Skip to main content
Log in

Phenolic Profile with Biological Activities Assessment of Ethanolic and Aqueous Extracts from Ephedra alata

  • Original Article
  • Published:
Chemistry Africa Aims and scope Submit manuscript

Abstract

Ephedra alata aerial parts are often used in Tunisian traditional medicine, especially patients with cancer. The current paper highlights, for the first time, the pro-apoptotic properties of its aqueous and ethanolic extracts on leukemic, colon and pancreatic cancers. Furthermore, their anti-inflammatory and antioxidant activities were evaluated. Both extracts phenolic profile’s was assessed by HPLC analysis. A total of eight and seven compounds respectively in ethanolic and aqueous extracts, were identified as tyrosol (31.86–50.17%) followed by catechin (9.26–10.52%) and syringic (6.94–17.06%), coumaric (10.20-13.56%) and para-hydroxybenzoic (5.67–13.48%) acids as main constituents. Caffeic acid was found only in the ethanolic extract (9.56%). The β-carotene bleaching test and ferric reducing power assay were used to evaluate the antioxidant activity. Both extracts displayed antioxidant potency. The strong antioxidant abilities (i.e. IC50 = 0.023 ± 0.003 mg/mL and EC50 = 0.157 mg/mL for β-carotene bleaching test and ferric reducing power assay, respectively) were recorded in aqueous extract. In vitro anti-inflammatory activity was assessed by flow cytometry by following TNF-α production after lipopolysaccharide challenge of THP-1 cells. The results show that both extracts have the ability to inhibit significantly the TNF-α secretion. An effect more pronounced for the ethanolic extract. The pro-apoptotic potency of the extracts was estimated using viable and apoptotic markers assessed by flow cytometric. Here, both extracts, especially the ethanolic one, showed a noticeable stronger pro-apoptotic effect on all three tested human cancer cell lines (monocytic, colon and pancreatic carcinoma). Such promising anti-inflammatory and anticancer properties of both extracts are certainly related to their richness in tyrosol, catechin and various phenolic acids present in Ephedra alata aerial parts.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. Old E (2021) Observatoire de la santé mondiale. Cancer

  2. Demir S, Turan I, Aliyazicioglu Y (2016) Selective cytotoxic effect of Rhododendron luteum extract on human colon and liver cancer cells. J BUON 21(4):883–888

    PubMed  Google Scholar 

  3. Regassa H, Sourirajan A, Kumar V, Pandey S, Kumar D, Dev K (2022) A review of medicinal plants of the himalayas with anti-proliferative activity for the treatment of various cancers. Cancers 14(16):3898

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. Wu XY, Zhai J, Huan XK, Xu WW, Tian J, Farhood B (2023) A systematic review of the therapeutic potential of resveratrol during colorectal cancer chemotherapy. Mini Rev Med Chem 23(10):1137–1152

    Article  CAS  PubMed  Google Scholar 

  5. Yadav R, Das J, Lalhlenmawia H, Tonk RK, Singh L, Kumar D (2021) Targeting cancer using phytoconstituents-based drug delivery. Advanced drug delivery Systems in the Management of cancer. Elsevier pp. 499–508

  6. Tirado-Kulieva VA, Hernández-Martínez E, Rivera TJC (2022) Phenolic compounds versus SARS-CoV-2: an update on the main findings against COVID-19. Heliyon 8:e10702

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Siddiqui AJ, Jahan S, Singh R, Saxena J, Ashraf SA, Khan A, Choudhary RK, Balakrishnan S, Badraoui R, Bardakci F (2022) Plants in anticancer drug discovery: from molecular mechanism to chemoprevention. BioMed Res Int 2022

  8. Rajabi S, Maresca M, Yumashev AV, Choopani R, Hajimehdipoor H (2021) The most competent plant-derived natural products for targeting apoptosis in cancer therapy. Biomolecules 11(4):534

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Liu C, Zeng Y, Wen Y, Huang X, Liu Y (2022) Natural products modulate cell apoptosis: a promising way for the treatment of ulcerative colitis. Front Pharmacol 13:806148

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Wani AK, Akhtar N, Mir TUG, Singh R, Jha PK, Mallik SK, Sinha S, Tripathi SK, Jain A, Jha A (2023) Targeting apoptotic pathway of cancer cells with phytochemicals and plant-based nanomaterials. Biomolecules 13(2):194

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Oke A, Henstra C, Lambert M, Hayeshi R (2023) A review of the pharmacodynamic effect of chemo-herbal drug combinations therapy for cancer treatment. Med Drug Discov 17:100147

    Article  Google Scholar 

  12. Cuénod A (1954) Flore Analytique et synoptique de la Tunisie. Impr. SEFAN

  13. Le Floc’h E, Boulos L, Véla E (2010) Catalogue synonymique commenté de la flore de tunisie. République Tunisienne, Ministère De L’Environnement et du Développement durable. Banque Nationale De Gènes

  14. Tang S, Ren J, Kong L, Yan G, Liu C, Han Y, Sun H, Wang XG (2023) Ephedrae Herba: a review of its Phytochemistry, Pharmacology, clinical application, and Alkaloid Toxicity. Molecules 28(2):663

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Zhong LLD, Lam WC, Yang W, Chan KW, Sze SCW, Miao J, Yung KKL, Bian Z, Wong VT (2020) Potential targets for treatment of coronavirus disease 2019 (COVID-19): a review of Qing-Fei-Pai-Du-Tang and its major herbs. Am J Chin Med 48(05):1051–1071

    Article  CAS  PubMed  Google Scholar 

  16. Dousari AS, Satarzadeh N, Amirheidari B, Forootanfar H (2022) Medicinal and therapeutic properties of ephedra. Rev Bras Farmacogn 32(6):883–899

    Article  CAS  Google Scholar 

  17. Sioud F, Ben Toumia I, Lahmer A, Khlifi R, Dhaouefi Z, Maatouk M, Ghedira K, Chekir-Ghedira L (2020) Methanolic extract of Ephedra alata ameliorates cisplatin-induced nephrotoxicity and hepatotoxicity through reducing oxidative stress and genotoxicity. Environ Sci Pollut Res 27:12792–12801

    Article  CAS  Google Scholar 

  18. Dbeibia A, Taheur FB, Altammar KA, Haddaji N, Mahdhi A, Amri Z, Mzoughi R, Jabeur C (2022) Control of Staphylococcus aureus methicillin resistant isolated from auricular infections using aqueous and methanolic extracts of Ephedra alata. Saudi J Biol Sci 29(2):1021–1028

    Article  CAS  PubMed  Google Scholar 

  19. Dbeibia A, Nouir S, Ben Taheur F, Mahdhi A, Mzoughi R, Jabeur C (2023) Antifungal and allelopathic activities of aqueous and methanolic extracts from Ephedra alata aerial parts. Euro-Mediterr J Environ Integr 1–11

  20. Tiss M, Souiy Z, Achour L, Hamden K (2022) Ephedra alata extracts exerts anti-obesity, anti-hyperglycemia, anti-antipyretic and analgesic effects. Nutr Food Sci 52(1):119–128

    Article  Google Scholar 

  21. Soumaya B, Yosra E, Rim BM, Sarra D, Sawsen S, Sarra B, Kamel M, Wissem AM, Isoda H, Wided MK (2020) Preliminary phytochemical analysis, antioxidant, anti-inflammatory and anticancer activities of two Tunisian Ephedra species: Ephedra alata and Ephedra fragilis. S Afr J Bot 135:421–428

    Article  CAS  Google Scholar 

  22. Sioud F, Amor S, Toumia IB, Lahmar A, Aires V, Chekir-Ghedira L, Delmas D (2020) A new highlight of Ephedra alata decne properties as potential adjuvant in combination with cisplatin to induce cell death of 4T1 breast cancer cells in vitro and in vivo. Cells 9(2):362

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Danciu C, Muntean D, Alexa E, Farcas C, Oprean C, Zupko I, Bor A, Minda D, Proks M, Buda V (2019) Phytochemical characterization and evaluation of the antimicrobial, antiproliferative and pro-apoptotic potential of Ephedra Alata Decne. Hydroalcoholic extract against the MCF-7 breast cancer cell line. Molecules 24(1):13

    Article  Google Scholar 

  24. Ferlay J, Colombet M, Soerjomataram I, Parkin DM, Piñeros M, Znaor A, Bray F (2021) Cancer statistics for the year 2020: an overview. Inter J Cancer 149(4):778–789

    Article  CAS  Google Scholar 

  25. Sung H, Ferlay J, Siegel RL, Laversanne M, Soerjomataram I, Jemal A, Bray F (2021) Global cancer statistics 2020: GLOBOCAN estimates of incidence and mortality worldwide for 36 cancers in 185 countries. CA Cancer J Clin 71(3):209–249

    Article  PubMed  Google Scholar 

  26. Ikram EHK, Eng KH, Jalil AMM, Ismail A, Idris S, Azlan A, Nazri HSM, Diton NAM, Mokhtar RAM (2009) Antioxidant capacity and total phenolic content of Malaysian underutilized fruits. J Food Compos Anal 22(5):388–393

    Article  CAS  Google Scholar 

  27. Oyaizu M (1986) Studies on products of browning reaction antioxidative activities of products of browning reaction prepared from glucosamine. Jpn J Nutr Diet 44(6):307–315

    Article  CAS  Google Scholar 

  28. Covas M, Miró-Casas E, Fitó M, Farré-Albadalejo M, Gimeno E, Marrugat J, De La Torre R (2003) Bioavailability of tyrosol, an antioxidant phenolic compound present in wine and olive oil, in humans. Drugs Exp Clin Res 29(5–6):203–206

    CAS  PubMed  Google Scholar 

  29. Caruso D, Berra B, Giavarini F, Cortesi N, Fedeli E, Galli G (1999) Effect of virgin olive oil phenolic compounds on in vitro oxidation of human low density lipoproteins. Nutr Metab Cardiovasc Dis 9(3):102–107

    CAS  PubMed  Google Scholar 

  30. González-Correa JA, Navas MD, Lopez-Villodres JD, Trujillo M, Espartero JL, De La Cruz JP (2008) Neuroprotective effect of hydroxytyrosol and hydroxytyrosol acetate in rat brain slices subjected to hypoxia–reoxygenation. Neurosci Lett 446(2–3):143–146

    Article  PubMed  Google Scholar 

  31. Grzesik M, Bartosz G, Dziedzic A, Narog D, Namiesnik J, Sadowska-Bartosz I (2018) Antioxidant properties of ferrous flavanol mixtures. Food chem 268:567–576

    Article  CAS  PubMed  Google Scholar 

  32. Cikman O, Soylemez O, Ozkan OF, Kiraz HA, Sayar I, Ademoglu S, Taysi S, Karaayvaz M (2015) Antioxidant activity of syringic acid prevents oxidative stress in L-arginine–induced acute pancreatitis: an experimental study on rats. Int Surg 100(5):891–896

    Article  PubMed  PubMed Central  Google Scholar 

  33. Cheemanapalli S, Anuradha C, Pakala SB, Chitta SK (2018) Design and screening of syringic acid analogues as BAX activators-An in silico approach to discover BH3 mimetics. Comput Biol Chem 74:49–62

    Article  CAS  PubMed  Google Scholar 

  34. IKiliç I, Yeşiloğlu Y (2013) Spectroscopic studies on the antioxidant activity of p-coumaric acid. Spectrochim Acta Mol Biomol Spectrosc 115:719–724

    Article  ADS  Google Scholar 

  35. Shen Y, Song X, Li L, Sun J, Jaiswal Y, Huang J, Liu C, Yang W, Williams L, Zhang H (2019) Protective effects of p-coumaric acid against oxidant and hyperlipidemia-an in vitro and in vivo evaluation. Biomed Pharmacother 111:579–587

    Article  CAS  PubMed  Google Scholar 

  36. Espíndola KMM, Ferreira RG, Narvaez LEM, Silva Rosario ACR, Da Silva AHM, Silva AGB, Vieira APO, Monteiro MC (2019) Chemical and pharmacological aspects of caffeic acid and its activity in hepatocarcinoma. Front Oncol 541

  37. Velika B, Kron I (2012) Antioxidant properties of benzoic acid derivatives against superoxide radical. Free Radic Antioxid 2(4):62–67

    Article  CAS  Google Scholar 

  38. Biesalski HK (2007) Polyphenols and inflammation: basic interactions. Curr Opin Clin Nutr Metab Care 10(6):724–728

    Article  CAS  PubMed  Google Scholar 

  39. Wheeler DS, Catravas JD, Odoms K, Denenberg A, Malhotra V, Wong HR (2004) Epigallocatechin-3-gallate, a green tea–derived polyphenol, inhibits IL-1β-dependent proinflammatory signal transduction in cultured respiratory epithelial cells. J Nutr 134(5):1039–1044

    Article  CAS  PubMed  Google Scholar 

  40. Miles EA, Zoubouli P, Calder PC (2005) Effects of polyphenols on human Th1 and Th2 cytokine production. Clin Nutr 24(5):780–784

    Article  CAS  PubMed  Google Scholar 

  41. Yadav TC, Kumar N, Raj U, Goel N, Vardawaj PK, Prasad R, Pruthi V (2020) Exploration of interaction mechanism of tyrosol as a potent anti-inflammatory agent. J Biomol Struct Dyn 38(2):382–397

    Article  CAS  PubMed  Google Scholar 

  42. Muriana FJ, Montserrat-de la Paz S, Lucas R, Bermudez B, Jaramillo S, Morales JC, Abia R, Lopez S (2017) Tyrosol and its metabolites as antioxidative and anti-inflammatory molecules in human endothelial cells. Food Funct 8(8):2905–2914

    Article  CAS  PubMed  Google Scholar 

  43. Hu Z, Zhou H, Zhao J, Sun J, Li M, Sun X (2020) Microwave-assisted extraction, characterization and immunomodulatory activity on RAW264. 7 cells of polysaccharides from Trichosanthes Kirilowii Maxim seeds. Int J Biol Macromol 164:2861–2872

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  44. Bertelli AA, Migliori M, Panichi V, Longoni B, Origlia N, Ferretti A, Cuttano MG, Giovannini L (2002) Oxidative stress and inflammatory reaction modulation by white wine. Ann N Y Acad Sci 957(1):295–301

    Article  ADS  CAS  PubMed  Google Scholar 

  45. Qi W, Ren D, Wang P, Song Z, Wu H, Yao S, Geng L, Su Y, Bai X (2020) Upregulation of Sirt1 by tyrosol suppresses apoptosis and inflammation and modulates extracellular matrix remodeling in interleukin-1β-stimulated human nucleus pulposus cells through activation of PI3K/Akt pathway. Int Immunopharmacol 88:106904

    Article  CAS  PubMed  Google Scholar 

  46. Luo G, Huang Y, Mo D, Ma N, Gao F, Song L, Sun X, Xu X, Liu L, Huo X (2018) Tyrosol attenuates pro-inflammatory cytokines from cultured astrocytes and NF-κB activation in in vitro oxygen glucose deprivation. Neurochem Int 121:140–145

    Article  CAS  PubMed  Google Scholar 

  47. Giovannini L, Migliori M, Filippi C, Origlia N, Panichi V, Falchi M, Bertelli A (2002) Inhibitory activity of the white wine compounds, tyrosol and caffeic acid, on lipopolysaccharide-induced tumor necrosis factor-alpha release in human peripheral blood mononuclear cells. Int J Tissue React 24(2):53–56

    CAS  PubMed  Google Scholar 

  48. De Stefano D, Maiuri MC, Simeon V, Grassia G, Soscia A, Cinelli MP, Carnuccio R (2007) Lycopene, quercetin and tyrosol prevent macrophage activation induced by gliadin and IFN-γ. Eur J Pharmacol 566(1–3):192–199

    Article  PubMed  Google Scholar 

  49. Ahn EY, Jiang Y, Zhang Y, Son EM, You S, Kang SW, Park JS, Jung JH, Lee BJ, Kim DK (2008) Cytotoxicity of p-tyrosol and its derivatives may correlate with the inhibition of DNA replication initiation. Oncol Rep 19(2):527–534

    CAS  PubMed  Google Scholar 

  50. Loru D, Incani A, Deiana M, Corona G, Atzeri A, Melis M, Rosa A, Dessì M (2009) Protective effect of hydroxytyrosol and tyrosol against oxidative stress in kidney cells. Toxicol Ind Health 25(4–5):301–310

    Article  CAS  PubMed  Google Scholar 

  51. Nakanishi T, Mukai K, Yumoto H, Hirao K, Hosokawa Y, Matsuo T (2010) Anti-inflammatory effect of catechin on cultured human dental pulp cells affected by bacteria‐derived factors. Eur J Oral Sci 118(2):145–150

    Article  CAS  PubMed  Google Scholar 

  52. Li T, Li F, Liu X, Liu J, Li D (2019) Synergistic anti-inflammatory effects of quercetin and catechin via inhibiting activation of TLR4–MyD88‐mediated NF‐κB and MAPK signaling pathways. Phytother Res 33(3):756–767

    Article  CAS  PubMed  Google Scholar 

  53. Cheng AW, Tan X, Sun JY, Gu CM, Liu C, Guo X (2019) Catechin attenuates TNF-α induced inflammatory response via AMPK-SIRT1 pathway in 3T3-L1 adipocytes. PLoS ONE 14(5):e0217090

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  54. Kiran P, Denni M, Daniel M (2014) Antidiabetic principles, phospholipids and fixed oil of Kodo millet (Paspalum scrobiculatum Linn). Indian J Appl Res 4:13–15

    Article  Google Scholar 

  55. Zhu H, Liang QH, Xiong XG, Wang Y, Zhang ZH, Sun MJ, Lu X, Wu D (2018) Anti-inflammatory effects of p-coumaric acid, a natural compound of Oldenlandia diffusa, on arthritis model rats. Evid Based Complementary Altern Med 2018

  56. Yang WS, Jeong D, Yi YS, Park JG, Seo H, Moh SH, Hong S, Cho JY (2013) IRAK1/4-targeted anti-inflammatory action of caffeic acid. Mediators Inflamm 2013

  57. Arul M, Roslani AC, Cheah SH (2017) Heterogeneity in cancer cells: variation in drug response in different primary and secondary colorectal cancer cell lines in vitro. Vitro Cell Dev Biol Anim 53(5):435–447

    Article  CAS  Google Scholar 

  58. Batra P, Sharma AK (2013) Anti-cancer potential of flavonoids: recent trends and future perspectives. 3 Biotech 3(6):439–459

    Article  PubMed  PubMed Central  Google Scholar 

  59. Rengarajan T, Yaacob NS (2016) The flavonoid fisetin as an anticancer agent targeting the growth signaling pathways. Eur J Pharmacol 789:8–16

    Article  CAS  PubMed  Google Scholar 

  60. Yar Khan H, Zubair H, Fahad Ullah M, Ahmad A, Mumtaz Hadi S (2012) A prooxidant mechanism for the anticancer and chemopreventive properties of plant polyphenols. Curr Drug Targets 13(14):1738–1749

    Article  Google Scholar 

  61. Anter J, Tasset I, Demyda-Peyrás S, Ranchal I, Moreno-Millán M, Romero-Jimenez M, Muntané J, de Castro MLD, Muñoz-Serrano A, Alonso-Moraga A (2014) Evaluation of potential antigenotoxic, cytotoxic and proapoptotic effects of the olive oil by-product alperujo, hydroxytyrosol, tyrosol and verbascoside. Mutat Res Genet Toxicol Environ Mutagen 772:25–33

    Article  CAS  PubMed  Google Scholar 

  62. Abijeth B, Ezhilarasan D (2020) Syringic acid induces apoptosis in human oral squamous carcinoma cells through mitochondrial pathway. J Oral Maxillofac Pathol 24(1):40

    Article  PubMed  PubMed Central  Google Scholar 

  63. Katunuma N, Ohashi A, Sano E, Ishimaru N, Hayashi Y, Murata E (2006) Catechin derivatives: specific inhibitor for caspases-3, 7 and 2, and the prevention of apoptosis at the cell and animal levels. FEBS lett 580(3):741–746

    Article  CAS  PubMed  Google Scholar 

  64. Pei J, Velu P, Zareian M, Feng Z, Vijayalakshmi A (2021) Effects of Syringic Acid on apoptosis, inflammation, and AKT/mTOR signaling pathway in gastric Cancer cells. Front Nutr 8:788929

    Article  PubMed  PubMed Central  Google Scholar 

  65. Celińska-Janowicz K, Zaręba I, Lazarek U, Teul J, Tomczyk M, Pałka J, Miltyk W (2018) Constituents of propolis: Chrysin, caffeic acid, p-coumaric acid, and ferulic acid induce PRODH/POX-dependent apoptosis in human tongue squamous cell carcinoma cell (CAL-27). Front Pharmacol 9:336

    Article  PubMed  PubMed Central  Google Scholar 

  66. Zhang XD, Wu Q, Yang SH (2017) Ferulic acid promoting apoptosis in human osteosarcoma cell lines. Pak J Med Sci 33(1):127

    Article  PubMed  PubMed Central  Google Scholar 

  67. Eroğlu C, Seçme M, Bağcı G, Dodurga Y (2015) Assessment of the anticancer mechanism of ferulic acid via cell cycle and apoptotic pathways in human prostate cancer cell lines. Tumor Biol 36(12):9437–9446

    Article  Google Scholar 

  68. Kumazaki M, Shinohara H, Taniguchi K, Yamada N, Ohta S, Ichihara K, Akao Y (2014) Propolis cinnamic acid derivatives induce apoptosis through both extrinsic and intrinsic apoptosis signaling pathways and modulate of miRNA expression. Phytomed 21(8–9):1070–1077

    Article  CAS  Google Scholar 

  69. do Vale JA, Rodrigues MP, Lima AMA, Santiago SS, de Almeida Lima GD, Almeida AA, de Oliveira LL, Bressan GC, Teixeira RR, Machado-Neves M (2022) Synthesis of cinnamic acid ester derivatives with antiproliferative and antimetastatic activities on murine melanoma cells. Biomed Pharmacother 148:112689

    Article  CAS  PubMed  Google Scholar 

  70. Qi G, Chen J, Shi C, Wang Y, Mi S, Shao W, Yu X, Ma Y, Ling J, Huang J (2016) Cinnamic acid (CINN) induces apoptosis and proliferation in human nasopharyngeal carcinoma cells. Cell Physiol Biochem 40(3–4):589–596

    Article  CAS  PubMed  Google Scholar 

  71. Chang WC, Hsieh CH, Hsiao MW, Lin WC, Hung YC, Ye JC (2010) Caffeic acid induces apoptosis in human cervical cancer cells through the mitochondrial pathway. Taiwan J Obstet Gynecol 49(4):419–424

    Article  PubMed  Google Scholar 

  72. Sari C, SÜmer C, EyÜpoĞlu FF (2020) Caffeic acid phenethyl ester induces apoptosis in colorectal cancer cells via inhibition of survivin. Turk J Biol 44(5):264–274

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  73. Pelinson LP, Assmann CE, Palma TV, da Cruz IBM, Pillat MM, Mânica A, Stefanello N, Weis GCC, de Oliveira Alves A, de Andrade CM (2019) Antiproliferative and apoptotic effects of caffeic acid on SK-Mel-28 human melanoma cancer cells. Mol Biol Rep 46(2):2085–2092

    Article  CAS  PubMed  Google Scholar 

  74. Mutlu Altundağ E, Yılmaz AM, Koçtürk S, Taga Y, Yalçın AS (2018) Synergistic induction of apoptosis by quercetin and curcumin in chronic myeloid leukemia (K562) cells. Nutr Cancer 70(1):97–108

    Article  PubMed  Google Scholar 

  75. Mutlu Altundağ E, Yılmaz AM, Serdar BS, Jannuzzi AT, Koçtürk S, Yalçın AS (2021) Synergistic induction of apoptosis by quercetin and curcumin in chronic myeloid leukemia (K562) cells: II. Signal transduction pathways involved. Nutr Cancer 73(4):703–712

    Article  PubMed  Google Scholar 

Download references

Funding

Not applicable.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Amal Dbeibia or Christian D. Muller.

Ethics declarations

Informed Consent

Not applicable.

Ethical Approval

Not applicable.

Conflict of Interest

The author declares no conflict of interest.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Electronic Supplementary Material

Below is the link to the electronic supplementary material.

Supplementary Material 1

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Dbeibia, A., Emhemmed, F., Bahia, W. et al. Phenolic Profile with Biological Activities Assessment of Ethanolic and Aqueous Extracts from Ephedra alata. Chemistry Africa (2024). https://doi.org/10.1007/s42250-024-00940-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s42250-024-00940-3

Keywords

Navigation