Skip to main content
Log in

A Large Signal GaN HEMT Transistor Based on the Angelov Model Parameters Extraction Applied to Single Stage Low Noise Amplifier

  • Regular Paper
  • Published:
Transactions on Electrical and Electronic Materials Aims and scope Submit manuscript

Abstract

This article consists of two research parts. The first one presents results of calculation and optimization of Angelov model parameters compared to the experimental values of the intrinsic elements and the Ids–Vds model of a Gaussian signal transistor HEMT. The device has two fingers gate of 0.25 mm of each one. The gate width is also equal to 0.5 mm and the gate length is of 0.5 μm. The calculation and optimization of Angelov model parameters show that obtained results, give a good agreement with the experimental values, as well as for the large-signal validation of the HEMT/GaN transistor. These parameters can be implemented on microwave various simulators as such ADS Software. The second part consists of using this large-signal transistor in the design of a low noise amplifier at 3 GHz (S-band). Its power maximum output Pout equal to 36.16 dBm for the voltages Vds = 30 V and Vgs= − 3.5 V, in AB class amplifier configuration. The results of the amplifier summarized as a noise factor of 1.11 dB, and a stability factor of 1.03 that show a good agreement with the literature.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17

Similar content being viewed by others

References

  1. B. Hou, L. Yang, M. Mi, M. Zhang, C. Yi, M. Wu, Q. Zhu, Y. Lu, J. Zhu, X. Zhou, L. Lv, X. Ma, Y. Hao, High linearity and high power performance with barrier layer of sandwich structure and Al 0.05 GaN back barrier for X-band application. J. Phys. D Appl. Phys. 53, 145102 (2020). https://doi.org/10.1088/1361-6463/ab678f

    Article  CAS  Google Scholar 

  2. A. Hassan, Y. Savaria, M. Sawan, GaN integration technology, an ideal candidate for high-temperature applications. IEEE Access 6, 78790–78802 (2018). https://doi.org/10.1109/ACCESS2018.2885285

    Article  Google Scholar 

  3. Y.-S. Lin, S.-F. Lin, Large-signal linearity and high-frequency noise of passivated AlGaN/GaN high-electron mobility transistors. Micromach. J. (2020). https://doi.org/10.3390/mi12010007

    Article  Google Scholar 

  4. A. Zamudio, S. Dahmani, G. Kompa, Large-signal modeling of large-size GaN HEMT’s with a comprehensive extrinsic elements extraction algorithm. Int. J. Microw. Wirel. Technol. 2(1), 63–73 (2010). https://doi.org/10.1017/S1759078710000103

    Article  Google Scholar 

  5. D.K. Huynh, Q.H. Le, L. Steffen, Z. Zhao, Empirical large-signal modeling of mm-wave FDSOI CMOS based on angelov model. IEEE Trans. Electron. Dev. (2021). https://doi.org/10.1109/TED2021.3061318

    Article  Google Scholar 

  6. I. Angelov, HFET and HBT modelling for circuit analysis. IEICE Trans Fondam Electron Commun Comput Sci E85-A/B/C/D(1) (2002)

  7. I. Jabbari, M. Baira, H. Maaref, R. Mghaieth, Cryogenic investigation of the negative pinch-off voltage Vpinch, leakage current and interface defects in the Al0.22Ga0.78N/GaN/SiC HEMT. Microelectron. Reliab. J. 116, 114009 (2021). https://doi.org/10.1016/j.microrel.2020.114009

    Article  CAS  Google Scholar 

  8. C. Wang, X.X. Wel, M.D. Zhao, Y.L. He, X.F. Zheng, W. Mao, X.H. Ma, J.C. Zhang, Y. Hao, Effects of Ohmic area etching on buffer breakdown voltage of AIGaN/GaN HEMT. Trans. Electr. Electron. Mater. 18(3), 125–128 (2017). https://doi.org/10.4313/TEEM.2017.18.3.125

    Article  Google Scholar 

  9. H. Wu, X. Fu, Y. Wang, J. Guo, J. Shen, S. Hu, Breakdown voltage improvement of enhancement mode AIGaN/GaN HEMT by a novel step-etched GaN buffer structure. J. Phys. Open (2021). https://doi.org/10.1016/j.rinp.2021.104768

    Article  Google Scholar 

  10. S. David, R. Tibault, C. Michel, B. Philippe, L.G. Nicolas, R. Stéphane, F. Stéphane, V.J. Francois, Nonlinear Electro-thermal modelling of packaged power GaN HEMTs for the design of adaptive power amplifiers dedicated to reconfigurable telecom payloads. IEEE Trans. Microw. Theory Tech. MTT 32(3), 261–267 (2008)

    Google Scholar 

  11. A. Ibrahim, C.Z. Zulkifli, A.Z. Mohamad Ali, A microwave low noise amplifier based on ladder matching network for wireless applications. J. Teknol. Sci. Eng. 78, 5–10 (2016). https://doi.org/10.11113/jt.v78.8832

    Article  Google Scholar 

  12. B. Jain, Design of low noise amplifier at 3GHZ, A graduate project submitted in partial fulfillment of the requirements for the degree of master of science in electrical engineering, California State University, Northridge (2020)

  13. C.M. Navaneetha, R. Chikker, Dsign of low noise amplifier for microwave circuits, Hochschule Bremen University, Germany (2016). https://doi.org/10.13140/RG.2.2.18898.15042

  14. X. Zhao, W. Cheng, H. Zhu, C. Ge, G. Zhou, Z. Fu, A high gain, noise cancelling 2515–4900 MHz CMOS LNA for China Mobile 5G communication application. Comput. Mater. Contin. 64(2), 1139–1151 (2020). https://doi.org/10.32604/cmc.2020.010220

    Article  Google Scholar 

  15. N.F. Halim, S.A. Murad, A. Harun, M.N. Isa, S.N. Mohyar, A. Azizan, Design of 3.1–6.0 GHz CMOS ultra-wideband low noise amplifier with forward body bias technique for wireless applications. AIP Conf. Proc. 2203, 020022 (2020). https://doi.org/10.1063/1.5142114

    Article  Google Scholar 

  16. A. Bijari, H. Khosravi, M. Ebrahimipour, A concurrent dual-band inverter-based low noise amplifier (LNA) for WLAN applications. J. Microelectron. Electron. Compon. Mater. (Inf. MIDEM) 50(4), 263–274 (2020). https://doi.org/10.33180/infMIDEM2020.404

    Article  Google Scholar 

  17. D. Prasad, K. Datta, S. Kumar, P. Paul, V. Nath, A novel design of UWB low noise amplifier for 2–10 GHz wireless sensor applications. Sens. Int. 1, 10004 (2020). https://doi.org/10.1016/j.sint1.2020.100041

    Article  Google Scholar 

  18. P.J. Honnaiah, S. Reddy, Desing of a Linear Low Noise Amplifier (Hochschule Bremen University, Bremen, 2017)

    Google Scholar 

  19. M. Arsalan, F. Wu, LNA desing for future S band satellite navigation and 4G LTE applications. CMES 119(2), 249–261 (2019). https://doi.org/10.32604/cmes.2019.04430

    Article  Google Scholar 

  20. V. Singh, S.K. Arya, M. Kumar, A 3–14 GHz, self-Body Biased common-gate UWB LNA for wireless applications in 90nm CMOS. J. Circuits Syst. Comput. 28(N004), 1950056 (2019)

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Abdelkrim Belmecheri.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Belmecheri, A., Djebari, M. A Large Signal GaN HEMT Transistor Based on the Angelov Model Parameters Extraction Applied to Single Stage Low Noise Amplifier. Trans. Electr. Electron. Mater. 23, 595–608 (2022). https://doi.org/10.1007/s42341-022-00390-z

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s42341-022-00390-z

Keywords

Navigation