Skip to main content
Log in

Characterization and Thermal Degradation Study of Carbonization the Polyimide (PMDA/ODA)/Fe Composite Films

  • Regular Paper
  • Published:
Transactions on Electrical and Electronic Materials Aims and scope Submit manuscript

Abstract

The carbonization performance of the iron-containing carbon film resulting from polyimide was examined, Polyimide/Fe composite films were prepared from Iron (III) 2,4-pentanedionate (Fe(acac)) and poly(amic acid) (PAA) based on ODA and PMDA via a solution process in DMAC, followed by carbonization the polyimide film at a temperature range of 600–1600 °C. The organized polyimide/Fe combined films were characterized using a scanning electron microscope (SEM), and thermogravimetric analysis (TGA), X-ray diffraction (XRD), and Raman. The formation of Fe particles and the synthesis of polyimide (PMDA/ODA) in the polyimide matrix is confirmed by FTIR results. Meantime, in the polyimide matrix, Fe particles were well spread which were showed by the SEM images. Kinetic parameters and thermal stability of the degradation methods for the organized polyimide/Fe combined films were examined in N2 environment by TGA. The results have shown that the values of the calculated activation energies and thermal stability increased of the (Fe (acac)) the activation energy and loading also different with the weight-loss rate for all compositions.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. F.E. Elbakoush, D. Yang, S. Qi, M. Zhang, G. Tian, X. Wang, D. Wu, Carbonization behavior of polyimide films hybrid with different metal catalyst. Polym. Sci., Ser. B 59(4), 430–436 (2017)

    Article  CAS  Google Scholar 

  2. H. Gajiwala, U. Vaidya, S. Sodah, S. Jeelani, Hybridized resin matrix approach applied for development of carbon/carbon composites—I. Carbon 36(7–8), 903–912 (1998)

    Article  CAS  Google Scholar 

  3. D. Zhong, H. Sano, G.-B. Zheng, Y. Uchiyama, Graphitization behavior of the boron-containing carbon film derived from polyimide. NAOSITE 35(64), 63–67 (2005)

    CAS  Google Scholar 

  4. Y. Hishiyama, S. Yasuda, A. Yoshida, M. Inagaki, Structure and properties of highly crystallized graphite films based on polyimide Kapton. J. Mater. Sci. 23(9), 3272–3277 (1988)

    Article  CAS  Google Scholar 

  5. D. Zhong, H. Sano, K. Kobayashi, Y. Uchiyama, A study of film thickness dependence of the graphitizability of PMDA–ODA polyimide-derived carbon film. Carbon 38(15), 2161–2165 (2000)

    Article  CAS  Google Scholar 

  6. M. Inagaki, Z. Wang, Host effect for intercalation of CuCl2 in molten salt. Carbon 30(6), 869–872 (1992)

    Article  CAS  Google Scholar 

  7. S. Otani, A. Oya, Turbostratic structure components deposited by catalytic action of finely dispersed metals. TANSO 1974(79), 111–115 (1974)

    Article  Google Scholar 

  8. A. Ōya, S. Ōtani, Catalytic graphitization of carbons by various metals. Carbon 17(2), 131–137 (1979)

    Article  Google Scholar 

  9. Oya, A., Catalytic Graphitization Phenomenon. Tanso: 1980.

  10. Y. Niu, Q. Fang, X. Zhang, J. Zhao, Y. Li, Structural evolution, induced effects and graphitization mechanism of reduced graphene oxide sheets/polyimide composites. Compos. B Eng. 134, 127–132 (2018)

    Article  CAS  Google Scholar 

  11. Y. Saito, Nanoparticles and filled nanocapsules. Carbon 33(7), 979–988 (1995)

    Article  CAS  Google Scholar 

  12. M. Yudasaka, R. Kikuchi, Y. Ohki, S. Yoshimura, Nitrogen-containing carbon nanotube growth from Ni phthalocyanine by chemical vapor deposition. Carbon 35(2), 195–201 (1997)

    Article  CAS  Google Scholar 

  13. M. Koh, T. Nakajima, Synthesis of well crystallized boron-carbon filament by chemical vapor deposition using a nickel catalyst. Carbon 36(7–8), 913–920 (1998)

    Article  CAS  Google Scholar 

  14. Y. Kaburagi, H. Hatori, A. Yoshida, Y. Hishiyama, M. Inagaki, Carbon films containing transition metal particles of nano and submicron sizes. Synth. Met. 125(2), 171–182 (2001)

    Article  Google Scholar 

  15. Y. Kaburagi, Y. Hishiyama, H. Oka, M. Inagaki, Growth of iron clusters and change of magnetic property with carbonization of aromatic polyimide film containing iron complex. Carbon 39(4), 593–603 (2001)

    Article  CAS  Google Scholar 

  16. C. Kittel, Theory of the structure of ferromagnetic domains in films and small particles. Phys. Rev. 70(11–12), 965 (1946)

    Article  CAS  Google Scholar 

  17. Y.W. Du, J. Wu, H.X. Lu, T.X. Wang, Z.Q. Qiu, H. Tang, J. Walker, Magnetic properties of fine iron particles. J. Appl. Phys. 61(8), 3314–3316 (1987)

    Article  CAS  Google Scholar 

  18. A. Bürger, E. Fitzer, M. Heym, B. Terwiesch, Polyimides as precursors for artificial carbon. Carbon 13(3), 149–157 (1975)

    Article  Google Scholar 

  19. M. Inagaki, S. Harada, T. Sato, T. Nakajima, Y. Horino, K. Morita, Carbonization of polyimide film “Kapton.” Carbon 27(2), 253–257 (1989)

    Article  CAS  Google Scholar 

  20. M. Inagaki, N. Ohta, Y. Hishiyama, Aromatic polyimides as carbon precursors. Carbon 61, 1–21 (2013)

    Article  CAS  Google Scholar 

  21. H. Hatori, Y. Yamada, M. Shiraishi, M. Yoshihara, T. Kimura, The mechanism of polyimide pyrolysis in the early stage. Carbon 34(2), 201–208 (1996)

    Article  CAS  Google Scholar 

  22. H. Oka, M. Inagaki, Y. Kaburagi, Y. Hishiyama, Incorporation of iron particles into carbon films derived from polyimide. Solid State Ionics 121(1–4), 157–163 (1999)

    Article  CAS  Google Scholar 

  23. Y. Kaburagi, T. Toriyama, A. Yoshida, H. Wakabayashi, Y. Hishiyama, M. Inagaki, Carbonization behavior of polyimide film containing iron complex in relation to magnetic properties. J. Mater. Res. 16(2), 352–365 (2001)

    Article  CAS  Google Scholar 

  24. Mao, R.; Chen, Y.; Kim, K. W., Atomistic modeling of phonon transport in turbostratic graphitic structures. Journal of Applied Physics 2016, 119 (20).

  25. P. Zhang, B.K. Tay, C.Q. Sun, S.P. Lau, Microstructure and mechanical properties of nanocomposite amorphous carbon films. J. Vac. Sci. Technol. A 20(4), 1390–1394 (2002)

    Article  CAS  Google Scholar 

  26. S. Zhao, Z.-Q. Shi, C.-Y. Wang, M.-M. Chen, Structure and surface elemental state analysis of polyimide resin film after carbonization and graphitization. J. Appl. Polym. Sci. 108(3), 1852–1856 (2008)

    Article  CAS  Google Scholar 

  27. L. Ma, Y. Wang, X. Xu, Y. Wang, C. Wang, Structural evolution and thermal conductivity of flexible graphite films prepared by carboxylic graphene/polyimide. Ceram. Int. 47(1), 1076–1085 (2021)

    Article  CAS  Google Scholar 

  28. M.A. Wahab, I. Kim, C.-S. Ha, Microstructure and properties of polyimide/poly (vinylsilsesquioxane) hybrid composite films. Polymer 44(16), 4705–4713 (2003)

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Qudrat Ullah Khan.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Elbakoush, F.E., Khan, Q.U., Ullah, M. et al. Characterization and Thermal Degradation Study of Carbonization the Polyimide (PMDA/ODA)/Fe Composite Films. Trans. Electr. Electron. Mater. 22, 843–850 (2021). https://doi.org/10.1007/s42341-021-00309-0

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s42341-021-00309-0

Keywords

Navigation