Skip to main content
Log in

Synthesis, Dehydroxylation and Sintering of Porous Mg(OH)2-MgO Clusters: Evolution of Microstructure and Physical Properties

  • Research and Development
  • Published:
Interceram - International Ceramic Review

Abstract: Magnesium hydroxide (Mg(OH)2 or brucite) and magnesium oxide (MgO or magnesia) are essential raw materials for many industrial applications. Several studies have explored their production methods and the changes in their properties caused by adjustments in synthesis and calcination conditions. However, the ways the particles' microstructure changes along a full thermal treatment up to sintering remain unclear. This study investigated the effects of thermal treatments (120-1500 °C) on the physical properties and microstructure of clusters of Mg(OH)2 nanoparticles prepared by soluble-Mg-salt precipitation assisted by a surfactant agent.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6
Figure 7

Similar content being viewed by others

References

  1. Shand, M.A. The Chemistry and technology of magnesia. New Jersey: John Wiley & Sons, Inc. (2006), ISBN-13: 978-0-471-65603-6

  2. Salomão, R., Pandolfelli, V.C.: Magnesia sinter hydration-dehydration behavior in refractory castables. Ceram. Int. 34 (2008) [8] 1829-1834

  3. Papich, M.G.: Magnesium hydroxide. In: Sauder's Handbook of Veterinary Drugs (4th Edition). Amsterdam: Elsevier (2016) 467-468, ISBN: 9780323244855

  4. Shen, S., Chow, P.S., Chen, F., Tan, R.B.H.: Submicron particles of SBA-15 modified with MgO as carriers for controlled drug delivery. Chem. Pharm. Bull. 55 (2007) [7] 985-991

  5. Giorgi, R., Chelazzi, D., Baglioni, P.: Conservation of acid waterlogged shipwrecks: Nanotechnologies for de-acidification. App. Phys. A. 83 (2006) 567-571

  6. Holloway, L.R.: Application of magnesium hydroxide as a flame retardant and smoke suppressant in elastomers. Rubb. Chem. Tech. 61 (1987) [2] 186-193

  7. Norton, R.N., Hornsby, P.R.: Flame retardant effects of magnesium hydroxide. Pol. Deg. Stab. 54 (1996) 383-385

  8. Qiu, L., Xie, R., Ding, P., Qu, B.: Preparation and characterization of Mg[OH]2 nanoparticles and flame-retardant property of its nanocomposites with EVA. Compos. Struc. 62 (2003) 391-395

  9. Gui, H., Zhang, X., Liu, Y., Dong, W., Wang, Q., Gao, J., Song, Z., Lai, J., Qiao, J.: Effect of dispersion of nano-magnesium hydroxide on the flammability of flame retardant ternary composites. Compos. Sci. Tech. 67 (2007) 67 974-980

  10. Salomão, R., Souza, A.D.V., Cardoso, P.H.L.: A comparison of Al(OH)3 and Mg(OH)2 as inorganic porogenic agents for alumina. Interceram: Int. Cer. Rev. 64 (2015) [4] 193-199

  11. Hüttig, G.F.: Die Kinetic der Alterung von aktivem Magnseiumoxyd. Kolloid-Zeitschrift 124 (1951) [3] 160-163

  12. Finch, G.I., Sinha, K.P.: On reaction in the solid state. Proc. Roy. Soc. A. 239 (1957) 145-153

  13. Razouk, R.I., Mikhail, R.S.: The hydration of magnesium oxide from vapor phase. J. Phys. Chem. 62 (1958) 920-925

  14. Glasson, D.R.: Reactivity of lime and related oxides: Hydration of magnesium oxide. J. App. Chem. 13 (1963) [3] 119-123

  15. Layden, G.K., Brindley, G.W.: Kinetics of vapor-phase hydration of magnesium oxide. J. Am. Cer. Soc. 46 (1963) [11] 518-522

  16. Anderson, P.J., Horlock, R.F., Oliver, J.F.: Interaction of water with the magnesium oxide surface. Trans. Farad. Soc. 61 (1965) [516] 2754-2762

  17. Feitknecht, W., Braum, H.: Der Mechanismus der Hydratation von Magnesiumoxid mit Wasserdampf. Helv. Chim. Act. 50 (1967) [7] 2040-2053

  18. Smithson, C.L., Bakhshi, N.N.: The kinetics and mechanism of the hydration of magnesium oxide in a batch reactor. Can. J. Chem. Eng. 47 (1969) [6] 508-513

  19. Birchal, V.S., Rocha, S.D.F., Mansur, M.B., Ciminelli, V.S.T.: A simplified mechanistic analysis of the hydration of magnesia. Can. J. Chem. Eng. 79 (2001) [4] 507-511

  20. Rocha, S.D.F., Mansur, M.B., Ciminelli, V.S.T.: Kinetics and mechanistic analysis of caustic magnesia hydration. J. Chem. Tech. Biotech. 79 (2004) [8] 816-821

  21. Kitamura, A., Onizuka, K., Tanaka, K.: Hydration characteristics of magnesia. Taikabutsu Overs. 16 (1995) [3] 3-11

  22. Salomão, R., Arruda, C.C., Kawamura, M.A.: A systemic investigation on the hydroxylation behavior of caustic magnesia and magnesia sinter. Ceram. Int. 41 (2015) [10] 13998-14007

  23. Liu, J.P., Wang, Y.J., Tian, Q., Zhang, S.Z.: Modeling hydration process of magnesia based on nucleation and growth theory: The isothermal calorimetry study. Thermoch. Act. 550 (2012) [20] 27-32

  24. Salomão, R., Arruda, C.C., Souza, A.D.V., Fernandes, L.: Novel insights into MgO hydroxylation: Effects of testing temperature, samples' volume and solid load. Ceram. Int. 40 (2014) [9B] 14809-14815

  25. Chatterji, S.: Mechanism of expansion of conc. due to the presence of dear-burnt CaO and MgO. Cem. Conc. Res. 25 (1995) 51-56

  26. Salomão, R., Bittencourt, L.R.M., Pandolfelli, V.C.: A novel approach for magnesia hydration assessment in refractory castables. Ceram. Int. 33 (2007) [5] 803-810

  27. Khangaonkar, P.R., Othman, R., Ranjitham, M.: Studies on particle breakage during hydration of calcined magnesite. Min. Eng. 3 (1990) [1-2] 227-235

  28. Sutcu, M., Akkurt, S., Okur, S.: A microstructural study of surface hydration on a magnesia refractory. Ceram. Int. 36 (2010) [5] 1731-1735

  29. Kaneyasu, A., Yamamoto, S., Yoshida, A.: Magnesia raw materials with improved hydration resistance. Taikabutsu Overs. 17 (1996) [2] 21-26

  30. Amaral, L.F., Oliveira, I.R., Salomão, R., Frollini, E., Pandolfelli, V.C.: Temperature and common-ion effect on magnesium oxide (MgO) hydration. Ceram. Int. 36 (2010) [3] 1047-1054

  31. Amaral, L.F., Oliveira, I.R., Bonadia, P., Salomão, R., Pandolfelli, V.C.: Chelants to inhibit magnesia [MgO] hydration. Ceram. Int. 37 (2011) [5] 1537-1542

  32. Salomão, R., Pandolfelli, V.C.: Citric acid as anti-hydration additive for magnesia containing refractory castables. Ceram. Int. 37 (2011) [6] 1839-1842

  33. Souza, T.M., Luz, A.P., Pandolfelli, V.C.: Magnesium fluoride role on alumina-magnesia Cem.-bonded castables. Ceram. Int. 40 (2014) [9] 14947-14956

  34. Salomão, R. Bittencourt, L.R.M., Pandolfelli, V.C.: A novel magnesia based binder [MBB] for refractory castables. Interceram: Int. Cer. Rev. Refrac. Man. (2009) 21-24

  35. Souza, T.M., Luz, A.P., Bráulio, M.A.L., Pagliosa, C., Pandolfelli, V.C.: Acetic acid role on magnesia hydration for Cem.-free refractory castables. J. Am. Cer. Soc. 97 (2014) [4] 1233-1241

  36. Henrist, C., Mathieu, J.P., Vogels, C., Rulmont, A., Cloots, R.: Morphological study of magnesium hydroxide nanoparticles precipitated in dilute aqueous solution. J. Cryst. Grow. 249 (2003) 321-330

  37. Lv, J., Qiu, L., Qu, B.: Controlled growth of three morphological structures of magnesium hydroxide nanoparticles by wet precipitation method. J. Cryst. Grow. 267 (2004) 676-684

  38. Pokrovsky, O.S., Schott, J.: Experimental study of brucite dissolution and precipitation in aqueous solutions: Surface specification and chemical affinity control. Geochim. Cosmochim. Act. 68 (2004) [1] 31-45

  39. Hsu, J.P., Nacu, A.: Preparation of submicron-sized Mg[OH]2 particles through precipitation. Coll. Surf. A. 262 (2005) 220-231

  40. Yan, C., Xue, D., Zou, L., Yan, X., Wang, W.: Preparation of magnesium hydroxide nanoflowers. J. Cryst. Grow. 282 (2005) 448-454

  41. Chen, D., Zhu, L., Liu, P., Zhang, H., Xu, K., Chen M.: Rod-like morphological magnesium hydroxide and magnesium oxide via a wet coprecipitation process. J. Por. Mat. 16 (2009) [1] 13-18

  42. Wang, W., Qiao, X., Chen, J., Li, H.: Facile synthesis of magnesium oxide nanoplates via chemical precipitation. Mat. Lett. 61 (2007) 3218-3220

  43. Yoshida, T., Tahaka, T., Yoshida, H., Funabiki, T., Yoshida, S., Murata, T.: Study of dehydration of magnesium hydroxide. J. Phys. Chem. 99 (1995) [27] 10890-10896

  44. Mishakov, I.V., Bedilo, A.F., Richards, R.M., Chesnokov, V.V., Volodin, A.M., Zaikovskii, V.I., Buyanov, R.A., Kladunde, K.J.: Nanocrystalline MgO as a dehydrohalogenation catalyst. J. Cat. 206 (2002) 40-48

  45. Gregg, S.J., Razouk, R.I.: Kinetics of thermal decomposition of magnesium hydroxide. J. Chem. Soc. (1949) S36-44

  46. Brewer, L., Porter, R.F.: A thermodynamic and spectroscopic study of gaseous magnesium oxide. J. Chem. Phys. 22 (1954) 1867-1877

  47. Goodman, J.F.: The decomposition of magnesium hydroxide in an electron microscope. In: Proc. Roy. Soc. Lon. A. 247 (1958) [1250] 346-352

  48. Ball, M.C., Taylor, F.W.: The dehydration of brucite. Min. Mag. and J. Min. Soc. 32 (1961) [253] 754-766

  49. Anderson, P.J., Horlock, R.F.: Thermal decomposition of magnesium hydroxide. Trans. Farad. Soc. 58 (1962) [475] 1993-2004

  50. Turner, R.C., Hoffman, I., Chen, D.: Thermogravimetry of the dehydration of Mg[OH]2. Can. J. Chem. 41 (1963) [2] 243-251

  51. Pampuch, R., Librant, Z., Piekarczyk, J.: Texture and sinterability of MgO powders. Ceram. Inter. 1 (1975) [1] 14-18

  52. Gordon, R.S., Kingery, W.D.: Thermal decomposition of brucite: I, Electron and optical microscope studies. J. Am. Cer. Soc. 49 (1966) [12] 654-660

  53. Brett, N.H., Anderson, P.J.: Mechanism of decomposition of brucite. Trans. Farad. Soc. 63 (1967) 2044-2050

  54. Liu, C., Liu, T., Wang, D.: Non-isothermal kinetics study on the thermal decomposition of brucite by thermogravimetry. J. Therm. Anal. Calor. 134 (2018) 2399-2347

  55. Kim, M.G., Dahmen, U., Searcy, A.W.: Structural transformation in decomposition of Mg[OH]2 and MgCO3. J. Am. Cer. Soc. 70 (1987) [3] 146-154

  56. Phillips, V.A., Opperhauser, H., Kolbe, J.L.: Relations among particle size, shape and surface area of Mg[OH]2 and its calcination product. J. Am. Cer. Soc. 61 (1978) [1] 78-81

  57. Green, J.: Calcination of precipitated Mg[OH]2 to active MgO in production of refractory and chemical grade MgO. J. Mat. Sci. 18 (1983) 637-651

  58. Wang, J.A., Novaro, A.O., Bokhimi, X., López, T., Gómez, R., Navarrete, J., Llanos, M.E., López-Salina, E.: Characterizations of the thermal decomposition of brucite prepared by sol-gel technique for synthesis of nanocrystalline MgO. Mat. Lett. 35 (1998) 317-323

  59. Kabalah-Amitai, L., Mayzel, B., Kauffmann, Y., Fitch, A.N., Bloch, L., Gilbert, P.U.P.A., Pokroy, B.: Vaterite crystals containing two interspersed crystal structures. Science 340 (2013) [6131] 454-457

  60. Wang, C., He, C., Tong, Z., Liu, X., Ren, B., Zeng, F.: Combination of adsorption by porous CaCO3 microparticles and encapsulation by polyelectrolyte multilayer films for sustained drug delivery. Int. J. Pharm. 308 (2006) 160-167

  61. Costa, L.M.M., Sakihama, J., Salomão, R.: Characterization of porous calcium hexaluminate produced from calcined alumina and microspheres of Vaterire (µ-CaCO3). J. Eur. Cer. Soc. 38 (2018) 5208-5218

  62. Fernandes, L., Salomão, R.: Preparation and characterization of mullite-alumina structures formed "in situ" from calcined alumina and different grades of synthetic amorphous silica. Mat. Res. 21 (2018) [3] e20170783

  63. Cimino, A., Porta, P., Valigi, M.: Dependence on the lattice parameter of magnesium oxide on crystallite size. J. Am. Cer. Soc. 49 (1966) [3] 152-156

  64. Guilliat, I.F., Brett, N.H.: X-ray line broadening as a measure of crystallite size in oxide powders. Phil. Mag. 21 (1970) [172] 671-680

  65. Wuensch, B.J., Vasilos, T.: Grain-boundary diffusion in MgO. The American Ceramic Soc. 47 (1964) [2] 63-68

  66. Robertson, W.M.: Kinetics of grain boundary grooving on magnesium oxide. In: Kuczynski, G.C., Hooton, N.A., Gibbon, C.F., eds. Sintering and Related Phenomena. New York. Gordon and Breach, Science Publishers (1965) 215-230. Library of Congress Catalog Card 67-26576. LCCN Permalink: https://lccn.loc.gov/67026576.

  67. Lowrie, R.C., Cutler, I.B.: The effect of porosity on the rate of grain growth of magnesia. In: Kuczynski, G.C., Hooton, N.A., Gibbon, C.F., eds. Sintering and Related Phenomena. New York. Gordon and Breach, Science Publishers (1965) 527-539. Library of Congress Catalog Card 67-26576. LCCN Permalink: https://lccn.loc.gov/67026576.

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Salomão, R., Arruda, C. & Antunes, M. Synthesis, Dehydroxylation and Sintering of Porous Mg(OH)2-MgO Clusters: Evolution of Microstructure and Physical Properties. Interceram. - Int. Ceram. Rev. 69, 52–62 (2020). https://doi.org/10.1007/s42411-019-0067-y

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s42411-019-0067-y

Navigation