Skip to main content

Advertisement

Log in

Evaluation of the Mechanical Properties of Natural Rubber/Baobab (Adansonia Digitata) Fibre Nanocomposite Using Response Surface Methodology: A Pedagogical Approach

  • Original Article
  • Published:
Chemistry Africa Aims and scope Submit manuscript

Abstract

Response surface methodologies are useful in achieving optimum processing conditions in materials development. This study highlights a pedagogical approach where conceptual methods useful in project-based learning can be sustained in the development of composite materials. In the study, the central composite design (CCD) in response surface methodology (RSM) was used to investigate the effect of processing pressure, temperature, pressing time, and reinforcement loading on the mechanical properties of natural rubber/baobab fibre nanocomposite. In addition, the processing parameters were optimised to obtain the optimum mechanical properties of the natural rubber/baobab fibre nanocomposite. The scientific aspects were taught to postgraduate students eager to learn simulation methods using the novel CACPLA (Communicate, Active, Collaborate, Problem-based solving, Learning and Assess) pedagogy. Amongst the investigated variables, compression pressure has the least impact on the composite’s Young’s modulus and hardness, whereas pressing temperature and the reinforcement loading showed a significant impact of 38.3% and 34.4%, respectively. Based on the analysis of variance (ANOVA), pressing temperature and reinforcement loading have a significant effect on the hardness property of the natural rubber (NR)/baobab fibre nanocomposite compared to processing pressure and pressing time. This is because high temperature degrades the vulcanizates and reduces the mechanical performance of the composites giving room to low resistance to indentation. An increase in baobab fibre particle loading increases the crosslink density and stiffens the nanocomposites. Since the selection of suitable parameters is important in obtaining the optimum desired properties from composites, optimisation of the investigated parameters for the composite was carried out. The optimum mechanical properties for the rubber/baobab fibre nanocomposite were obtained at a compression pressure of 1.50 MPa, pressing temperature of 130 °C, pressing time of 13 min, and reinforcement loading of 20.00 phr (part per hundred of rubber) with desirability of one (1). Validation of the optimal solution shows 97.57% correlation for Young’s modulus and 98.55% for hardness property. From the word cloud analysis, the words “matrix”, “chemistry”, “properties”, “polymer”, “composite”, and “interaction” were mentioned frequently implying that the teaching of the RSM simulation method emphasized more on the chemistry of interaction between the reinforcement and matrix materials. This study, therefore, illustrates the optimum process to produce NR-reinforced composite materials and a computational pedagogy that is useful for teaching the fabrication of composite materials.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12

Similar content being viewed by others

Data Availability

Data associated with the manuscript are available on request from the authors.

References

  1. Lehman N, Tuljittraporn A, Songtipya L, Uthaipan N, Sengloyluan K, Johns J, Nakaramontri Y, Kalkornsurapranee E (2022) Influence of Non-Rubber Components on the Properties of Unvulcanized Natural Rubber from Different Clones. Polymers 14(9):1759. https://doi.org/10.3390/polym14091759

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  2. Oboh JO, Okafor ASK (2017) Investigation of eco-friendly cellulosic nanoparticles potential as reinforcement agent in the production of natural rubber composites 36(4):1078–1087

    Google Scholar 

  3. Saha T, Bhowmick AK, Oda T, Miyauchi T, Fujii N (2019) Influence of layered nanofillers on the mechanical properties and thermal degradation of polyacrylicester polymer: Theoretical and experimental investigations. Compos B Eng. https://doi.org/10.1016/j.compositesb.2019.03.084

    Article  Google Scholar 

  4. Chen, L., Hou, J., Chen, Y., Wang, H., Duan, Y., & Zhang, J. (2019). Synergistic effect of conductive carbon black and silica particles for improving the pyroresistive properties of high density polyethylene composites. Composites Part B: Engineering, 107465. https://doi.org/10.1016/j.compositesb.2019

  5. Mohamad Aini NA, Othman N, Hussin MH, Sahakaro K, Hayeemasae N (2020) Lignin as Alternative n in the Rubber Industry: A Review. Front Mater 6:329. https://doi.org/10.3389/fmats.2019.00329

    Article  Google Scholar 

  6. Gupta MK (2017) Effect of variation in frequencies on dynamic mechanical properties of jute fibre reinforced epoxy composites. J Mater Environ Sci 9(1):100–106

    Google Scholar 

  7. Chakrabarty A, Yoshikuni T (2018) Recent Advances in Nanocellulose Composites with Polymers: A Guide for Choosing Partners and How to incorporate them. Polymers 10(517):1–47. https://doi.org/10.3390/polym10050517

    Article  CAS  Google Scholar 

  8. Mondal S (2017) A review on nanocellulose polymer nanocomposites. Polym-Plast Technol Eng 57(13):1377–1391. https://doi.org/10.1080/03602559.2017.1381253

    Article  CAS  Google Scholar 

  9. Sharma A, Thakur M, Bhattacharya M, Mandal T (2019) Commercial application of cellulose nano-composites – A review. Biotechnology Reports 2018:e00316. https://doi.org/10.1016/j.btre.2019.e00316

    Article  Google Scholar 

  10. Thomas E, Abraham JP, Pothan LA, Maria HJ, Thomas S (2015) Nanocelluloses from jute fibres and their nanocomposites with natural rubber: preparation and characterization. Int J Biol Macromol. https://doi.org/10.1016/j.ijbiomac.2015.08.053

    Article  PubMed  Google Scholar 

  11. Nair KG, Dufresne A, Ghandini A, Belgacem MN (2003) Crab shell chitin whisker reinforced natural rubber nanocomposites. Macromolecules 4(6):657–665. https://doi.org/10.1021/bm020127b

    Article  CAS  Google Scholar 

  12. Gapsari, F., Andoko, A., Diharjo, K., Sanjay, M. R., & Siengchin, S. (2022). The effectiveness of isolation and characterization nanocelullose from Timoho fiber for sustainable materials. Biomass Conversion and Biorefinery, 1–11

  13. Gapsari, F., Putri, T. M., Rukmana, W., Juliano, H., Sulaiman, A. M., Dewi, F. G., ... & Siengchin, S. (2023). Isolation and Characterization of Muntingia Calabura Cellulose Nanofibers. Journal of Natural Fibers20(1), 2156018.

  14. Kulshrestha U, Gupta T, Kumawat P, Jaiswal H, Ghosh SB, Sharma NN (2020) Cellulose nanofiber enabled natural rubber composites: Microstructure, curing behaviour and dynamic mechanical properties. Polymer Testing, 106676. https://doi.org/10.1016/j.polymertesting.2020.106676.

  15. Abraham EBD, Pothan LA, Maya J, Narine SS, Thomas R (2013) Physio mechanical properties of nanocomposites based on cellulose nanofiber and natural rubber latex. Cellulose 20(1):417–427. https://doi.org/10.1007/s10570-012-9830-1

    Article  CAS  Google Scholar 

  16. Han J, Lu K, Yue Y, Mei C, Huang C, Wu Q (2019) Industrial crops & products nanocellulose-templated assembly of polyaniline in natural rubber-based hybrid elastomers toward flexible electronic conductors. Ind Crops Prod 128:94–107. https://doi.org/10.1016/j.indcrop.2018.11.004

    Article  CAS  Google Scholar 

  17. Sumesh K, Kanthavel KR (2019) Compression pressure and temperature in fabrication. Polymer Bullet 77(9):4609–4629. https://doi.org/10.1007/s00289-019-02988-5

    Article  CAS  Google Scholar 

  18. Babu RJ, Mathew S, Jacob SR, George SC, Jacob JC (2015) Optimization of human hair length in a natural rubber-based composite. Trans Indian Inst Met 68(1):87–90. https://doi.org/10.1007/s12666-015-0614-9

    Article  Google Scholar 

  19. Jun Z, Xiang-ming W, Jian-min C, Kai Z (2008) Optimization of processing variables in wood – rubber composite panel manufacturing technology. Bioresourc Tech 99:2384–2391. https://doi.org/10.1016/j.biortech.2007.05.031

    Article  CAS  Google Scholar 

  20. Rajaee P, Ashenai F, Fasihi M (2019) Effect of styrene-butadiene rubber and fumed silica nano-filler on the microstructure and mechanical properties of glass fiber reinforced unsaturated polyester resin. Compos B 173(February):106803. https://doi.org/10.1016/j.compositesb.2019.05.014

    Article  CAS  Google Scholar 

  21. Razak SN, Abdul Rahman WA, Fadzliana N, Sharif N, Yahya MY (2012) Simultaneous numerical optimization of the mechanical and electrical properties of polyaniline coated kenaf fiber using response surface methodology: nanostructured polyaniline on natural fiber. Compos Interfaces 19(7):411–424. https://doi.org/10.1080/15685543.2012.757957

    Article  CAS  Google Scholar 

  22. Obada, D. O., Bako, R. B., Ahmed, A. S., Anafi, F. O., Eberemu, A. O., Dodoo-Arhin, D., ... & Obada, I. B. (2022). Teaching bioengineering using a blended online teaching and learning strategy: a new pedagogy for adapting classrooms in developing countries. Education and Information Technologies, 1–24.

  23. Uzochukwu MI, Eze UW, Opara H, Garba P, Ifeanyichukwu M (2020) Study on the physico-mechanical properties of treated baobab fiber (Adansonia Digitata) nano-filler/epoxy composite. Multiscale Multidiscip Model, Exp Des. https://doi.org/10.1007/s41939-020-00068-0

    Article  Google Scholar 

  24. Lapitan LD Jr, Tiangco CE, Sumalinog DAG, Sabarillo NS, Diaz JM (2021) An effective blended online teaching and learning strategy during the COVID-19 pandemic. Educ Chem Eng 35:116–131

    Article  Google Scholar 

  25. Jong L (2015) Influence of protein hydrolysis on the mechanical properties of natural rubber composites reinforced with soy protein particles. Ind Crops Prod 65:102–109

    Article  CAS  Google Scholar 

  26. Athijayamani A, Stalin B, Sidhardhan S, Boopathi C (2016) Parametric analysis of mechanical properties of bagasse fiber-reinforced vinyl ester composites. J Compos Mater 50(4):481–493

    Article  CAS  Google Scholar 

  27. Favier V, Canova GR, Cavaillé JY, Chanzy H, Dufresne A, Gauthier C (1995) Nanocomposite materials from latex and cellulose whiskers. Polym Adv Technol 6(5):351–355

    Article  CAS  Google Scholar 

  28. Lee KY, Aitomäki Y, Berglund LA, Oksman K (2014) The use of nanocellulose as reinforcement in polymer matrix composites. Compos Sci Technol 5:15–27

    Article  Google Scholar 

  29. Ofem M.I., Ene, E. B., Ubi., P. A.,. Odey S. O., and Fakorede, D. O. (2020). Properties Of Cellulose Reinforced Composites: a Review. https://doi.org/10.4314/njt.v39i2.9

  30. de Oliveira AD, Beatrice CAG (2019) Polymer Nanocomposites with Different Types of Nanofiller. Nanocomposites Recent Evol. https://doi.org/10.5772/intechopen.81329

    Article  Google Scholar 

  31. Karthic P, Joseph S, Arun Na, Kumaravel (2013) Optimization of biohydrogen production by Enterobacter species using artificial neural network and response surface methodology. Renew Sustain Energy 5:033104. https://doi.org/10.1063/1.4803746

    Article  CAS  Google Scholar 

  32. Momoh, O.J, Okonkwo, P.C and Edomwonyi-Otu, L.C. (2018). Effect of Airflow Rate and Hydraulic Retention Time on the Bio-degradation of Petroleum Refinery Wastewater in an Activated Sludge Process, Proceedings of the National Engineering Conference, Faculty of Engineering, Ahmadu Bello University, Zaria. 469–473.

  33. Fazeli Burestan N, Afkari Sayyah AH, Taghinezhad E (2020) Mathematical modeling for the prediction of some quality parameters of white rice based on the strength properties of samples using response surface methodology (RSM). Food Sci Nutr 8(8):4134–4144. https://doi.org/10.1002/fsn3.1703

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Adesina OT, Sadiku ER, Jamiru T, Ogunbiyi OF, Beneke LW, Adegbo AT (2019) Optimization of SPS processing parameters on the density and hardness properties of graphene reinforced polylactic acid nanocomposite. Int J Adv Manuf Technol. https://doi.org/10.1007/s00170-019-03530-7

    Article  Google Scholar 

  35. Venugopal J, Dhanasakkaravarthi B, Surakasi R, Rinawa ML, Manjunatha LH, Alshgari SM, Islam WMA, Jenish I (2022) Effect on compression moulding parameters in mechanical properties of MWCNT/Glass Fiber/Epoxy Composites. Adv Polymer Technol 2022:1–7. https://doi.org/10.1155/2022/9295407

    Article  CAS  Google Scholar 

  36. Correia, C. A., & Valera, T. S. (2019). Cellulose nanocrystals and jute fiber-reinforced natural rubber composites: cure characteristics and mechanical properties. Materials Research22.

  37. Kumar RG, Rajesh DR (2016) A study on the abrasion resistance, compressive strength and hardness of banana–fibre reinforced natural rubber composites. Int J Adv Res Eng Technol 7(3):42–55

    Google Scholar 

  38. Reddy JP, Rhim JW (2014) Characterization of bionanocomposite films prepared with agar and paper-mulberry pulp nanocellulose. Carbohyd Polym 110:480–488

    Article  CAS  Google Scholar 

  39. Visakh PM, Thomas S, Oksman K, Mathew AP (2012) Composites: Part A Crosslinked natural rubber nanocomposites reinforced with cellulose whiskers isolated from bamboo waste: Processing and mechanical / thermal properties. Compos A 43(4):735–741. https://doi.org/10.1016/j.compositesa.2011.12.015

    Article  CAS  Google Scholar 

  40. Doddi PRV, Chanamala R, Dora SP (2019) Dynamic mechanical properties of epoxy based PALF/basalt hybrid composite laminates. Mater Res Express. https://doi.org/10.1088/2053-1591/ab3dd7

    Article  Google Scholar 

  41. Eze WU, Yakubu MK, Buba MA, Kuzmin A, Santos-Ndukwe IB, Ugbaja MI, Bayero AH (2022) Effect of Nano-Structured Bambara Nut Shell (Vigna Subterranea (L) Verdc) As Filler on the Physical Mechanical and Morphological Properties of Epoxy Matrix. J Mater Environ Sci 13(10):1155–1170

    CAS  Google Scholar 

  42. Roy K, Debnath SC, Pongwisuthiruchte A, Potiyaraj P (2021) Recent advances of natural fibers based green rubber composites: Properties, current status, and future perspectives. J Appl Polym Sci 138(35):50866. https://doi.org/10.1002/app.50866

    Article  CAS  Google Scholar 

Download references

Acknowledgements

The authors thank the management of the Nigerian Institute of Leather and Science Technology, Zaria, Nigeria for providing facilities to carry out this study.

Author information

Authors and Affiliations

Authors

Contributions

Maryann Ifeoma Uzochukwu (MIU) contributed to the study’s conception and design. Material preparation, Data collection, and analysis were performed by all authors. The first draft of the manuscript was written by MIU, and David Olubiyi Obada read, revised, and facilitated the teaching sessions included in the manuscript. All authors read and approved the final version to be published.

Corresponding authors

Correspondence to Maryann Ifeoma Uzochukwu or David Olubiyi Obada.

Ethics declarations

Conflict of Interest

The authors have no relevant financial or non-financial interests to disclose.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Uzochukwu, M.I., Momoh, O.J., Adebisi, A.A. et al. Evaluation of the Mechanical Properties of Natural Rubber/Baobab (Adansonia Digitata) Fibre Nanocomposite Using Response Surface Methodology: A Pedagogical Approach. Chemistry Africa (2024). https://doi.org/10.1007/s42250-024-00957-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s42250-024-00957-8

Keywords

Navigation