Skip to main content
Log in

TFT Structure Simulation with Various High K Dielectric Materials for Non-volatile Memory Device

  • Regular Paper
  • Published:
Transactions on Electrical and Electronic Materials Aims and scope Submit manuscript

Abstract

In this rapidly growing and changing world of electronics industry it is very critical to have precise model and simulation for device. This paper presents the work on simulating the performance of thin film transistors (TFT) structure with different high K dielectric materials and source drain materials. TFT structure plays an important role in the TFT performance and this paper compares the ID–VD and ID–VG, threshold voltage (VT), subthreshold swing and on and off current (Ion/Ioff) of the TFT. Further, for a bottom gate staggered configuration, the effect of different materials as Source and Drain as well as the effect of dielectric strength on the tunneling layer of the TFT is studied to evaluate its suitability for applications like non-volatile memory. The effect of temperature on different performance characteristics of the bottom gate TFT structure like threshold voltage, sub-threshold swing, on–off current ratio are also analysed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13

Similar content being viewed by others

References

  1. S. Jiazhen, J. Hyun-Jun, H. Ki-Lim, H. TaeHyun, P. Jin-Seong, Review of recent advances in flexible oxide semiconductor thin-film transistors. J. Inf. Disp. 18(4), 159–172 (2017). https://doi.org/10.1080/15980316.2017.1385544

    Article  CAS  Google Scholar 

  2. K. Mukhopadhyaya, P. Srividya, Trends in performance characteristics and modelling of oxide based TFT. Mater. Today: Proc. 55, 414–418 (2022). https://doi.org/10.1016/j.matpr.2021.12.596

    Article  CAS  Google Scholar 

  3. K. Mukhopadhyaya, P. Srividya, Challenges in p-type oxide based thin film transistor. IOP Conf. Ser.: Mater. Sci. Eng. 1012, 012055–012064 (2021). https://doi.org/10.1088/1757-899X/1012/1/012055

    Article  CAS  Google Scholar 

  4. H. Min-Feng, W. Yung-Chun, C. Jiun-Jye, L. Kuei-Shu, Twin thin-film transistor nonvolatile memory with an indium–gallium–zinc–oxide floating gate. IEEE Electron Device Lett. 34, 75–77 (2013). https://doi.org/10.1109/LED.2012.2226232

    Article  CAS  Google Scholar 

  5. H. Yin, S. Kim, C.J. Kim, I. Song, J. Park, S. Kim, Y. Park, Fully transparent nonvolatile memory employing amorphous oxides as charge trap and transistor’s channel layer. Appl. Phys. Lett. 93, 1–3 (2008). https://doi.org/10.1063/1.3012386

    Article  CAS  Google Scholar 

  6. A. Suresh, S. Novak, P. Wellenius, V. Misha, J.F. Muth, Transparent indium gallium zinc oxide transistor based floating gate memory with platinum nanoparticles in the gate dielectric. Appl. Phys. Lett. 94, 1–3 (2009). https://doi.org/10.1063/1.3106629

    Article  CAS  Google Scholar 

  7. W. Zhang, L. Renrong, L. Libin, Y. Guofang, W. Jing, X. Jun, R. Tian-Ling, Demonstration of a-InGaZnO TFT nonvolatile memory using TiAlO charge trapping layer. IEEE Trans. Nanotechnol. 17, 1089–1093 (2018). https://doi.org/10.1109/TNANO.2018.2810885

    Article  CAS  Google Scholar 

  8. N. Choi, H.J. Kang, M. Joe, G. Park, H. Lee, Reconfigurable cell string having FET and super-steep switching diode operation in 3D NAND flash memory, in IEEE 2nd Electron Devices Technology and Manufacturing Conference (EDTM) (IEEE, 2018), pp. 220−222. https://doi.org/10.1109/EDTM.2018.8421436

  9. H. Ohshima, 8.1: Invited paper: value of LTPS: present and future, in SID Symposium Digest of Technical Papers, Wiley Online Library, 45 (2014), pp. 75−78.https://doi.org/10.1002/j.2168-0159.2014.tb00021.x

  10. H.J. Bang, N.C. Nguyen, D.H. Lee, A.H.T. Nguyen, S. Kang, J.W. Choi, S.Y. Han, R. Choi, Effect of high-pressure hydrogen or deuterium anneal on polysilicon channel field effect transistors. J. Nanosci. Nanotechnol. 16, 10341–10345 (2016). https://doi.org/10.1166/jnn.2016.13156

    Article  CAS  Google Scholar 

  11. Z. Hon, J. Yao, Z. Wu, H. Yin, Simulation for the feasibility of high-mobility channel in 3D NAND memory, in China Semiconductor Technology International Conference (CSTIC) (IEEE, 2018), pp. 1−3. https://doi.org/10.1109/CSTIC.2018.8369198

  12. R. Singh, M. Khosla, I. Saini, N. Kumar, Design and analysis of IGZO based junction less thin film transistor using SOI technology. SILICON 13, 2309–2318 (2020). https://doi.org/10.1007/s12633-020-00803-9

    Article  CAS  Google Scholar 

  13. S. Mondal, V. Venkataraman, Flash memory TFT based on fully solution processed oxide, in 75th Annual Device Research Conference (DRC) (IEEE, 2017), pp. 1–2. https://doi.org/10.1109/DRC.2017.7999508

  14. L.Y. Su, H.Y. Lin, H.K. Lin, S.L. Wang, L.H. Peng, J. Huang, Characterizations of amorphous IGZO thin-film transistors with low subthreshold swing. IEEE Electron Device Lett. 32(9), 1245–1247 (2011). https://doi.org/10.1109/LED.2011.2160931

    Article  CAS  Google Scholar 

  15. H.H. Hsieh, T. Kamiya, K. Nomura, H. Hosono, C. Wu, Modeling of amorphous InGaZnO4 thin film transistors and their subgap density of states. Appl. Phys. Lett. 92(13), 133503–133506 (2008). https://doi.org/10.1063/1.2857463

    Article  CAS  Google Scholar 

  16. B. Iniguez, L. Wang, A. Fjeldly, M.S. Shur, H. Slade, Thermal, self-heating and kink effects in a-Si:H thin film transistors, in IEDM Technical Digest (2002), pp. 879–882. https://doi.org/10.1109/IEDM.1998.746495

  17. A. Kuo, T.K. Won, J. Kanicki, Advanced amorphous silicon thin-film transistors for AM-OLEDs: electrical performance and stability. IEEE Trans. Electron. Dev. 55, 1621–1629 (2008). https://doi.org/10.1109/TED.2008.924047

    Article  CAS  Google Scholar 

  18. P.G. LeComber, W.E. Spear, Electronic transport in amorphous silicon films. Phys. Rev. Lett. 25, 509–511 (1970). https://doi.org/10.1103/PhysRevLett.25.509

    Article  CAS  Google Scholar 

  19. S. Lee, J. Oh, S. Yang, H. Yun, K. Jeong, H. Lee, G. Le, Characterization of polycrystalline silicon-oxide-nitride-oxide-silicon devices on a SiO2 or Si3N4 buffer layer. Electron. Mater. Lett. 9, 23–27 (2013). https://doi.org/10.1007/s13391-013-3176-1

    Article  CAS  Google Scholar 

  20. Y. Li, Y. Pei, R. Hu, Z. Chen, Y. Ni, J. Lin, Y. Chen, X. Zhang, Z. Shen, J. Liang, B. Fan, G. Wang, H. Duan, Charge trapping memory characteristics of amorphous-indium–gallium–zinc oxide thin-film transistors with defect engineered alumina dielectric. IEEE Trans. Electron. Dev. 62, 1184–1188 (2015). https://doi.org/10.1109/TED.2015.2402220

    Article  CAS  Google Scholar 

  21. Y. Kim, G. Lee, Effects of Al2O3 gate insulator on the instability of amorphous indium-gallium zinc oxide thin film transistors. AIP Adv. 8, 085112–085119 (2018). https://doi.org/10.1063/1.5043340

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Keka Mukhopadhyaya.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Mukhopadhyaya, K., Srividya, P. TFT Structure Simulation with Various High K Dielectric Materials for Non-volatile Memory Device. Trans. Electr. Electron. Mater. 25, 255–264 (2024). https://doi.org/10.1007/s42341-023-00502-3

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s42341-023-00502-3

Keywords

Navigation