Skip to main content

Advertisement

Log in

Biowaste valorization for production of bacterial cellulose and its multifarious applications contributing to environmental sustainability

  • Review
  • Published:
Environmental Sustainability Aims and scope Submit manuscript

Abstract

Biowastes, an outcome of burgeoning population, urbanization, consumerism and relentless industrialization has led to degradation of the environment and became a matter of concern for the entire globe. Therefore, strategies are being adopted to enable a sustainable utilization of waste biomass and diminish the environmental burden. Waste valorization is one of the emerging concepts that results in the transformation of waste into value-added products by promoting recyclability, technologies and sustainable livelihoods. Bacterial cellulose (BC) is a naturally occurring value-added nanomaterial produced as exopolysaccharides by bacteria,  and is found abundantly in almost all types of biowastes. On account of importance of waste valorization and circular economy, this paper reviews the characteristics, structure and extraction of BC from the bacterial communities utilising different sources, e.g., municipal wastes, paper mills, animal wastes, biorefineries, agro-industrial sources, etc. It also describes the applications of BC to diverse fields while promoting environmental sustainability.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2

Similar content being viewed by others

References

  • Abdel-Shafy HI, Mansour MS (2018) Solid waste issue: Sources, composition, disposal, recycling, and valorization. Egypt J Pet 27(4):1275–1290

    Article  Google Scholar 

  • Alonso DM, Hakim SH, Zhou S, Won W, Hosseinaei O, Tao J, Houtman CJ (2017) Increasing the revenue from lignocellulosic biomass: maximizing feedstock utilization. Sci Adv 3(5):e1603301

    Article  Google Scholar 

  • Andriani D, Apriyana AY, Karina M (2020) The optimization of bacterial cellulose production and its applications: a review. Cellulose 27:6747–6766

    Article  CAS  Google Scholar 

  • Anton-Sales I, D’Antin JC, Fernandez-Engroba J, Laromaine VCA, Roig A, Michael R (2020) Bacterial nanocellulose as a corneal bandage material: a comparison with amniotic membrane. Biomater Sci 8:2921–2930

    Article  CAS  Google Scholar 

  • Arancon RAD, Lin CSK, Chan KM, Kwan HT, Luque R (2013) Advances on waste valorization strategies: news horizons for a more sustainable society. Energy Sci Eng 1:53–71

    Article  Google Scholar 

  • Arevalo Gallegos AM, Carrera SH, Parra R, Keshavarz T, Iqbal HMN (2016) Bacterial cellulose: a sustainable source to develop value added products—a review. Bio Res 11(2):5641–5655

    Google Scholar 

  • Azeredo H, Barud H, Farinas CS, Vasconcellos VM, Claro AM (2019) Bacterial cellulose as a raw material for food and food packaging applications. Front Sustain Food Syst 3:7

    Article  Google Scholar 

  • Balaman SY (2019) Introduction to biomass—resources, production, harvesting, collection, and storage. In: Balaman SY (ed) Decision-making for biomass-based production chains. Elsevier, San Diego, pp 1–23

    Google Scholar 

  • Balat M, Ayar G (2005) Biomass energy in the world, use of biomass and potential trends. Energy Sources 27:931–940

    Article  Google Scholar 

  • Bandyopadhyay S, Saha N, Brodnjak UV, Saha P (2018) Bacterial cellulose based greener packaging material: a bioadhesive polymeric film. Mater Res Express 5:115405

    Article  Google Scholar 

  • Basu A, Vadanan SV, Lim S (2018) A novel platform for evaluating the environmental impacts on bacterial cellulose production. Sci Rep 8:5780

    Article  Google Scholar 

  • Bennett JA, Wilson K, Lee AF (2016) Catalytic applications of waste derived materials. J Mater Chem A 4(10):3617–3637

    Article  CAS  Google Scholar 

  • Bhat SA, Vig AP (2019) Vermistabilization and detoxification of sugar industry sludges by earthworms. In: Prasad MNV, Favas PJC, Vithanage M, Mohan SV (eds) Industrial and Municipal Sludge. Elsevier, pp 61–81

    Google Scholar 

  • Bianchet RT, Cubas ALV, Machado MM, Moecke EHS (2020) Applicability of bacterial cellulose in cosmetics-bibliometric review. Biotechnol Rep 27:e00502

    Article  Google Scholar 

  • Bilgi E, Bayir E, Sendemir-Urkmez A, Hames EE (2016) Optimization of bacterial cellulose production by Gluconacetobacter xylinus using carob and haricot bean. Int J Biol Macromol 90:2–10

    Article  CAS  Google Scholar 

  • Blanco Parte FG, Santoso SP, Chou CC, Verma V, Wang HT, Ismadji S (2020) Current progress on the production, modification, and applications of bacterial cellulose. Crit Rev Biotechnol 40(3):397–414

    Article  CAS  Google Scholar 

  • Board on Sustainable Development (1999) Our common journey: a transition toward sustainability. National Academy Press, Washington, DC

    Google Scholar 

  • Breitenmoser L, Gross T, Huesch R, Rau J, Dhar H, Kumar S, Wintgens T (2019) Anaerobic digestion of biowastes in India: opportunities, challenges and research needs. J Environ Manag 236:396–412

    Article  Google Scholar 

  • Campano C, Merayo N, Negro C, Blanco A (2018) In situ production of bacterial cellulose to economically improve recycled paper properties. Int J Biol 118:1532–1541

    CAS  Google Scholar 

  • Cerrutti P, Roldan P, Garcia RM, Galvagno MA, Vazquez A, Foresti ML (2016) Production of bacterial nanocellulose from wine industry residues: importance of fermentation time on pellicle characteristics. J Appl Polym Sci 133:43109

    Article  Google Scholar 

  • Chawla PR, Bajaj IB, Survase SA, Singhal RS (2009) Microbial cellulose: fermentative production and applications. Food Technol Biotechnol 47(2):107–124

    CAS  Google Scholar 

  • Chen L, Zou M, Hong FF (2015) Evaluation of fungal laccase immobilized on natural nanostructured bacterial cellulose. Front Microbiol 6:1245

    Article  Google Scholar 

  • Choi SM, Shin EJ (2020) The nanofication and functionalization of bacterial cellulose and its applications. Nanomaterials 10:406

    Article  CAS  Google Scholar 

  • Chopra R (2016) Environmental degradation in India: causes and consequences. Int J Appl Environ Sci 11(6):1593–1601

    Google Scholar 

  • Choudhary MP, Chauhan GS, Kushwah YK (2015) Environmental degradation: causes, impacts and mitigation. In: National Seminar on Recent Advancements in Protection of Environment and Its Management Issues (NSRAPEM-2015)

  • D’Amato D, Droste N, Allen B, Kettunen M, Lähtinen K, Korhonen J, Toppinen A (2017) Green, circular, bio economy: A comparative analysis of sustainability avenues. J Clean Prod 168:716–734

    Article  Google Scholar 

  • De Adhikari A, Oraon R, Tiwari SK, Lee JH, Nayak GC (2015) Effect of waste cellulose fibers on the charge storage capacity of polypyrrole and graphene/polypyrrole electrodes for supercapacitor application. RSC Adv 5:27347–27355

    Article  Google Scholar 

  • De Feo G, Ferrara C, Finelli A, Grosso A (2019) Environmental and economic benefits of the recovery of materials in a municipal solid waste management system. Environ Technol 40(7):903–911

    Article  Google Scholar 

  • Debata A, Debata M, Panda D (2018) Population growth and environmental degradation in India. Res Rev J Ecol 3(2):14–22

    Google Scholar 

  • Demirbas A (2001) Relationships between lignin contents and heating values of biomass. Energy Convers Manag 42(2):183–188

    Article  CAS  Google Scholar 

  • Dhar P, Pratto B, Cruz AJG, Bankar S (2019) Valorization of sugarcane straw to produce highly conductive bacterial cellulose/graphene nanocomposite films through in situ fermentation: Kinetic analysis and property evaluation. J Clean Prod 238:117859

    Article  CAS  Google Scholar 

  • Dubey S, Singh J, Singh RP (2018) Biotransformation of sweet lime pulp waste into high-quality nanocellulose with an excellent productivity using Komagataeibacter europaeus SGP37 under static intermittent fed-batch cultivation. Bioresour Technol 247:73–80

    Article  CAS  Google Scholar 

  • Eslahi N, Mahmoodi A, Mahmoudi N, Zandi N, Simchi A (2020) Processing and properties of nanofiberous bacterial cellulose containing polymer composites: A review of recent advances for biomedical applications. Polym Rev 60:144–170

    Article  CAS  Google Scholar 

  • Essack SY (2018) Environment: the neglected component of the one health triad. Lancet Planet Health 2(6):238–239

    Article  Google Scholar 

  • Foong SY, Liew RK, Yang Y, Cheng YW, Yek PNY, Mahari WAW, Aghbashlo M (2020) Valorization of biomass waste to engineered activated biochar by microwave pyrolysis: Progress, challenges, and future directions. Chem Eng J 389:124401

    Article  CAS  Google Scholar 

  • Fritsch C, Staebler A, Happel A, Marquez M, Aguayo IA, Abadias MAC, Gallur M, Cigognini IM, Montanari A, Lopez MJ, Estrella FS, Brunton N, Luengo E, Sisti L, Ferri M, Belotti G (2017) Processing valorization and application of bio-waste derived compounds from potato, tomato, olive and cereals: a review. Sustainability 9:1492

    Article  Google Scholar 

  • Ganapathi S, Sivakumar D (2020) Environmental degradation in India: causes and consequences. Alochana Chakra J IX(VIII):2231–3990

    Google Scholar 

  • Garcia C, Auxiliadora M (2019) Bacterial cellulose as a potential bioleather substitute for the footwear industry. Microb Biotechnol 12(4):582–585

    Article  Google Scholar 

  • Garcia RG, Campos DA, Aguilar CN, Madureinra AR, Pintado M (2020) Valorization of melon fruit (Cucumis melo L.) by-products: phytochemical and Biofunctional properties with emphasis on recent trends and advances. Trends Food Sci Technol 99:507–519

    Article  Google Scholar 

  • Garcia-Garcia G, Woolley E, Rahimifard S, Colwill J, White R, Needham L (2017) A methodology for sustainable management of food waste. Waste Biomass Valoriz 8(6):2209–2227

    Article  CAS  Google Scholar 

  • Gautam SP, Bundela PS, Pandey AK, Awasthi MK, Sarsaiya S (2010) Cellulase production by Pseudomonas sp. isolated from municipal solid waste compost. Int J Acad Res 2(6):330–333

    Google Scholar 

  • Gautam SP, Bundela PS, Pandey AK, Awasthi MK, Sarsaiya S (2012) Diversity of cellulolytic microbes and the biodegradation of municipal solid waste by a potential strain. Int J Microbiol 2012:1–12

    Article  Google Scholar 

  • Gnansounou E, Dauriat A (2011) Technoeconomic analysis of lignocellulosic ethanol. In: Pandey A, Larroche C, Ricke SC, Dussap CG, Gnansounou E (eds) Biofuels. Academic Press, pp 123–148

    Chapter  Google Scholar 

  • Goel G, Kalamdhad AS (2017) An investigation on use of paper mill sludge in brick manufacturing. Constr Build Mater 148:334–343

    Article  CAS  Google Scholar 

  • Gorgieva S, Trcek J (2019) Bacterial cellulose: Production, modification and perspective in biomedical applications. Nanomaterials 9:1352–1372

    Article  CAS  Google Scholar 

  • Guzel M, Akpinar O (2019) Production and characterization of bacterial cellulose from citrus peels. Waste Biomass Valoriz 10(8):2165–2175

    Article  CAS  Google Scholar 

  • Ha JH, Shehzad O, Khan S, Lee SY, Park JW, Khan T, Park JK (2008) Production of bacterial cellulose by a static cultivation using the waste from beer culture broth. Korean J Chem Eng 25:812

    Article  CAS  Google Scholar 

  • Hasan N, Rahman L, Kim SH (2020) Recent advances of nanocellulose in drug delivery systems. J Pharm Investig 50:553–572

    Article  CAS  Google Scholar 

  • He W, Zhang Z, Zheng Y, Qiao S, Xie Y, Sun Y, Qiao K, Feng Z, Wang X, Wang J (2020) Preparation of aminoalkyl grafted bacterial cellulose membranes with improved antimicrobial properties for biomedical applications. J Biomed Mater Res A 108(5):1086–1098

    Article  CAS  Google Scholar 

  • Hong F, Zhu YX, Yang G, Yang XX (2011) Wheat straw acid hydrolysate as a potential cost-effective feedstock for production of bacterial cellulose. J Chem Technol Biotechnol 86(5):675–680

    Article  CAS  Google Scholar 

  • Hong F, Guo X, Zhang S, Han SF, Yang G, Jönsson LJ (2012) Bacterial cellulose production from cotton-based waste textiles: enzymatic saccharification enhanced by ionic liquid pretreatment. Bioresour Technol 104:503–508

    Article  CAS  Google Scholar 

  • Huang C, Yang XY, Xiong L, Guo HJ, Luo J, Wang B, Chen XD (2015) Evaluating the possibility of using acetonebutanolethanol (ABE) fermentation wastewater for bacterial cellulose production by Gluconacetobacter xylinus. Lett Appl Microbiol 60(5):491–496

    Article  CAS  Google Scholar 

  • Huang Q, Zhao J, Liu M, Chen J, Zhu X, Wu T, Tian J, Wen Y, Zhang X, Wei Y (2018) Preparation of polyethylene polyamine@tannic acid encapsulated MgAl-layered double hydroxide for the efficient removal of copper (II) ions from aqueous solution. J Taiwan Inst Chem Eng 82:92–101

    Article  CAS  Google Scholar 

  • Hubbe MA (2013) Prospects for maintaining strength of paper and paperboard products while using less forest resources: a review. BioResources 9(1):1634–1763

    Article  Google Scholar 

  • Hussain Z, Saijad W, Khan T, Wahid F (2019) Production of bacterial cellulose from industrial wastes: a review. Cellulose 26:2895–2911

    Article  CAS  Google Scholar 

  • Hyun JY, Mahanty B, Kim CG (2014) Utilization of Makgeolli sludge filtrate (MSF) as low-cost substrate for bacterial cellulose production by Gluconacetobacter xylinus. Appl Biochem Biotechnol 172:3748–3760

    Article  CAS  Google Scholar 

  • Illa MP, Pathak AD, Sharma CS, Khandelwal M (2020) Bacterial cellulose-polyaniline composite derived hierarchical nitrogen doped porous carbon nanofibers as anode for high rate lithium ion batteries. ACS Appl Energy Mater 3(9):8676–8687

    Article  CAS  Google Scholar 

  • Iñiguez-Covarrubias G, Lange E, Rowell RM (2001) Utilization of byproducts from the tequila industry: part 1: agave bagasse as a raw material for animal feeding and fiberboard production. Bioresour Technol 77(1):25–32

    Article  Google Scholar 

  • Irshad MN, Anwar Z, But HI, Afroz A, Ikram N, Rashid U (2013) The industrial applicability of purified cellulase complex indigenously produced by Trichoderma viride through solid-state bio-processing of agro-industrial and municipal paper wastes. BioResources 8(1):145–157

    Google Scholar 

  • Jain RK, Gupta C, Dhermendra K, Thakur VV, Mathur RM (2013) Improved papermaking of recycled fibres through fibre modification with enzymes. Inpaper India 16(3):2013

    Google Scholar 

  • Jahan F, Kumar V, Saxena RK (2017) Distillery effluent as a potential medium for bacterial cellulose production: a biopolymer of great commercial importance. Bioresour Technol 250:922–926

    Article  Google Scholar 

  • Jamshaid A, Hamid A, Muhammad N, Naseer A, Ghauri M, Iqbal J, Rafiq S, Shah NS (2017) Cellulose based materials for the removal of heavy metals from wastewater—an overview. Chem Bio Eng 4:1–18

    Google Scholar 

  • Jozala AF, Aparesida R, Pertile RA, Alves C (2015) Bacterial cellulose production by Gluconacetobacter xylinus by employing alternative culture media. Appl Microbiol Biotechnol 99(3):1181–1190

    Article  CAS  Google Scholar 

  • Jung HI, Lee OM, Jeong JH, Jeon YD, Park KH, Kim HS (2010) Production and characterization of cellulose by Acetobacter sp. V6 using a cost-effective molasses-corn steep liquor medium. Appl Biochem Biotechnol 162(2):486–497

    Article  CAS  Google Scholar 

  • Khalid A, Ullash H, Ul-Islam M, Khan R, Khan S, Ahmad F, Khan T, Wahid F (2017) Bacterial cellulose-TiO2 nanocomposites promote healing and tissue regeneration in burn mice model. RSC Adv 7:47662–47668

    Article  CAS  Google Scholar 

  • Khatiwada P, Ahmed J, Sohag MH, Islam K, Azad AK (2016) Isolation, screening and characterization of cellulase producing bacterial isolates from municipal solid wastes and rice straw wastes. J Bioprocess Biotech 6(280):2

    Google Scholar 

  • Khattak WA, Khan T, Ul-Islam M, Wahid F, Park JK (2015) Production, characterization and physico-mechanical properties of bacterial cellulose from industrial wastes. J Polym Environ 23:45–53

    Article  CAS  Google Scholar 

  • Klein-Marcuschamer D, Oleskowicz-Popiel P, Simmons BA, Blanch HW (2012) The challenge of enzyme cost in the production of lignocellulosic biofuels. Biotechnol Bioeng 109(4):1083–1087

    Article  CAS  Google Scholar 

  • Klemm D, Schumann D, Udhardt U, Marsch S (2001) Bacterial synthesized cellulose—artificial blood vessels for microsurgery. Prog Polym Sci 26(9):1561–1603

    Article  CAS  Google Scholar 

  • Klitkou A, Fevolden AM, Capasso M (2019) From waste to value: valorisation pathways for organic waste streams in circular bioeconomics. Routledge

    Book  Google Scholar 

  • Kosseva MR, Zhong S, Li M, Zhang J, Tjutju NAS (2020) Biopolymers produced from food wastes: a case study on biosynthesis of bacterial cellulose from fruit juices. In: Kosseva MR, Webb C (eds) Food industry wastes. Elsevier, pp 225–254

    Chapter  Google Scholar 

  • Kumar MNR (2000) A review of chitin and chitosan applications. React Funct Polym 46(1):1–27

    Article  CAS  Google Scholar 

  • Kumar KS (2017) Impact of urbanization on environmental degradation in india-issues and challenges. Aayvagam 5A(2):2321–5739

    Google Scholar 

  • Kumar V, Sharma DK, Bansal V, Mehta D, Sangwan RS, Yadav SK (2019) Efficient and economic process for the production of bacterial cellulose from isolated strain of Acetobacter pasteurianus of RSV-4 bacterium. Bioresour Technol 275:430–433

    Article  CAS  Google Scholar 

  • Lee JY, Lee SE, Lee DW (2021) Current status and future prospects of biological routes to bio-based products using raw materials, wastes, and residues as renewable resources. Crit Rev Environ Sci Technol 52:1–57

    CAS  Google Scholar 

  • Lei W, Jin D, Liu H, Tong Z, Zhang H (2020) An overview of bacterial cellulose in flexible electrochemical energy storage. Chemsuschem 13(15):3731–3753

    Article  CAS  Google Scholar 

  • Leichenko R, Eisenhauer DC (2016) Global environmental change: human dimensions. In: Richardson D, Castree N, Goodchild MF, Kobayashi A, Liu W, Marston RA (eds) International encyclopedia of geography: people, the earth, environment and technology, pp 1–11

  • Li Z, Wang L, Hua J, Jia S, Zhang J, Liu H (2015) Production of nano bacterial cellulose from waste water of candied jujube-processing industry using Acetobacter xylinum. Carbohydr Polym 120:115–119

    Article  CAS  Google Scholar 

  • Lin CSK, Pfaltzgraff LA, Herrero-Davila L, Mubofu EB, Abderrahim S, Clark JH, Koutinas A, Kopsahelis N, Stamatelatou K, Dickson F, Thankappan S, Mohamed Z, Brocklesby R, Luque R (2013) Food waste as a valuable resource for the production of chemicals, materials and fuels. Current situation and perspective. Energy Environ Sci 6:426–464

    Article  CAS  Google Scholar 

  • Liu Y, Chen J (2014) Phosphorus cycle. In: Erik S, Brian F (eds) Reference module in earth systems and environmental sciences, encyclopedia of ecology. Academic Press, Oxford, pp 2715–2724

    Google Scholar 

  • Liu Y, Huang H, Gan D, Guo L, Liu M, Chen J, Deng F, Zhou N, Zhang X, Wei Y (2018) A facile strategy for preparation of magnetic graphene oxide composites and their potential for environmental adsorption. Ceram Int 44(15):18571–18577

    Article  CAS  Google Scholar 

  • Liu W, Du H, Zhang M, Liu K, Liu H, Xie H, Si C (2020) Bacterial cellulose-based composite scaffolds for biomedical applications: a review. ACS Sustain Chem Eng 8(20):7536–7562

    Article  CAS  Google Scholar 

  • Lizundia E, Cost CM, Alves R, Mendez S (2020) Cellulose and its derivatives for lithium ion battery separators: A review on the processing methods and properties. Carbohydr Polym Technol Appl 1:100001

    Google Scholar 

  • Luque R (2015) Catalytic biomass processing: prospects in future biorefineries. Curr Green Chem 2(1):90–95

    Article  CAS  Google Scholar 

  • Maksimuk Y, Antonava Z, Krouk V, Korsakova A, Kursevich V (2020) Prediction of higher heating value based on elemental composition for lignin and other fuels. Fuel 263:116727

    Article  CAS  Google Scholar 

  • Malinauskaite J, Jouhara H, Czajczyńska D, Stanchev P, Katsou E, Rostkowski P, Anguilano L (2017) Municipal solid waste management and waste-to-energy in the context of a circular economy and energy recycling in Europe. Energy 141:2013–2044

    Article  Google Scholar 

  • Mao L, Hu S, Gao Y, Wang L, Zhao W, Fu L, Cheng H, Xio L, Xie S, Ye W, Shi Z, Yang G (2020) Biodegradable and electroactive regenerated bacterial cellulose/MXene (Ti3C2Tx) composite hydrogel as wound dressing for accelerating skin wound healing under electrical stimulation. Adv. Healthc. Mater 9(19):2000872

    Article  CAS  Google Scholar 

  • Margarita A, Gallegos A, Carrera SH, Parra R, Keshavarz T, Iqbal HMN (2016) Bacterial cellulose: A sustainable source to develop value added products—a review. BioResources 11(2):5641–5655

    Article  Google Scholar 

  • Marsh AJ, O'Sullivan O, Hill C, Ross RP, Cotter PD (2014) Sequence-based analysis of the bacterial and fungal compositions of multiple kombucha (tea fungus) samples. Food Microbiol 38:171–178

    Article  CAS  Google Scholar 

  • Melikoglu M, Lin CSK, Webb C (2013) Analysing global food waste problem: pinpointing the facts and estimating the energy content. Cent Eur J Eng 3(2):157–164

    CAS  Google Scholar 

  • Millati R, Cahyono RB, Ariyanto T, Azzahrani IN, Putri RU, Taherzadeh MJ (2019) Agricultural, industrial, municipal, and forest wastes: an overview. In: Taherzadeh MJ, Bolton K, Wong J, Pandey A (eds) Sustainable resource recovery and zero waste approaches. Elsevier, pp 1–22

    Google Scholar 

  • Ministry of Environment and Natural Resources (2011) Statistical Yearbook of Forestry Production, 1st edn. Ministry of Environment and Natural Resources, Mexico

    Google Scholar 

  • Mirabella N, Castellani V, Sala S (2014) Current options for the valorization of food manufacturing waste: a review. J Clean Prod 65:28–41

    Article  Google Scholar 

  • Mohanty AK, Misra M, Drzal LT (eds) (2005) Natural fibers, biopolymers, and biocomposites. CRC Press

    Google Scholar 

  • Mohite BV, Patil SV (2014) A novel biomaterial: bacterial cellulose and its new era applications. Biotechnol Appl Biochem 61(2):101–110

    Article  CAS  Google Scholar 

  • Nattudurai G, Vendan SE, Ramachandran PV, Lingathurai S (2014) Vermicomposting of coirpith with cowdung by Eudrilus eugeniae Kinberg and its efficacy on the growth of Cyamopsis tetragonaloba (L) Taub. J Saudi Soc Agric Sci 13(1):23–27

    Google Scholar 

  • Nevárez LM, Casarrubias LB, Canto OS, Celzard A, Fierro V, Gómez RI, Sánchez GG (2011) Biopolymers-based nanocomposites: membranes from propionated lignin and cellulose for water purifcation. Carbohydr Polym 86:732–741

    Article  Google Scholar 

  • Niyazbekova ZT, Nagmetova GZ, Kurmanbayev AA (2018) An overview of bacterial cellulose applications. Eurasian J Appl Biotechnol 2:17–25

    Google Scholar 

  • Oliveira LS, Franca AS (2009) From solid biowastes to liquid biofuels. In: Ashworth GS, Azevedo P (eds) Agricultural wastes, agriculture issues and policies series. Nova Science Publishers, p 265

    Google Scholar 

  • Ouyang W, Reina JM, Kuna E, Yepez A, Balu AM, Romero AA, Luque R (2017) Wheat bran valorisation: Towards photocatalytic nanomaterials for benzyl alcohol photo-oxidation. J Environ Manag 203:768–773

    Article  CAS  Google Scholar 

  • Pacheco G, De Mello CV, Chiari-Andreo BG, Borges VC, Ribeiro SJL, Pecoraro E, Trovatti E (2017) Bacterial cellulose skin masks-properties and sensory tests. Int J Dermatol 17(5):840–847

    Google Scholar 

  • Parte FGB, Santoso PS, Chou CC, Verma V, Wang HT, Ismadji S, Cheng KC (2020) Current progress on the production, modification, and applications of bacterial cellulose. Crit Rev Biotechnol 40:397–414

    Article  Google Scholar 

  • Pensupa N, Leu SY, Hu Y, Du C, Liu H, Jing H, Lin CSK (2017) Recent trends in sustainable textile waste recycling methods: current situation and future prospects. Top Curr Chem 375:76

    Article  Google Scholar 

  • Pietzsch N, Ribeiro JDL, Medeiros JF (2017) Benefits, challenges and critical factors of success for zero waste: a systematic literature review. Waste Manag 67:324–353

    Article  Google Scholar 

  • Poletto M, Júnior H, Zattera A (2014) Native cellulose: Structure, characterization and thermal properties. Materials (basel) 7:6105–6019

    Article  Google Scholar 

  • Portela R, Leal CR, Almeida PL, Sobral RG (2019) Bacterial cellulose: A versatile biopolymer for wound dressing applications. Microb Biotechnol 12(4):586–610

    Article  CAS  Google Scholar 

  • Puri VP (1984) Effect of crystallinity and degree of polymerization of cellulose on enzymatic saccharification. Biotechnol Bioeng 26:1219–1222

    Article  CAS  Google Scholar 

  • Raghavendran V, Asare E, Roy I (2020) Bacterial cellulose: biosynthesis, production, and applications. Adv Microb Physiol 77(77):89

    Article  CAS  Google Scholar 

  • Raghunathan D (2013) Production of microbial cellulose from the new bacterial strain isolated from temple wash waters. Int J Curr Microbiol Appl Sci 2(12):275–290

    Google Scholar 

  • Rathinamoorthy R, Kiruba T (2020) Bacterial cellulose—a sustainable alternative material for footwear and leather products. In: Muthu S (ed) Leather and footwear sustainability. Textile Science and Clothing Technology, Springer, Singapore, pp 91–121

    Chapter  Google Scholar 

  • Remoundou K, Koundouri P (2009) Environmental effects on public health: an economic perspective. Int J Environ Res Pub He 6(8):2160–2178

    Article  Google Scholar 

  • Reports and Data (2022) Microbial and Bacterial Cellulose Production Market To Reach USD 980.9 Mn By 2028 (reportsanddata.com). Accessed on 20 February 2022

  • Revin V, Liyaskina E, Nazarkina M, Bogatyreva A, Shchankin M (2018) Cost-effective production of bacterial cellulose using acidic food industry by-products. Braz J Microbiol 49:151–159

    Article  CAS  Google Scholar 

  • Saarangapani B, Sripathi K (2015) Environmental degradation in India-Dimensions and concerns: A review. Prabandhan Indian J Manag 8(4):51–62

    Article  Google Scholar 

  • Sai H, Jin Z, Wang Y, Fu R, Wang Y, Ma L (2020) Facile and green route to fabricate bacterial cellulose membrane with superwettability for oil water separation. Adv Sustain Syst 4:2000042

    Article  CAS  Google Scholar 

  • Salvador M, Vorpahl SM, Xin H, Williamson W, Shao G, Karatay DU, Ginger DS (2014) Nanoscale surface potential variation correlates with local S/Se ratio in solution-processed CZTSSe solar cells. Nano Lett 14(12):6926–6930

    Article  CAS  Google Scholar 

  • Samadder SR, Prabhakar R, Khan D, Kishan D, Chauhan MS (2017) Analysis of the contaminants released from municipal solid waste landfill site: a case study. Sci Total Environ 580:593–601

    Article  CAS  Google Scholar 

  • Seddiqi H, Oliaei E, Honarkar H (2021) Cellulose and its derivatives: towards biomedical applications. Cellulose 28:1893–1931

    Article  CAS  Google Scholar 

  • Shaikh NM, Patel AA, Mehta SA, Patel ND (2013) Isolation and screening of cellulolytic bacteria inhabiting different environment and optimization of cellulase production. Univers J Environ Res Technol 3(1):39–49

    CAS  Google Scholar 

  • Shi Z, Zhang Y, Phillips GO, Yang G (2014) Utilization of bacterial cellulose in food. Food Hydrocoll 35:539–545

    Article  CAS  Google Scholar 

  • Singh G, Kaur K, Puri S, Sharma P (2015) Critical factors affecting laccase-mediated biobleaching of pulp in paper industry. Appl Microbiol Biotechnol 99:155–164

    Article  CAS  Google Scholar 

  • Skiba EA, Budaeva VV, Ovchinnikova EV, Gladysheva EK, Kashcheyeva EI, Pavlov IN, Sakovich GV (2020) A technology for pilot production of bacterial cellulose from oat hulls. Chem Eng J 383:123–128

    Article  Google Scholar 

  • Stoeva K, Alriksson S (2017) Influence of recycling programmes on waste separation behaviour. Waste Manag 68:732–741

    Article  Google Scholar 

  • Surmen Y, Demrbas A (2002) Thermochemical conversion of residual biomass to hydrogen for Turkey. Energy Sources 24(5):403–411

    Article  CAS  Google Scholar 

  • Swingler S, Gupta A, Gibson H, Kowalczuk M, Heaselgrave W, Radecka I (2021) Recent advances and applications of bacterial cellulose in biomedicine. Polymer 13(3):412

    Article  CAS  Google Scholar 

  • Tang N, Zhang S, Si Y, Yu J, Ding B (2019) An ultrathin bacterial cellulose membrane with a voronoi net structure for low pressure and high flux microfiltration. Nanoscale 11:17851–17859

    Article  CAS  Google Scholar 

  • Thomas B, Raj MC, Athira KB, Rubiyah MH, Joy J, Moores A, Drisko GL, Sanchez C (2018) Nanocellulose, a versatile green platform: from biosources to materials and their applications. Chem Rev 118(24):11575–11625

    Article  CAS  Google Scholar 

  • Tieso I (2021) Food waste production worldwide 2019, by sector. https://www.statista.com/statistics/1219836/global-food-waste-by-sector/. Accessed 19 Feb 2022

  • Tsouko E, Kourmentza C, Ladakis D, Kopsahelis N, Mandala I, Papanikolaou S, Koutinas A (2015) Bacterial cellulose production from industrial waste and by-product streams. Int J Mol Sci 16(7):14832–14849

    Article  CAS  Google Scholar 

  • Tuck CO, Perez E, Horvath IT, Sheldon RA, Poliakoff M (2012) Valorization of Biomass: Deriving more value from waste. Science 337:695–699

    Article  CAS  Google Scholar 

  • Tyagi S, Garg N, Paudel R (2014) Environmental degradation: causes and consequences. Eur J Res 81(8–2):1491

    Google Scholar 

  • Ul-Islam M, Khan S, Ullah MW, Park LK (2015) Bacterial cellulose composites: synthetic strategies and multiple applications in bio-medical and electroconductive fields. Biotechnol J 10:1847–1861

    Article  CAS  Google Scholar 

  • Ullah H, Santos HA, Khan T (2016) Applications of bacterial cellulose in food, cosmetic and drug delivery. Cellulose 23:2291–2314

    Article  CAS  Google Scholar 

  • United States Environmental Protection Agency (USEPA) (2021) Municipal solid waste. https://www.epa.gov/facts-and-figures-about-materials-waste-and-recycling/national-overview-facts-and-figures-materials. Accessed 28 Oct 2021

  • Urbina L, Hernández-Arriaga AM, Eceiza A, Gabilondo N, Corcuera MA, Prieto MA, Retegi A (2017) By-products of the cider production: an alternative source of nutrients to produce bacterial cellulose. Cellulose 24:2071–2082

    Article  CAS  Google Scholar 

  • Vazquez A, Foresti ML, Cerrutti P, Galvagno M (2013) Bacterial cellulose from simple and low cost production media by Gluconacetobacter xylinus. J Polym Environ 21:545–554

    Article  CAS  Google Scholar 

  • Wagner M, Loy A (2002) Bacterial community composition and function in sewage treatment systems. Curr Opin Biotechnol 13(3):218–227

    Article  CAS  Google Scholar 

  • Wang J, Lu X, Ng PF, Le KL, Fei B, Xin JH, Wu JY (2015) Polyethylenimine coated bacterial cellulose nanofiber membrane and application as adsorbent and catalyst. J Colloid Interface Sci 440:32–38

    Article  CAS  Google Scholar 

  • Wang X, Cao A, Zhao G, Zhou C, Xu R (2017) Microbial community structure and diversity in a municipal solid waste landfill. Waste Manage 66:79–87

    Article  Google Scholar 

  • Wang L, Hu S, Ullah MW, Li X, Shi Z, Yang G (2020) Enhanced cell proliferation by electrical stimulation based on electroactive regenerated bacterial cellulose hydrogels. Carbohydr Polym 249:116829

    Article  CAS  Google Scholar 

  • Wood TM, Bhat KM (1988) Methods for measuring cellulose activities. Meth Enzymol 160:87–112

    Article  CAS  Google Scholar 

  • World Bank (2013) Global Waste on Pace to Triple by 2100. https://www.worldbank.org/en/news/feature/2013/10/30/global-waste-on-pace-to-triple. Accessed 6 Sep 2020

  • World Bank (2022) Trends in solid waste management. https://datatopics.worldbank.org/what-a-waste/trends_in_solid_waste_management.html. Accessed 19 Feb 2022

  • Wu Z, Liang ZW, Chen LF, Hu BC, Yu SH (2016) Bacterial cellulose: A robust platform for design of three-dimensional carbon-based functional nanomaterials. Acc Chem Res 49:96–105

    Article  CAS  Google Scholar 

  • Xu C, Nasrollahzadeh M, Selva M, Issaabadi Z, Luque R (2019) Waste-to-wealth: biowaste valorization into valuable bio (nano) materials. Chem Soc Rev 48(18):4791–4822

    Article  CAS  Google Scholar 

  • Yorgun S, Şensöz S, Koçkar ÖM (2001) Characterization of the pyrolysis oil produced in the slow pyrolysis of sunflower-extracted bagasse. Biomass Bioenerg 20(2):141–148

    Article  CAS  Google Scholar 

  • Zeng G, Liu X, Liu M, Huang Q, Xu D, Wan Q, Huang H, Deng F, Zhang X, Wei Y (2016) Facile preparation of carbon nanotubes based carboxymethyl chitosan nanocomposites through combination of mussel inspired chemistry and Michael addition reaction: characterization and improved Cu2+ removal capability. J Taiwan Inst Chem Eng 68:446–454

    Article  CAS  Google Scholar 

  • Zhang X, Huang Q, Deng F, Huang H, Wan Q, Liu M, Wei Y (2017) Mussel-inspired fabrication of functional materials and their environmental applications: progress and prospects. Appl Mater Today 7:222–238

    Article  Google Scholar 

  • Zhang T, Wang F, Yang L, Li H, Chen J, Yang B, Lang J, Yan X (2020) constructing consistent pore microstructures of bacterial cellulose-derived cathode and anode materials for high energy density sodium ion capacitors. N J Chem 44:1865–1871

    Article  CAS  Google Scholar 

  • Zhao N, Lehmann J, You F (2020) Poultry waste valorization via pyrolysis technologies: economic and environmental life cycle optimization for sustainable bioenergy systems. ACS Sustain Chem Eng 8(11):4633–4646

    Article  CAS  Google Scholar 

  • Zhou Y, Hernandez CF, Khan TM, Liu JC, Hsu J, Shim JW, Dindar A, Youngblood JP, Moon RJ, Kippelen B (2013) Recyclable organic solar cells on cellulose nanocrystal substrates. Sci Rep 3:1536

    Article  Google Scholar 

  • Ziganshin AM, Liebetrau J, Proter J (2013) Microbial community structure and dynamics during anaerobic digestion of various agricultural waste materials. Appl Microbial Biotechnol 97:5161–5174

    Article  CAS  Google Scholar 

Download references

Acknowledgements

The research fellowship to Ankit Abhilash Swain from the Department of Science & Technology, Government of India, New Delhi under the Innovation of Science Pursuit for Inspire Research (INSPIRE) scheme is greatly acknowledged.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Ramesh Oraon, Kuldeep Bauddh or Manoj Kumar.

Ethics declarations

Conflict of interest

There is no any conflict of Interest.

Ethical approval

I ensure that all the authors mentioned in the manuscript have agreed for authorship, read and approved the manuscript, and given consent for submission and subsequent publication of the manuscript.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Swain, A.A., Oraon, R., Bauddh, K. et al. Biowaste valorization for production of bacterial cellulose and its multifarious applications contributing to environmental sustainability. Environmental Sustainability 5, 51–63 (2022). https://doi.org/10.1007/s42398-022-00221-0

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s42398-022-00221-0

Keywords

Navigation