

  15. Saeed M, Hassan H, Hossein MN (2012) Free and forced vibration of sandwich plates with thick viscoelastic cores. J Vib Control 19:2223–2240

    MathSciNet  Google Scholar 

  16. Mahmoudkhani S, Haddadpour H, Navazi HM (2014) The effects of nonlinearties on the vibration of viscoelastic sandwich plates. Int J Non Linear Mech 62:41–57

    Article  Google Scholar 

  17. Pandya BN, Kant T (1988) Flexural analysis of laminated composites using refined higher-order C° plate bending elements. Comput Methods Appl MechEng 66:173–198

    Article  MATH  Google Scholar 

  18. Reddy JN, Khdeir AA (1989) Buckling and vibration of laminated composite plates using various plate theories. AIAAJ 27:1808–1817

    Article  MathSciNet  MATH  Google Scholar 

  19. Bert CW (1984) A critical evaluation of new plate theories applied to laminated composites. Compos Struct 2:329–347

    Article  Google Scholar 

  20. Kanematsu HH, Hirano Y, Iyama H (1988) Bending and vibration of CFRP-faced rectangular sandwich plates. Compos Struct 10:145–165

    Article  Google Scholar 

  21. Meunier M, Shenoi RA (2001) Dynamic analysis of composite sandwich plates with damping modelled using higher-order shear deformation theory. Compos Struct 54:243–254

    Article  Google Scholar 

  22. Zhou XQ, Yu DY, Shao XY et al (2015) Asymptotic analysis on flexural dynamic characteristics for a sandwich plate with periodically perforated viscoelastic damping material core. Compos Struct 119:487–504

    Article  Google Scholar 

  23. Li EQ, Tang GJ, Lei YG et al (2008) Dynamic analysis of constrained layer damping plate by the transfer function method. NUDTJ 30:5–9

    Google Scholar 

  24. Araújo AL, Carvalho VS, MotaSoares CM et al (2016) Vibration analysis of laminated soft core sandwich plates with piezoelectric sensors and actuators. Compos Struct 151:91–98

    Article  Google Scholar 

  25. Zamani HA, Aghdam MM, Sadighi M (2017) Vibration analysis of laminated soft core sandwich plates with piezoelectric sensors and actuators. Compos Struct 182:25–35

    Article  Google Scholar 

  26. YanchunZhaia Yan Lia, Liang Sen (2018) Free vibration analysis of five-layered composite sandwich plates with two-layered viscoelastic cores. Compos Struct 200:346–357

    Article  Google Scholar 

  27. Ojha RK, Dwivedy SK (2019) Dynamic analysis of sandwich plates with isotropic skins and viscoelastic core. Int J Struct Stab Dyn 19(3):81048. https://doi.org/10.1142/s0219455419500330

    Article  Google Scholar 

  28. Lee LJ, Fan YJ (1996) Bending and vibration analysis of composite sandwich plates. Comput Struct 60:103–112

    Article  MATH  Google Scholar 

  29. Joseph SV, Mohanty SC (2017) Free vibration of a rotating sandwich plate with viscoelastic core and functionally graded material constraining layer. Int J Struct Stab Dyn 17(10):1750114

    Article  MathSciNet  Google Scholar 

  30. Irazu L, Elejabarrieta MJ (2017) The effect of the viscoelastic film and metallic skin on the dynamic properties of thin sandwich structures. Compos Struct 176:407–419

    Article  Google Scholar 

  31. Lall AK, Asnani NT, Nakra BC (1987) Vibration and damping analysis of rectangular plate with partially covered constrained viscoelastic layer. J Vib Acoust 109(3):241–247

    Article  Google Scholar 

  32. Kaw AK (2005) Mechanics of composite materials. CRC Press, Boca Raton (ISBN-13 978-0-8493-1343-1)

    Book  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to R. K. Ojha.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Appendix

Appendix

The elemental mass and stiffness matrices are given as

$$\left[ {M^{\text{e}} } \right] = \left[ {M_{\text{u,v}}^{(2i - 1)} } \right] + \left[ {M_{\text{shear}}^{(2i)} } \right] + \left[ {M_{\text{w}}^{(2i - 1)} } \right] + \left[ {M_{\text{w}}^{(2i)} } \right],$$
$$\left[ {M_{\text{u,v}}^{(2i - 1)} } \right] = \sum\limits_{i = 1}^{l + 1} {\int\limits_{{\frac{ - a}{2}}}^{{\frac{a}{2}}} {\int\limits_{{\frac{ - b}{2}}}^{{\frac{b}{2}}} {\rho_{(2i - 1)} } } h_{(2i - 1)} \left( {\left[ {N_{u(2i - 1)} } \right]^{T} \left[ {N_{u(2i - 1)} } \right] + \left[ {N_{v(2i - 1)} } \right]^{T} \left[ {N_{v(2i - 1)} } \right]} \right){\text{d}}x{\text{d}}y} ,$$
$$\left[ {M_{\text{shear}}^{(2i)} } \right] = \sum\limits_{i = 1}^{l} {\int\limits_{{\frac{ - a}{2}}}^{{\frac{a}{2}}} {\int\limits_{{\frac{ - b}{2}}}^{{\frac{b}{2}}} {\rho_{(2i)} \frac{{h_{(2i)}^{3} }}{12}} } \left( {\left[ {N_{\text{xz}} } \right]^{T} \left[ {N_{\text{xz}} } \right] + \left[ {N_{\text{yz}} } \right]^{T} \left[ {N_{\text{yz}} } \right]} \right){\text{d}}x{\text{d}}y,}$$
$$\left[ {M_{\text{w}}^{(2i - 1)} } \right] = \sum\limits_{i = 1}^{l + 1} {\int\limits_{{\frac{ - a}{2}}}^{{\frac{a}{2}}} {\int\limits_{{\frac{ - b}{2}}}^{{\frac{b}{2}}} {\rho_{(2i - 1)} } } h_{(2i - 1)} \left( {\left[ {N_{\text{w}} } \right]^{T} \left[ {N_{\text{w}} } \right]} \right){\text{d}}x{\text{d}}y} ,$$
$$\left[ {M_{\text{w}}^{(2i)} } \right] = \sum\limits_{i = 1}^{l} {\int\limits_{{\frac{ - a}{2}}}^{{\frac{a}{2}}} {\int\limits_{{\frac{ - b}{2}}}^{{\frac{b}{2}}} {\rho_{(2i)} } } h_{(2i)} \left( {\left[ {N_{\text{w}} } \right]^{\text{T}} \left[ {N_{\text{w}} } \right]} \right){\text{d}}x{\text{d}}y} ,$$
$$\left[ {K^{\text{e}} } \right] = \left[ {K_{(2i - 1)}^{\text{e}} } \right] + \left[ {K_{(2i)}^{\text{e}} } \right],$$
$$\left[ {K_{(2i - 1)}^{\text{e}} } \right]{ = }\sum\limits_{i = 1}^{l + 1} {\int\limits_{{\frac{ - a}{2}}}^{{\frac{a}{2}}} {\int\limits_{{\frac{ - b}{2}}}^{{\frac{b}{2}}} {\left\{ {\varepsilon_{0(2i - 1)} } \right\}^{\text{T}} \left[ \begin{aligned} \, \left[ A \right]_{(2i - 1)} \, \left[ B \right]_{(2i - 1)} \hfill \\ \, \left[ B \right]_{(2i - 1)} \, \left[ D \right]_{(2i - 1)} \, \hfill \\ \end{aligned} \right]} } } \left\{ {\varepsilon_{0(2i - 1)} } \right\}{\text{d}}x{\text{d}}y,$$
$$\left\{ {\varepsilon_{0(2i - 1)} } \right\}^{T} = \left[ {\left[ {\frac{{\partial N_{u(2i - 1)} }}{\partial x}} \right]\left[ {\frac{{\partial N_{v(2i - 1)} }}{\partial y}} \right]\left[ {\frac{{\partial N_{u(2i - 1)} }}{\partial y} + \frac{{\partial N_{v(2i - 1)} }}{\partial x}} \right] - \left[ {\frac{{\partial^{2} N_{w} }}{{\partial x^{2} }}} \right] - \left[ {\frac{{\partial^{2} N_{w} }}{{\partial y^{2} }}} \right] - \left[ {2\frac{{\partial^{2} N_{w} }}{\partial x\partial y}} \right]} \right],$$
$$\left[ {K_{(2i)}^{\text{e}} } \right] = \sum\limits_{i = 1}^{l} {\int\limits_{{\frac{ - a}{2}}}^{{\frac{a}{2}}} {\int\limits_{{\frac{ - b}{2}}}^{{\frac{b}{2}}} {\left\{ \begin{aligned} \left[ {N_{xz}^{(2i)} } \right] \hfill \\ \left[ {N_{yz}^{(2i)} } \right] \hfill \\ \end{aligned} \right\}} }^{T} \left[ \begin{aligned} Gh_{\text{c}}^{(2i)} { 0} \hfill \\ 0 \, Gh_{\text{c}}^{(2i)} \hfill \\ \end{aligned} \right]\left\{ \begin{aligned} \left[ {N_{\text{xz}}^{(2i)} } \right] \hfill \\ \left[ {N_{\text{yz}}^{(2i)} } \right] \hfill \\ \end{aligned} \right\}{\text{d}}x{\text{d}}y} ,$$
$$\left[ {N_{\text{xz}}^{(2i)} } \right] = \frac{1}{{h_{(2i)} }}\left[ {\left( {\left[ {N_{u(2i - 1)} } \right] - \left[ {N_{u(2i + 1)} } \right]h_{e} \left[ {\frac{{\partial N_{w} }}{\partial x}} \right]} \right) + } \right],$$
$$\left[ {N_{\text{yz}}^{(2i)} } \right] = \frac{1}{{h_{\text{c}}^{(2i)} }}\left[ {\left( {\left[ {N_{v(2i - 1)} } \right] - \left[ {N_{v(2i + 1)} } \right]} \right) + h_{\text{e}} \left[ {\frac{{\partial N_{\text{w}} }}{\partial y}} \right]} \right].$$

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ojha, R.K., Dwivedy, S.K. Dynamic Analysis of a Three-Layered Sandwich Plate with Composite Layers and Leptadenia Pyrotechnica Rheological Elastomer-Based Viscoelastic Core. J. Vib. Eng. Technol. 8, 541–553 (2020). https://doi.org/10.1007/s42417-019-00129-w

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s42417-019-00129-w

Keywords

Navigation