Skip to main content
Log in

Highly Reflective Distributed Bragg Reflectors for Planar Microcavities: From Modelling to Experimentation

  • Regular Paper
  • Published:
Transactions on Electrical and Electronic Materials Aims and scope Submit manuscript

Abstract

Highly reflective distributed Bragg reflectors (DBRs) play significant in controlling and manipulating the spontaneous emission of light in photonic and optoelectronic devices. Herein, we report a systemic study based on the complete theoretical modeling and the fabrication of highly reflective DBR comprised of 7.5 periods of repeating TiO2/SiO2 thin films. Firstly, a computational model based on the transfer matrix method was used to simulate the reflectance, transmittance, and electric field intensity distribution across the DBR structure. Subsequently, fabrication was performed via the conventional electron beam evaporation technique. Interestingly, the as-grown DBR exhibits low surface roughness ~ 0.767 nm and sharp interfaces between the neighboring TiO2 and SiO2 films manifesting the high quality of the fabrication process. Consequently, an excellent consistency was observed between the simulated and the experimental reflectance and transmittance spectra confirming the successful growth of the 7.5 pairs DBR. Moreover, the high reflectance ~ 99.0% reflectance and the large stopband width ~ 190 nm in the range 600–800 nm indicates the superior performance of the as-fabricated DBRs and were therefore utilized to develop a highly reflective monolithic and a Tamm plasmon planar microcavities.

Graphical Abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. S. Kinoshita, S. Yoshioka, K. Kawagoe, Proc. R. Soc. Lond. B 269, 1417 (2002)

    Article  Google Scholar 

  2. G.S. Smith, Am. J. Phys. 77, 1010 (2009)

    Article  Google Scholar 

  3. J. Zi, Z. Yu, Y. Li, X. Hu, C. Xu, X. Wang, X. Liu, R. Fu, Proc. Natl. Acad. Sci. 100, 12576 (2003)

    Article  CAS  Google Scholar 

  4. S.K. Blau, Phys. Today 57, 18 (2004)

    Article  Google Scholar 

  5. S. Vignolini, E. Moyroud, B.J. Glover, U. Steiner, J. R. Soc. Interface 10, 20130394 (2013)

    Article  Google Scholar 

  6. C.J. Chandler, B.D. Wilts, S. Vignolini, J. Brodie, U. Steiner, P.J. Rudall, B.J. Glover, T. Gregory, R.H. Walker, Sci. Rep. 5, 11645 (2015)

    Article  Google Scholar 

  7. R.A. Metzler, C. Burgess, B. Regan, S. Spano, E.J. Galvez, Proc. SPIE 9187, 918704 (2014)

    Article  Google Scholar 

  8. J. Salman, C.A. Stifler, A. Shahsafi, C. Sun, S.C. Weibel, M. Frising, B.E. Rubio-Perez, Y. Xiaoa, C. Draves, R.A. Wambold, Z. Yua, D.C. Bradley, G. Kemeny, P.U.P.A. Gilbert, M.A. Kats, Proc. Natl. Acad. Sci. 118, 15 (2021)

    Article  Google Scholar 

  9. P. Vukusic, J.R. Sambles, Nature 424, 852 (2003)

    Article  CAS  Google Scholar 

  10. J. Sun, B. Bhushan, J. Tong, RSC Adv. 3, 14862 (2013)

    Article  CAS  Google Scholar 

  11. E. Yablonovitch, Phys. Rev. Lett. 58, 2059 (1987)

    Article  CAS  Google Scholar 

  12. S. John, Phys. Rev. Lett. 58, 2486 (1987)

    Article  CAS  Google Scholar 

  13. Z. Xuan, L. Junyu, L. Qingquan, Y. Fei, W. Shaowei, L. Wei, Innovation. 2, 100081 (2021)

    CAS  Google Scholar 

  14. M.A. Butt, S.N. Khonina, N.L. Kazanskiy, Opt. Laser Technol. 142, 107265 (2021)

    Article  CAS  Google Scholar 

  15. V.A. Tolmachev, T.S. Perova, E.V. Astrova, B.Z. Volchek, J.K. Vij, Phys. Status Solidi A 197, 544 (2003)

    Article  CAS  Google Scholar 

  16. C.R. Hedlund, J.M.D. Pina, A. Kalapala, Z. Liu, W. Zhou, M. Hammar, Phys. Status Solidi A 218, 2000416 (2021)

    Article  Google Scholar 

  17. S. Arpiainen, K. Vynck, J. Dekker, M. Kapulainen, W. Khunsin, T. Aalto, M. Mulot, G.K. Oberlehrer, R. Zentel, C.M.S. Torres, D. Cassagne, J. Ahopelto, Phys. Status Solidi A 214, 1700039 (2017)

    Article  Google Scholar 

  18. R. Biswas, C.T. Chan, M. Sigalas, C.M. Soukoulis, K.M. Ho, Photonic Band Gap Materials, 1st edn. (Springer, Dordrecht, 1996), pp. 23–40

  19. V. Jandieri, R. Khomeriki, T. Onoprishvili, D. Erni, L. Chotorlishvili, D.H. Werner, J. Berakdar, Photonics 8, 250 (2021)

    Article  CAS  Google Scholar 

  20. S. Gao, Y. Dou, Q. Li, X. Jiang, Opt. Express 25, 7112 (2017)

    Article  Google Scholar 

  21. M. Bayindir, B. Temelkuran, E. Ozbay, Appl. Phys. Lett. 77, 3902 (2000)

    Article  CAS  Google Scholar 

  22. R.V. Nair, R. Vijaya, Prog. Quantum Electron. 34, 89 (2010)

    Article  CAS  Google Scholar 

  23. T. Tanabe, M. Notomi, S. Mitsugi, A. Shinya, E. Kuramochi, Appl. Phys. Lett. 87, 151112 (2005)

    Article  Google Scholar 

  24. M.S. Hwang, J.H. Choi, K.Y. Jeong, K.H. Kim, H.R. Kim, J.P. So, H.C. Lee, J. Kim, S.H. Kwon, H.G. Park, Chem. Commun. 57, 4875 (2021)

    Article  CAS  Google Scholar 

  25. N. Fakroun, A. Gueddim, D. Guibadj, N. Bouarissa, Trans. Electr. Electron. Mater. 20, 537 (2019)

    Article  Google Scholar 

  26. I.W. Feng, S. Jin, J. Li, J. Lin, H. Jiang, J. Vac. Sci. Technol. A 31, 061514 (2013)

    Article  Google Scholar 

  27. B. Gao, J.P. George, J. Beeckman, K. Neyts, Opt. Express. 28, 12837 (2020)

    Article  CAS  Google Scholar 

  28. J. Dai, W. Gao, B. Liu, X. Cao, T. Tao, Z. Xie, H. Zhao, D. Chen, H. Pin, R. Zhang, Appl. Surf. Sci. 364, 886 (2016)

    Article  CAS  Google Scholar 

  29. S.M. Lee, J.H. Kang, J.K. Lee, S.W. Ryu, Electron. Mater. Lett. 12, 673 (2016)

    Article  CAS  Google Scholar 

  30. Y. Du, B.S. Chen, J.J. Lin, C.F. Yang, Mod. Phys. Lett. B 35, 2140001 (2021)

    Article  CAS  Google Scholar 

  31. T. Detchprohm, Y.S. Liu, K. Mehta, S. Wang, H. Xie, T.T. Kao, S.C. Shen, P.D. Yoder, F.A. Ponce, R.D. Dupuis, Appl. Phys. Lett. 110, 011105 (2017)

    Article  Google Scholar 

  32. S.Y. Lee, J.H. Moon, Y.T. Moon, C.S. Kim, S. Park, J.T. Oh, H.H. Jeong, T.Y. Seong, H. Amano, IEEE Photon Technol. Lett. 32, 438 (2020)

    Article  CAS  Google Scholar 

  33. M. Gryga, D. Ciprian, P. Hlubina, Sensors 22, 3627 (2022)

    Article  CAS  Google Scholar 

  34. W. Farooq, S. Tu, S.A.A. Kazmi, S.U. Rehman, A.D. Khan, H.A. Khan, M. Waqas, O.U. Rehman, H. Ali, M. Noman, PLoS ONE 16, e0259778 (2021)

    Article  CAS  Google Scholar 

  35. C. Zhang, R. ElAfandy, J. Han, Appl. Sci. 9, 1593 (2019)

    Article  CAS  Google Scholar 

  36. L. Lackner, M. Dusel, O.A. Egorov, B. Han, H. Knopf, F. Eilenberger, S. Schröder, K. Watanabe, T. Taniguchi, S. Tongay, C.A. Solanas, S. Höfling, C. Schneider, Nat. Commun. 12(1), 4933 (2021)

    Article  CAS  Google Scholar 

  37. T. LaMountain, J. Nelson, E.J. Lenferink, S.H. Amsterdam, A.A. Murthy, H. Zeng, T.J. Marks, V.P. Dravid, M.C. Hersam, N.P. Stern, Nat. Commun. 12(1), 4530 (2021)

    Article  CAS  Google Scholar 

  38. K.E. McGhee, A. Putintsev, R. Jayaprakash, K. Georgiou, M.E. O’Kane, R.C. Kilbride, E.J. Cassella, M. Cavazzini, D.A. Sannikov, P.G. Lagoudakis, D.G. Lidzey, Sci. Rep. 11(1), 20879 (2021)

    Article  CAS  Google Scholar 

  39. R. Su, C. Diederichs, J. Wang, T.C.H. Liew, J. Zhao, S. Liu, W. Xu, Z. Chen, Q. Xiong, Nano Lett. 17, 3982 (2017)

    Article  CAS  Google Scholar 

  40. M.C. Troparevsky, A.S. Sabau, A.R. Lupini, Z. Zhang, Opt. Express 18, 24715 (2010)

    Article  Google Scholar 

  41. S.J. Byrnes (2016). arXiv preprint https://arxiv.org/abs/1603.02720

  42. C. Guo, M. Kong, Coatings 10, 720 (2020)

    Article  CAS  Google Scholar 

  43. X. Liu, W. Bao, Q. Li, C. Ropp, Y. Wang, X. Zhang, Phys. Rev. Lett. 119, 027403 (2017)

    Article  Google Scholar 

Download references

Acknowledgements

This study was supported by the research fund of University of Ulsan (Grant #: 2022-0457).

Author information

Authors and Affiliations

Authors

Contributions

The manuscript was written through the contributions of all authors. All authors have given approval to the final version of the manuscript.

Corresponding author

Correspondence to Yong Soo Kim.

Ethics declarations

Conflict of interest

The authors declare no competing financial interest.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (DOCX 1201.3 kb)

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Tahir, Z., Rashid, M.U., Kim, S. et al. Highly Reflective Distributed Bragg Reflectors for Planar Microcavities: From Modelling to Experimentation. Trans. Electr. Electron. Mater. 25, 32–39 (2024). https://doi.org/10.1007/s42341-023-00483-3

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s42341-023-00483-3

Keywords

Navigation