Skip to main content
Log in

Cloning, characterization and expression analysis of resistant gene analogues for wilt resistant in chickpea

  • Research Article
  • Published:
Indian Phytopathology Aims and scope Submit manuscript

Abstract

Management of chickpea wilt incited by Fusarium oxysporum f. sp. ciceris has been done primarily through development and use of resistant cultivars as part of an integrated management approach as the resistance genes are a major factor behind protecting plants from various pathogens. Thus, isolation and characterization of the RGAs of chickpea provide a critical foundation for deciphering host-pathogen interactions and development of novel methods to manage pathogens of crop plant. Eleven RGAs were identified in resistant variety (WR 315) of chickpea by degenerate PCR amplification followed by sequencing, cloning and database search. The restriction pattern generated using enzyme Hinf1 as well as analysis of phylogenetic tree of derived amino acid sequences classified chickpea RGA sequences into four classes of RGAs. Amino acid sequence alignment of these clones clearly showed the presence of consensus motifs namely, P-loop and Non-TIR linked sequences. The finding further supports that these consensus motifs are extensively present in dicot plant species. Three conserved motifs within the aligned sequences were also identified using MEME analysis. These conserve motifs exhibited the high level of similarity with NB-ARC domain as shown by pfam protein motif analyse. Quantitative real time-PCR analysis clearly revealed that both SA and JA induce the expression of RGA genes, however, the expression was higher in the plants treated with SA as compared to the control or JA treated plants. The differentially expressed signaling molecules suggesting that SA and JS as stimuli mainly involved in responding defence and activating signaling pathways.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  • Aarts N, Metz M, Holub E, Stakawicz BJ, Daniels MJ, Parker JE (1998) Different requirements for EDS1 and NDR1 by disease resistance genes define at least two R gene mediated signaling pathways in Arabidopsis. Proc Nalt Acad Sci USA 95:10306–10311

    Article  CAS  Google Scholar 

  • Angela F, Angelica MJ, Laurent T, Ralph P, Lan BD (2008) Identification of grapevine MLO gene candidates involved in susceptibility to powdery mildew. Funct Plant Biol 35:1255–1266

    Article  Google Scholar 

  • An C, Mou Z (2011) Salicylic acid and its function in plant immunity. J Integr Plant Biol 53:412–428

    Article  CAS  PubMed  Google Scholar 

  • Bailey TL, Elkan C (1995) The value of prior knowledge in discovering motifs with MEME. Proc Int Conf Intell Syst Mol Biol 3:21–29

    CAS  PubMed  Google Scholar 

  • Caarls L, Pieterse CMJ, Van Wees SCM (2015) How salicylic acid takes transcriptional control over jasmonic acid signaling. Front Plant Sci 6:170

    Article  PubMed  PubMed Central  Google Scholar 

  • Cheng Y, Xiaoyu L, Haiyang J, Wei M, Weiyun M, Toshihiko Y, Ming Z (2012) Systematic analysis and comparison of nucleotide-binding site disease resistance genes in maize. FEBS J 279:2431–2443

    Article  CAS  PubMed  Google Scholar 

  • Dubey SC (2016) Race profiling, genetic diversity, diagnostics and management of Fusarium oxysporum f. sp. ciceris causing wilt in chickpea. Indian Phytopathol 69:210–217

    Google Scholar 

  • Dubey SC, Singh SR (2008) Virulence analysis and oligonucleotide fingerprinting to detect diversity among Indian isolates of Fusarium oxysporum f. sp. ciceris causing chickpea wilt. Mycopathologia 165:389–406

    Article  CAS  PubMed  Google Scholar 

  • Dubey N, Singh K (2018) Role of NBS-LRR proteins in plant defense. In: Singh A, Singh I (eds) Molecular aspects of plant-pathogen interaction. Springer, Cham, pp 115–138

    Chapter  Google Scholar 

  • Dubey SC, Tripathi A, Tak R (2018) Expression of defense-related genes in mung bean varieties in response to Trichoderma virens alone and in the presence of Rhizoctonia solani infection. 3 Biotech 8:432

    Article  PubMed  PubMed Central  Google Scholar 

  • Fitzgerald TL, McQualter RB (2014) The quantitative real-time polymerase chain reaction for the analysis of plant gene expression. Cereal Genom 1099:97–115

    Article  CAS  Google Scholar 

  • Flor HH (1956) Complementary genetic system in flax and flax rust. Adv Genet 8:29–54

    Article  Google Scholar 

  • Guttman DS, McHardy AC, Schulze-Lefert P (2014) Microbial genome enabled insights into plant-microorganism interactions. Nat Rev Genet 15:797–813

    Article  CAS  PubMed  Google Scholar 

  • Hall T (2011) BioEdit: an important software for molecular biology. GERF Bulletin of Biosci 2:60–61

    Google Scholar 

  • Haware MP, Nene YL (1980) Influence of wilt at different stages on the yield loss in chickpea. Trop Grain Legume Bull 19:38–40

    Google Scholar 

  • Kanazin V, Marek LF, Shoemaker RC (1996) Resistance gene analogs are conserved and clustered in soybean. Proc Natl Acad Sci USA 93:11746–11750

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kozjak P, Jakse J, Javornik B (2009) Isolation and sequence analysis of NBS-LRR disease resistance gene analogues from hop Humulus lupulus L. Plant Sci 176:775–782

    Article  CAS  Google Scholar 

  • Leister D, Ballvora A, Salamini F, Gebhardt C (1996) A PCR-based approach for isolating pathogen resistance genes from potato with potential for wide application in plants. Nat Genet 14:421–429

    Article  CAS  PubMed  Google Scholar 

  • Lozano-Torres JL, Wilbers RHP, Gawronski P, Boshoven JC, Finkers Tomczak A, Cordewener JH et al (2012) Dual disease resistance mediated by the immune receptor Cf-2 in tomato requires a common virulence target of a fungus and a nematode. Proc Natl Acad Sci 109:10119–10124

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Meyers BC, Dickerman AW, Michelmore RW, Sivaramakrishnan S, Sobral BW, Young ND (1999) Plant disease resistance genes encode members of an ancient and diverse protein family within the nucleotide-binding superfamily. Plant J 20:317–332

    Article  CAS  PubMed  Google Scholar 

  • Murray MG, Thompson (1980) Rapid isolation of high molecular weight plant DNA. Nucleic Acids Res 8:4321–4326

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Ooijen GV, Mayr G, Kasiem MMA, Albrecht M, Cornelissen BJC, Takken FLW (2008) Structure-function analysis of the NB-ARC domain of plant disease resistance proteins. J Exp Bot 59:1383–1397

    Article  PubMed  CAS  Google Scholar 

  • Palomino C, Satovic Z, Cubero JI, Torres AM (2006) Identification and characterization NBS-LRR class resistance gene analogs in Fababean (Viciafaba L.) and chickpea (Cicer arietinum L.). Genome 49:1227–1237

    Article  CAS  PubMed  Google Scholar 

  • Palomino C, Ferna´ndez-Romero MD, Rubio J, Torres A, Moreno MT, Milla´n T (2009) Integration of new CAPS and dCAPS-RGA markers into a composite chickpea genetic map and their association with disease resistance. Theor Appl Genet 118:671–682

    Article  CAS  PubMed  Google Scholar 

  • Rachana KE, Naganeeswaran SA, Fayas TP, Thomas RJ, Rajesh MK (2016) Cloning, characterization and expression analysis of NBS-LRR-type resistance gene analogues (RGAs) in coconut. Acta Bot Croat 75:1–10

    Article  CAS  Google Scholar 

  • Rafael M, Jimenez D, Juan A, Navas C (2015) Fusarium wilt of chickpeas: biology, ecology and management. Crop Prot 73:16–27

    Article  Google Scholar 

  • Sharma M, Ghosh R, Tarafdar A, Rathore A, Chobe DR, Kumar A, Gaur PM, Samineni S, Gupta O, Singh NP, Saxena DR, Saifulla M, Pithia MS, Ghante PH, Mahalinga DM, Upadhyay JB, Harer PN (2019) Exploring the genetic cipher of Chickpea (Cicer arietinum L.) through identification and multi-environment validation of resistant sources against Fusarium wilt (Fusarium oxysporum f. sp. ciceris). Front Sustain Food Syst 3:78

    Article  Google Scholar 

  • Shirano Y, Kachroo P, Shah J, Klessig DF (2002) A gain-of-function mutation in an Arabidopsis toll interleukin1 receptor-nucleotide binding site-Leucine-rich repeat type R gene triggers defense responses and results in enhanced disease resistance. Plant Cell 14:3149–3162

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Speulman E, Bouchez D, Holub EB, Beynon JL (1998) Disease resistance gene homologs correlate with disease resistance loci of Arabidopsis thaliana. Plant J 14:467–474

    Article  CAS  PubMed  Google Scholar 

  • Staskawicz BJ, Ausubel FM, Baker BJ, Ellis JG, Jones JD (1995) Molecular genetics of plant disease resistance. Science 268:661–667

    Article  CAS  PubMed  Google Scholar 

  • Steinbrenner AD, Goritschnig S, Staskawicz BJ (2015) Recognition and activation domains contribute to allele-specific responses of an Arabidopsis NLR receptor to an oomycete effector protein. PLoS Pathog 11:e1004665

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Takken FLW, Goverse A (2012) How to build a pathogen detector: structural basis of NB-LRR function. Curr Opin Plant Biol 15:375–384

    Article  CAS  PubMed  Google Scholar 

  • Tameling WIL, Elzinga SD, Darmin PS, Vossen JH, Takken FLW, Haring MA et al (2002) The tomato R gene products I-2 and Mi-1 are functional ATP binding proteins with ATPase activity. Plant Cell 14:2929–2939

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Tan S, Wu S (2012) Genome wide analysis of nucleotide-binding site disease resistance genes in Brachypodium distachyon. Comp Funct Genom 2012:418208

    Article  CAS  Google Scholar 

  • Traut TW (1994) The functions and consensus motifs of nine types of peptide segments that form different types of nucleiotide-binding sites. Eur J Biochem 222:9–19

    Article  CAS  PubMed  Google Scholar 

  • Wang Y, Rosen B, Scoffield J, Egnin M, Mortley D, Steiner S, Cook DR, He G (2010) Isolation and analysis of resistance gene homologues in sweet potato. Plant Breed 129:519–525

    CAS  Google Scholar 

  • Wang Y, Song Z, Zhang W, Xu L, Su X, Mmbone E, LW L (2017) Identification and characterization of expressed TIR- and non-TIR-NBS-LRR resistance gene analogous sequences from radish (Raphanus sativus L.) de novo transcriptome. Sci Hortic 216:284–292

    Article  CAS  Google Scholar 

  • Wei H, Li W, Sun X, Zhu S, Zhu J (2013) Systematic analysis and comparison of nucleotide-binding site disease resistance genes in a diploid cotton Gossypium raimondii. PLoS One 8:e68435

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Xiao SX, Brown EP, Brearley C, Turner JG (2003) Enhanced transcription of the Arabidopsis disease resistance genes RPW8.1 and RPW8.2 via a salicylic acid-dependent amplification circuit is required for hypersensitive cell death. Plant Cell 15:33–45

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Xiong QY, Wei LJ, Sen ZJ, Hong RM, Ping XL, Qing ZM (2008) Molecular cloning and characterisation of a non-TIR-NBS-LRR type disease resistance gene analogue from sugarcane. Sugar Tech 10:71–73

    Article  Google Scholar 

  • Yang DL, Yao J, Mei CS, Tong XH et al (2012) Plant hormone jasmonate priorities defense over growth by interfering with gibberellin signaling cascade. Proc Natl Acad Sci USA 109:1192–1200

    Article  Google Scholar 

  • Zhou Z, Bar I, Sambasivam PT, Ford R (2019) Determination of the key resistance gene analogs involved in Ascochyta rabiei recognition in chickpea. Front Plant Sci 10:644

    Article  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

The authors gratefully acknowledge the financial support of the Indian Council of Agricultural Research (ICAR), New Delhi.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Sunil Chandra Dubey.

Ethics declarations

Conflict of interest

The authors declare that there is no conflict of interest.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Priyanka, K., Dubey, S.C. & Upadhyay, B.K. Cloning, characterization and expression analysis of resistant gene analogues for wilt resistant in chickpea. Indian Phytopathology 74, 649–658 (2021). https://doi.org/10.1007/s42360-021-00363-x

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s42360-021-00363-x

Keywords

Navigation