Skip to main content
Log in

Edge Electronic States and Direct Bandgap in Si Nanostructures on Silicon Oxide

  • Regular Paper
  • Published:
Transactions on Electrical and Electronic Materials Aims and scope Submit manuscript

Abstract

The nanostructures on silicon oxide, as a new phase of matter, only allows conducting electrons to exist on its surfaces, in which the edge electronic states dramatically provide intriguing insights into the world of low-dimensional quantum systems featuring and proposing the mechanisms of optical mode formation. We report that the formations of a nanolayer and a nanodisk structure on silicon oxide have been produced by using a novel preparation methodology, mainly involving the pulsed laser deposition in oxygen environment and the coherent electron beam irradiation process. Here, the structures of the Si nanolayer and the nanodisk on silicon oxide have been observed in the TEM images. The electronic edge states in the Si nanostructures on silicon oxide for emission were demonstrated in photoluminescence measurement. The simulation model of the Si nanostructures on silicon oxide has been built according the experimental results. And the results of the simulating calculation demonstrated that the Dirac relation is competition with the quantum confinement effect in the geometry change of the Si nanostructures on silicon oxide, in which the transforming edge states into direct bandgap can be realized for better emission.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11

Similar content being viewed by others

Data availability

The data that support the findings of this study are available from the corresponding author upon reasonable request.

References

  1. M.Z. Hasan, C.L. Kane, Topological insulators. Rev. Mod. Phys. 82, 3045 (2010). https://doi.org/10.1103/Rev.Mod.Phys.82.3045

    Article  ADS  CAS  Google Scholar 

  2. P. Li, X. Yang, Q.-S. Jiang, Y.-Z. Wu, W. Xun, Built-in electric field and strain tunable valley-related multiple topological phase transitions in VSiXN4 (X = C, Si, Ge, Sn, Pb) monolayers. Phys. Rev. Materials 7, 064002 (2023). https://doi.org/10.1103/Phys.Rev.Materials.064002

    Article  ADS  CAS  Google Scholar 

  3. X. Zhang, Z.N. Farzad, Z.G. Chen, M.H. Lu, J. Christensen, A second wave of topological phenomena in photonics and acoustics. Nature 618, 687 (2023). https://doi.org/10.1038/s41586-023-06163-9

    Article  ADS  CAS  PubMed  Google Scholar 

  4. H.F. Wang, B.Y. Xie, P. Zhan, M.H. Lu, Y.F. Chen, Research progress of topological photonics. Acta Physica Sinica 68, 224206 (2019). https://doi.org/10.7498/aps.68.20191437

    Article  CAS  Google Scholar 

  5. T. Ozawa, H.M. Price, A. Amo, N. Goldman, M. Hafezi, L. Lu, M.C. Rechtsman, D. Schuster, J. Simon, O. Zilberberg, I. Carusotto, Topological photonics. Rev. Mod. Phys. 91, 015006 (2019). https://doi.org/10.1103/RevModPhys.91.015006

    Article  ADS  MathSciNet  CAS  Google Scholar 

  6. G. Ma, M. Xiao, C.T. Chan, Topological phases in acoustic and mechanical systems. Nat. Rev. Phys. 1, 281 (2019). https://doi.org/10.1038/s42254-019-0030-x

    Article  Google Scholar 

  7. M. Kim, Z. Jacob, J. Rho, Recent advances in 2d, 3d and higher-order topological photonics. Light Sci. Appl. 9, 130 (2020). https://doi.org/10.1038/s41377-020-0331-y

    Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

  8. S. Mordechai, M.A. Bandres, Topological photonics: where do we go from here? Nanophotonics 10, 425 (2021). https://doi.org/10.1515/nanoph-2020-0441

    Article  Google Scholar 

  9. A. Ghatak, M. Brandenbourger, J. van Wezel, C. Coulais, Observation of non-hermitian topology and its bulk-edge correspondence in an active mechanical metamaterial. Proc. Natl. Acad. Sci. 117, 29561 (2020). https://doi.org/10.1073/pnas.2010580117/-/DCSupplemental

    Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

  10. F.D.M. Haldane, S. Raghu, Possible realization of directional optical waveguides in photonic crystals with broken time-reversal symmetry. Phys. Rev. Lett. 100, 013904 (2008). https://doi.org/10.1103/PhysRevLett.100.013904

    Article  ADS  CAS  PubMed  Google Scholar 

  11. M. Fujita, Nanocavity brightens silicon. Nat. Photon 7, 264–265 (2013). https://doi.org/10.1038/nphoton.2013.65

    Article  ADS  CAS  Google Scholar 

  12. S. Botti, J.A. Flores-Livas, M. Amsler, S. Goedecker, M.A.L. Marques, Low-energy silicon allotropes with strong absorption in the visible for photovoltaic applications. Phys. Rev. B 86, 121204(R) (2012). https://doi.org/10.1103/PhysRevB.86.121204

    Article  ADS  CAS  Google Scholar 

  13. D.Y. Kim, S. Stefanoski, O.O. Kurakevych, T.A. Strobel, Nat. Mater. 14, 169–173 (2015). https://doi.org/10.1038/nmat4140

    Article  ADS  CAS  PubMed  Google Scholar 

  14. M. Hafezi, E.A. Demler, M.D. Lukin, J.M. Taylor, Robust optical delay lines with topological protection. Nat. Phys. 7, 907–912 (2011). https://doi.org/10.1038/nphys2063

    Article  CAS  Google Scholar 

  15. T. Aubert, K. Ma, K.W. Tan, U. Wiesner, Two-dimensional superstructures of silica cages. Adv. Mater. (2020). https://doi.org/10.1002/adma.201908362

    Article  PubMed  PubMed Central  Google Scholar 

  16. Z. Wang, Y. Chong, J.D. Joannopoulos, M. Soljačić, Observation of unidirectional backscattering-immune topological electromagnetic states. Nature 461, 772–775 (2009). https://doi.org/10.1038/nature08293

    Article  ADS  CAS  PubMed  Google Scholar 

  17. M. Hafezi, S. Mittal, J. Fan, A. Migdall, J.M. Taylor, Nature Photon 7, 1001–1005 (2013). https://doi.org/10.1038/nphoton.2013.274

    Article  ADS  CAS  Google Scholar 

  18. L. Pilozzi, C. Conti, Topological lasing in resonant photonic structures. Phys. Rev. B 93, 195317 (2016). https://doi.org/10.1103/PhysRevB.93.195317

    Article  ADS  CAS  Google Scholar 

  19. B. Bahari, A. Ndao, F. Vallini, A. El Amili, Y. Fainman, B. Kante, Nonreciprocal lasing in topological cavities of arbitrary geometries. Science 358, 636–640 (2017)

    Article  ADS  CAS  PubMed  Google Scholar 

  20. M.A. Bandres, S. Wittek, G. Harari, M. Parto, J. Ren, M. Segev, D.N. Christodoulides, M. Khajavikhan, Topological insulator laser: experiments. Science 359, 4005 (2018). https://doi.org/10.1126/science.aar4005

    Article  CAS  Google Scholar 

  21. M. Liu, X.B. Yin, E. Ulin-Avila, B.S. Geng, T. Zentgraf, L. Ju, F. Wang, X. Zhang, A graphene-based broadband optical modulator. Nature 474, 64–67 (2011). https://doi.org/10.1038/nature10067

    Article  ADS  CAS  PubMed  Google Scholar 

  22. H. Yu, H. Zhang, Y. Wang, C. Zhao, B. Wang, S. Wen, H. Zhang, J. Wang, Topological insulator as an optical modulator for pulsed solid-state lasers. Laser Photon. Rev. 7, L77–L83 (2013). https://doi.org/10.1002/lpor.201370062

    Article  ADS  CAS  Google Scholar 

  23. G.Q. Liang, Y.D. Chong, Optical resonator analog of a two-dimensional topological insulator. Phys. Rev. Lett. 110, 203904 (2013). https://doi.org/10.1103/PhysRevLett.110.203904

    Article  ADS  CAS  PubMed  Google Scholar 

  24. W.L. Ng, M.A. Lourenco, R.M. Gwilliam, S. Ledain, G. Shao, K.P. Homewood, An efficient room-temperature silicon-based light-emitting diode. Nature 410, 192–194 (2001). https://doi.org/10.1038/35065571

    Article  ADS  CAS  PubMed  Google Scholar 

  25. T.N. Theis, P.M. Solomon, It’s time to reinvent the transistor. Science 327, 1600–1601 (2010). https://doi.org/10.1126/science.1187597

    Article  ADS  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

This work was supported by the National Natural Science Foundation of China (Grant No.11847084, 62264002) and supported by the Guizhou Province (ZK[2022]010).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Wei-Qi Huang.

Ethics declarations

Conflict of interest

The authors have no financial or proprietary interests in any material discussed in this article.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Huang, ZM., Zhang, X., Li, Yl. et al. Edge Electronic States and Direct Bandgap in Si Nanostructures on Silicon Oxide. Trans. Electr. Electron. Mater. (2024). https://doi.org/10.1007/s42341-024-00516-5

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s42341-024-00516-5

Keywords

Navigation