Skip to main content

Advertisement

Log in

Eight Weeks of Exercise Training on 6MWT, Heart Function, and CHF Biomarker in Patients with Chronic Heart Failure

  • Imaging
  • Published:
SN Comprehensive Clinical Medicine Aims and scope Submit manuscript

Abstract

The aim of this study was to evaluate the effect of concurrent aerobic-resistance training (CART) on aerobic power, heart function, and biomarker in patients with chronic heart failure (CHF). A total of 76 HF with reduced ejection fraction (HFrEF) (EF < 40%) participated in the two groups, intervention group (IG, N = 38) and control group(CG, N = 38) that IG performed an 8-week CART program (3 times a week for 45–60 min) and walking (another 4 days a week for 30 min). 6MWT, heart rate variability, echocardiography parameters, NT-proBNP, and Galectin-3(Gal-3) were evaluated before and after the program. The comparison of CG and IG showed that 6MWT (277.89 ± 51.31 vs. 200.00 ± 32.33) and EF (32.89 ± 5.34vs. 32.1 ± 4.53) had increased, and DIVS (10.14 ± 0.88 vs. 10.47 ± 0.76), LVEDD (52.71 ± 6.16vs. 53.71 ± 5.12), LVESD (46.71 ± 5.68vs. 47.05 ± 6.04), heart rate (80.26 ± 7.97vs. 94.71 ± 14.52), NT-proBNP, and Gal-3 levels had decreased after 8 weeks, respectively (p < 0/05). The results showed that the CART program could improve aerobic power, heart rate, and echocardiographic parameters in CHF.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Data Availability

The datasets used and/or analyzed during the current study are available from the corresponding author on reasonable request.

Abbreviations

ASE:

American Society of Echocardiography

BSA:

Body surface area

CHF:

Congestive heart failure

EF:

Ejection fraction

DIVS:

Diastolic interventricular septal thickness

HRV:

Heart rate variability

LV:

Left ventricle

LVEDD:

Left ventricle end-diastolic dimension

LVESD:

Left ventricle end-systolic dimension

VO2 max:

Maximal oxygen uptake

NT-proBNP:

N-terminal pro b-type natriuretic peptide

Gal-3:

Galectin-3

NYHA:

New York Heart Association

6MWT:

6-min walking test

SVR:

Systemic vascular resistance

References

  1. Buglioni A, Burnett JC Jr. Pathophysiology and the cardiorenal connection in heart failure. Circulating hormones:biomarkers or mediators. Clin Chim Acta. 2015;443:3–8.

    CAS  PubMed  Google Scholar 

  2. Orea-Tejeda A, Orozco-Gutiérrez J, Castillo-Martínez JL, Keirns-Davies C, Montano-Hernández P, Vázquez-Díaz O, et al. The effect of L-arginine and citrulline on endothelial function in patients in heart failure with preserved ejection fraction. Cardiol J. 2010;17(5):464–70.

    PubMed  Google Scholar 

  3. Benjamin IJ, Griggs RC, Wing EJ, Fitz JG, editors. Andreoli and Carpenter’s Cecil Essentials of Medicine. 9th ed. Philadelphia: WB Saunders; 2015. [Textbook]

    Google Scholar 

  4. Shimiaie J, Sherez J, Aviram G, Megidish R, Viskin S, Halkin A, et al. Determinants of effort intolerance in patients with heart failure: combined echocardiography and cardiopulmonary stress protocol. JACC: Heart Fail. 2015;3(10):803–14.

    Google Scholar 

  5. Savarese G, Lund LH. Global public health burden of heart failure. Cardiac Fail. 2017; review;3(1):7.

    Google Scholar 

  6. Albus C, Herrmann-Lingen C, Jensen K, Hackbusch M, Munch N, Kuncewicz C, et al. Additional effects of psychological interventions on subjective and objective outcomes compared with exercise-based cardiac rehabilitation alone in patients with cardiovascular disease: a systematic review and meta-analysis. Eur J Prev Cardiol. 2019;26(10):1035–49.

    PubMed  PubMed Central  Google Scholar 

  7. Bruser C, Stadlthanner K, de Waele S, Leonhardt S. Adaptive beat-to-beat heart rate estimation in ballistocardiograms. IEEE Trans Inf Technol Biomed. 2011;15(5):778–86.

    PubMed  Google Scholar 

  8. Cottin F, Leprêtre PM, Lopes P, Papelier Y, Médigue C, Billat V. Assessment of ventilatory thresholds from heart rate variability in well-trained subjects during cycling. Int J Sports Med. 2006;27(12):959–67.

    CAS  PubMed  Google Scholar 

  9. Melin M, Hagerman I, Gonon A, Gustafsson T, Rullman E. Variability in physical activity assessed with accelerometer is an independent predictor of mortality in CHF patients. PLoS One. 2016;11(4):e0153036.

    PubMed  PubMed Central  Google Scholar 

  10. Giannitsi S, Bougiakli M, Bechlioulis A, Kotsia A, Michalis LK, Naka KK. 6-minute walking test: a useful tool in the management of heart failure patients. Ther Adv Cardiovasc Dis. 2019;13:1753944719870084. https://doi.org/10.1177/1753944719870084.

    Article  PubMed  PubMed Central  Google Scholar 

  11. Rame JE. Metabolic staging in human heart failure: circulating acylcarnitines and the failing heart’s energetic signature. J Am Coll Cardiol. 2016;67:300–2. https://doi.org/10.1016/j.jacc.2015.11.017.

    Article  PubMed  Google Scholar 

  12. Billebeau G, Vodovar N, Sadoune M, Launay JM, Beauvais F, Cohen-Solal A. Effects of a cardiac rehabilitation programme on plasma cardiac biomarkers in patients with chronic heart failure. Eur J Prev Cardiol. 2017;24(11):1127–35.

    PubMed  Google Scholar 

  13. Passino C, Severino S, Poletti R, Piepoli MF, Mammini C, Clerico A, et al. Aerobic training decreases B-type natriuretic peptide expression and adrenergic activation in patients with heart failure. J Am Coll Cardiol. 2006;47(9):1835–9.

    CAS  PubMed  Google Scholar 

  14. Conraads VM, Beckers P, Vaes J, Martin M, Vanhoof V, Demaeyer C, et al. Combined endurance/resistance training reduces NT-proBNP levels in patients with chronic heart failure. Eur Heart J. 2004;25(20):1797–805. https://doi.org/10.1016/j.ehj.2004.07.022.

    Article  CAS  PubMed  Google Scholar 

  15. Falcone C, Lucibello S, Mazzucchelli I, Bozzini S, D’Angelo A, Schirinzi S, et al. Galectin-3 plasma levels and coronary artery disease: a new possible biomarker of acute coronary syndrome. Int J Immunopathol Pharmacol. 2011;24:905–13.

    CAS  PubMed  Google Scholar 

  16. Chen K, Jiang R, Wang C, Yin Z, Fan Y, Cao J, et al. Predictive value of plasma galectin-3 in patients with chronic heart failure. Eur Rev Med Pharmacol Sci. 2013;17(8):1005–11.

    CAS  PubMed  Google Scholar 

  17. Issa S, Christensen A, Lottenburger T, Junker K, Lindegaard H, Hørslev-Petersen K, et al. Within-day variation and influence of physical exercise on circulating Galectin-3 in patients with rheumatoid arthritis and healthy individuals. Scand J Immunol. 2015;82(1):70–5.

    CAS  PubMed  Google Scholar 

  18. Giuliano C, Karahalios A, Neil C, Allen J, Levinger I. The effects of resistance training on muscle strength, quality of life and aerobic capacity in patients with chronic heart failure—a meta-analysis. Int J Cardiol. 2017;227:413–23.

    PubMed  Google Scholar 

  19. Smart NA, Meyer T, Butterfield JA, Faddy S, Passino C, Malfatto G, et al. Individual patient meta-analysis of exercise training effects on systemic brain natriuretic peptide expression in heart failure. Eur J Prev Cardiol. 2012;19(3):428–35.

    CAS  PubMed  Google Scholar 

  20. Adamopoulos S, Davos CH. Determining exercise training responders through inflammatory status in heart failure. Eur J Prev Cardiol. 2017;24(10):1015–6. https://doi.org/10.1177/2047487317703823 [Links ].

    Article  PubMed  Google Scholar 

  21. Fernandes-Silva MM, Guimarães GV, Rigaud VO, Lofrano-Alves MS, Castro RE, de Barros Cruz LG, et al. inflammatory biomarkers and effect of exercise on functional capacity in patients with heart failure: insights from a randomized clinical trial. Eur J Prev Cardiol. 2017;24(8):808–17.

    PubMed  Google Scholar 

  22. Gardner RS, McDonagh TA. Chronic heart failure: epidemiology, investigation and management. Medicine. 2014;42(10):562–7. https://doi.org/10.1016/j.mpmed.2014.07.008.

    Article  Google Scholar 

  23. Shaw BS, Shaw I, Brown GA. Resistance exercise is medicine: strength training in health promotion and rehabilitation. Int J Ther Rehabil. 2015;22(8):385–9.

    Google Scholar 

  24. Abela M. Exercise training in heart failure. Postgrad Med J. 2018;94(1113):392–7.

    PubMed  Google Scholar 

  25. Sandri M, Viehmann M, Adams V, Rabald K, Mangner N, Höllriegel R, et al. Chronic heart failure and aging–effects of exercise training on endothelial function and mechanisms of endothelial regeneration: results from the Leipzig exercise intervention in chronic heart failure and aging (LEICA) study. Eur J Prev Cardiol. 2016;23(4):349–58.

    PubMed  Google Scholar 

  26. Gary RA, Cress ME, Higgins MK, Smith AL, Dunbar SB. Combined aerobic and resistance exercise program improves task performance in patients with heart failure. Arch Phys Med Rehabil. 2011;92(9):1371–81.

    PubMed  PubMed Central  Google Scholar 

  27. Pozehl B, Duncan K, Hertzog M, Norman JF. Heart failure exercise and training camp: effects of a multicomponent exercise training intervention in patients with heart failure. Heart Lung: J Acute Critic Care. 2010;39(6):S1–S13.

    Google Scholar 

  28. Long L, Mordi IR, Bridges C, et al. Exercise-based cardiac rehabilitation for adults with heart failure. Cochrane Database Syst Rev. 2019;1:CD003331.

    PubMed  Google Scholar 

  29. Wisløff U, Støylen A, Loennechen JP, Bruvold M, Rognmo Ø, Haram PM, et al. Superior cardiovascular effect of aerobic interval training versus moderate continuous training in heart failure patients. Circulation. 2007;115(24):3086–94. Retrieved from. https://doi.org/10.1161/circulationaha.106.675041.

    Article  PubMed  Google Scholar 

  30. Borg G. Psychophysical scaling with applications in physical work and the perception of exertion. Scand J Work Environ Health. 1990;16(Suppl 1):55–8.

    PubMed  Google Scholar 

  31. Sturm B, Quittan M, Wiesinger GF, Stanek B, Frey B, Pacher R. Moderate-intensity exercise training with elements of step aerobics in patients with severe chronic heart failure. Arch Phys Med Rehabil. 1999;80(7):746–50.

    CAS  PubMed  Google Scholar 

  32. Arthur HM, Gunn E, Thorpe KE, Ginis KM, Mataseje L, McCartney N, et al. Effect of aerobic vs combined aerobic-strength training on 1-year, post-cardiac rehabilitation outcomes in women after a cardiac event. J Rehabil Med. 2007;39(9):730–5. https://doi.org/10.2340/16501977-0122.

    Article  PubMed  Google Scholar 

  33. Gary RA, Cress ME, Higgins MK, Smith AL, Dunbar SB. A combined aerobic and resistance exercise program improves physical functional performance in patients with heart failure: a pilot study. J Cardiovasc Nurs. 2012;27(5):418–30.

    PubMed  PubMed Central  Google Scholar 

  34. Braunwald E. Biomarkers in heart failure. N Engl J Med. 2008;358(20):2148–59.

    CAS  PubMed  Google Scholar 

  35. McMurray JJV, Pfeffer MA. Heart failure. Lancet. 2005;365(9474):1877–89. https://doi.org/10.1016/S0140-6736(05)66621-4.

    Article  PubMed  Google Scholar 

  36. Dunbar SB, Butts B, Reilly CM, Gary RA, Higgins MK, Ferranti EP, et al. A pilot test of an integrated self-care intervention for persons with heart failure and concomitant diabetes. Nurs Outlook. 2014;62(2):97–111.

    PubMed  Google Scholar 

  37. Nuttall FQ. Body mass index: obesity, BMI, and health: a critical review. Nutr Today. 2015;50(3):117–28.

    PubMed  PubMed Central  Google Scholar 

  38. Yadav RL, Yadav PK, Yadav LK, Agrawal K, Sah SK, Islam MN. Association between obesity and heart rate variability indices: an intuition toward cardiac autonomic alteration–a risk of CVD. Diabetes, Metab Syndrome Obes: Targets Ther. 2017;10:57.

    Google Scholar 

  39. Lang RM, Badano LP, Mor-Avi V, Afilalo J, Armstrong A, Ernande L, et al. Recommendations for cardiac chamber quantification by echocardiography in adults: an update from the American Society of Echocardiography and the European Association of Cardiovascular Imaging. Euro Heart J-Cardiovasc Imaging. 2015;16(3):233–70. https://doi.org/10.1093/ehjci/jev014.

    Article  Google Scholar 

  40. Sarullo FM, Gristina T, Brusca I, Milia S, Raimondi R, Sajeva M, et al. Effect of physical training on exercise capacity, gas exchange and N-terminal pro-brain natriuretic peptide levels in patients with chronic heart failure. Eur J Cardiovasc Prev Rehabil. 2006;13(5):812–7. https://doi.org/10.1097/01.hjr.0000238396.42718.61.

    Article  Google Scholar 

  41. Ahmad T, Pencina MJ, Schulte PJ, O’Brien E, Whellan DJ, Piña IL, et al. Clinical implications of chronic heart failure phenotypes defined by cluster analysis. J Am Coll Cardiol. 2014;64(17):1765–74.

    PubMed  PubMed Central  Google Scholar 

  42. Hsu C-Y, Hsieh P-L, Hsiao S-F, Chien M-Y. Effects of exercise training on autonomic function in chronic heart failure: systematic review. Biomed Res Int. 2015;2015:591708. https://doi.org/10.1155/2015/591708.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  43. Yaylalı YT, Fındıkoğlu G, Yurtdaş M, Konukçu S, Şenol H. The effects of baseline heart rate recovery normality and exercise training protocol on heart rate recovery in patients with heart failure. Anatolian J Cardiol. 2015;15(9):727–34.

    Google Scholar 

  44. Ricca-Mallada R, Migliaro E, Piskorshi J, Guzik P. Exercise training slows down heart rate and improves deceleration and acceleration capacity in patients with heart failure. J Electrocardiol. 2012;45(3):214–9.

    PubMed  Google Scholar 

  45. Slimani M, Ramirez-Campillo R, Paravlic A, Hayes LD, Bragazzi NL, Sellami M. The effects of physical training on quality of life, aerobic capacity, and cardiac function in older patients with heart failure: a meta-analysis. Front Physiol. 2018. Retrieved from;9. https://doi.org/10.3389/fphys.2018.01564.

  46. Ciani O, Piepoli M, Smart N, Uddin J, Walker S, Warren FC, et al. Validation of exercise capacity as a surrogate endpoint in exercise-based rehabilitation for heart failure: a meta-analysis of randomized controlled trials. JACC: Heart Fail. 2018;6(7):596–604.

    Google Scholar 

  47. Cadore EL, Pinto RS, Pinto SS, Alberton CL, Correa CS, Tartaruga MP, et al. Effects of strength, endurance, and concurrent training on aerobic power and dynamic neuromuscular economy in elderly men. J Strength Condition Res. 2011;25(3):758–66.

    Google Scholar 

  48. Hartman MJ, Fields DA, Byrne NM, Hunter GR. Resistance training improves metabolic economy during functional tasks in older adults. J Strength Cond Res. 2007;21(1):91–5.

    PubMed  Google Scholar 

  49. Liu CJ, Latham NK. Progressive resistance strength training for improving physical function in older adults. Cochrane Database Syst Rev. 2009;3.

  50. Delagardelle C, Feiereisen P, Autier P, Shita R, Krecke R, Beissel J. Strength/endurance training versus endurance training in congestive heart failure. Med Sci Sports Exerc. 2002;1872–1868(12):34.

    Google Scholar 

  51. Jakovljevic DG, Donovan G, Nunan D, McDonagh S, Trenell MI, Grocott-Mason R, et al. The effect of aerobic versus resistance exercise training on peak cardiac power output and physical functional capacity in patients with chronic heart failure. Int J Cardiol. 2010;145(3):526–8.

    PubMed  Google Scholar 

  52. Dubach P, Myers J, Dziekan G, Goebbels U, Reinhart W, Vogt P, et al. Effect of exercise training on myocardial remodeling in patients with reduced left ventricular function after myocardial infarction: application of magnetic resonance imaging. Circulation. 1997;95(8):2060–7.

    CAS  PubMed  Google Scholar 

  53. Gaggin HK, Mohammed AA, Bhardwaj A, Rehman SU, Gregory SA, Weiner RB, et al. Heart failure outcomes and benefits of NT-proBNP-guided management in the elderly: results from the prospective, randomized ProBNP outpatient tailored chronic heart failure therapy (PROTECT) study. J Card Fail. 2012;18(8):626–34.

    CAS  PubMed  Google Scholar 

  54. Cockburn J, Blows L, Cohen A, Holmberg S, Hyde J, Lewis M, et al. Acute ischemic complications of PCI and CABG: who should cover whom for coronary revascularization? J Interv Cardiol. 2013;26(4):372–7. Retrieved from. https://doi.org/10.1111/joic.12045.

    Article  PubMed  Google Scholar 

  55. Smart N, Haluska B, Jeffriess L, Marwick TH. Exercise training in systolic and diastolic dysfunction: effects on cardiac function, functional capacity, and quality of life. Am Heart J. 2007;153(4):530–6.

    PubMed  Google Scholar 

  56. Bjarnason-Wehrens B, Nebel R, Jensen K, et al. Exercise-based cardiac rehabilitation in patients with reduced left ventricular ejection fraction: the Cardiac Rehabilitation Outcome Study in Heart Failure (CROS-HF): a systematic review and meta-analysis. Eur J Prev Cardiol. 2020;27(9):929–52. Published online 2019 Jun 8. https://doi.org/10.1177/2047487319854140.

    Article  PubMed  Google Scholar 

  57. Yanagi H, Nakanishi M, Konishi H, Yamada S, Fukui N, Kitagaki K, et al. Effect of exercise training in heart failure patients without echocardiographic response to cardiac resynchronization therapy. Circ Reports. 2019;1(2):55–60.

    Google Scholar 

  58. Conraads VM, Beckers PJ. Exercise training in heart failure: practical guidance. Heart. 2010;96(24):2025–31. Retrieved from. https://doi.org/10.1136/hrt.2009.183889.

    Article  PubMed  Google Scholar 

  59. Aronow WS, Fleg JL, Pepine CJ, Artinian NT, Bakris G, Brown AS, et al. ACCF/AHA 2011 expert consensus document on hypertension in the elderly: a report of the American College of Cardiology Foundation Task Force on clinical expert consensus documents developed in collaboration with the American Academy of Neurology, American Geriatrics Society, American Society for Preventive Cardiology, American Society of Hypertension, American Society of Nephrology, Association of Black Cardiologists, and European Society of Hypertension. J Am Coll Cardiol. 2011;57(20):2037–114.

    PubMed  Google Scholar 

  60. Fleg JL, Strait J. Age-associated changes in cardiovascular structure and function: a fertile milieu for future disease. Heart Fail Rev. 2012;17(4–5):545–54.

    PubMed  PubMed Central  Google Scholar 

  61. Fletcher GF, Ades PA, Kligfield P, Arena R, Balady GJ, Bittner VA, et al. Exercise standards for testing and training: a scientific statement from the American Heart Association. Circulation. 2013;128(8):873–934.

    PubMed  Google Scholar 

  62. Felker GM, Fiuzat M, Shaw LK, Clare R, Whellan DJ, Bettari L, et al. Galectin-3 in ambulatory patients with heart failure: results from the HF-ACTION study. Circ Heart Fail. 2012;5(1):72–8.

    CAS  PubMed  Google Scholar 

  63. Atabakhshian R, Kazerouni F, Raygan F, Amirrasouli H, Rahimipour A, Shakeri N. Assessment of the relationship between galectin-3 and ejection fraction and functional capacity in the patients with compensated systolic heart failure. Int Cardiovasc Res J. 2014;8(4):143–7.

    PubMed  PubMed Central  Google Scholar 

  64. Thandavarayan RA, Watanabe K, Ma M, Veeraveedu PT, Gurusamy N, Palaniyandi SS, et al. 14-3-3 protein regulates Ask1 signaling and protects against diabetic cardiomyopathy. Biochem Pharmacol. 2008;75(9):1797–806.

    CAS  PubMed  Google Scholar 

  65. Nilsson BB, Westheim A, Risberg MA, Arnesen H, Seljeflot I. Effect of group-based aerobic interval training on N-terminal pro-B-type natriuretic peptide levels in patients with chronic heart failure. Scand Cardiovasc J. 2010;44(4):223–9.

    CAS  PubMed  Google Scholar 

Download references

Acknowledgments

This study is based on a PhD thesis of Zahra Mahmoodi, which was supported by the Department of Physical Education and sport sciences, Islamic Azad University, Rasht Branch, Iran. The authors gratefully acknowledge the help of Dr. Salman Nikfarjam in Dr. Heshmat hospital, Rasht, Guilan, Iran.

Author information

Authors and Affiliations

Authors

Contributions

Z M analyzed and interpreted the patient data. R S and M G were the major contributors in writing the manuscript. All authors read and approved the final manuscript.

Corresponding author

Correspondence to Zahra Mahmoodi.

Ethics declarations

Ethics Approval and Consent to Participate

The Ethics Committee of Rasht Branch, Islamic Azad University approved the study, code number: (IR.IAU.RASHT.REC.1396.101); IRCT.

Registration No: IRCT20150531022498N24.

Consent for Publication

Not applicable.

Competing Interests

The authors declare that they have no competing interests.

Conflict of Interest

Authors have not conflict of interest.

Ethical Approval

This article does not contain any studies with animals performed by any of the authors.

Informed Consent

Informed consent was obtained from all individual participants included in the study.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

This article is part of the Topical Collection on Imaging

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Mahmoodi, Z., Shabani, R. & Gholipour, M. Eight Weeks of Exercise Training on 6MWT, Heart Function, and CHF Biomarker in Patients with Chronic Heart Failure. SN Compr. Clin. Med. 2, 1453–1461 (2020). https://doi.org/10.1007/s42399-020-00459-x

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s42399-020-00459-x

Keywords

Navigation