Skip to main content
Log in

Microwave Prepared Oxidation Resistant Cu Microstructures with Tailored Morphologies

  • Original Article
  • Published:
Chemistry Africa Aims and scope Submit manuscript

Abstract

Copper has attracted considerable interest due to its significant potential for a wide range of applications. The synthesis of copper (Cu) nanoparticles is tedious as they are prone to oxidize even in atmospheric conditions. Surfactant-free microwave-assisted synthesis of Cu microstructures with different morphologies has been accomplished here in the presence of only an antioxidant (ascorbic acid). The size and morphology of the synthesized Cu microstructures were varied by tuning the microwave power, reaction time and concentration of ascorbic acid. Oligoclusters of Cu were isolated through an optimized post-synthesis processing step, and investigations over a period of months of XRD data revealed remarkable stability against oxidation of the synthesized microstructures. TEM and other morphological analyses support a detailed and comparative study on the influences of MW irradiation as well as of the different concentrations of reducing agent, from which metrics for the synthesis of stable Cu microstructures have been established.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Ren X, Chen D, Tang F (2005) Shape-controlled synthesis of copper colloids with a simple chemical route. J Phys Chem B. https://doi.org/10.1021/jp052374q

    Article  PubMed  PubMed Central  Google Scholar 

  2. Barrière C, Piettre K, Latour V, Margeat O, Turrin CO, Chaudret B, Fau P (2012) Ligand effects on the air stability of copper nanoparticles obtained from organometallic synthesis. J Mater Chem. https://doi.org/10.1039/c2jm14963j

    Article  Google Scholar 

  3. Tanabe K (2007) Optical radiation efficiencies of metal nanoparticles for optoelectronic applications. Mater Lett. https://doi.org/10.1016/j.matlet.2007.02.053

    Article  Google Scholar 

  4. Ren X, Meng X, Tang F (2005) Preparation of Ag-Au nanoparticle and its application to glucose biosensor. Sens Actuators B Chem. https://doi.org/10.1016/j.snb.2005.02.016

    Article  Google Scholar 

  5. Quidant R, Girard C, Weeber JC, Dereux A (2004) Tailoring the transmittance of integrated optical waveguides with short metallic nanoparticle chains. Phys Rev B - Condens Matter Mater Phys. https://doi.org/10.1103/PhysRevB.69.085407

    Article  Google Scholar 

  6. Linic S, Christopher P, Xin H, Marimuthu A (2013) Catalytic and Photocatalytic Transformations Geometric and Plasmonic Properties. Acc Chem Res. https://doi.org/10.1021/ar3002393

    Article  PubMed  Google Scholar 

  7. Wang B, Zhu X, Li S, Chen M, Liu N, Yang H, Ran M, Lu H, Yang Y (2019) Enhancing the photovoltaic performance of perovskite solar cells using plasmonic Au@Pt@Au core-shell nanoparticles. Nanomat. https://doi.org/10.3390/nano9091263

    Article  Google Scholar 

  8. Huang X, El-Sayed MA (2010) Gold nanoparticles: optical properties and implementations in cancer diagnosis and photothermal therapy. J Adv Res. https://doi.org/10.1016/j.jare.2010.02.002

    Article  Google Scholar 

  9. Keerthana L, Ahmad Dar M, Dharmalingam G (2021) Plasmonic Au-Metal oxide nanocomposites for high-temperature and harsh environment sensing applications. Chem - Asian J. https://doi.org/10.1002/asia.202100885

    Article  PubMed  Google Scholar 

  10. Dar MI, Sampath S, Shivashankar SA Microwave-assisted surfactant-free synthesis of air-stable copper nanostructures and their SERS study. J Mater Chem. https://doi.org/10.1039/c2jm35629e

  11. Wang J, Zhao X, Tang F, Li Y, Yan Y, Li L (2021) Synthesis of copper nanoparticles with controllable crystallinity and their photothermal property. Colloids Surf Physicochem Eng Asp. https://doi.org/10.1016/j.colsurfa.2021.126970

    Article  Google Scholar 

  12. Zhang X, Zhang D, Ni X, Zheng H (2006) One-step preparation of copper nanorods with rectangular cross sections. Solid State Commun. https://doi.org/10.1016/j.ssc.2006.06.042

    Article  Google Scholar 

  13. Akar N, Asar B, Dizge N, Koyuncu I (2013) Investigation of characterization and biofouling properties of PES membrane containing selenium and copper nanoparticles. J Memb Sci. https://doi.org/10.1016/j.memsci.2013.02.012

    Article  Google Scholar 

  14. Ahmed J, Trinh P, Mugweru AM, Ganguli AK (2011) Self-assembly of copper nanoparticles (cubes, rods and spherical nanostructures): significant role of morphology on hydrogen and oxygen evolution efficiencies. Solid State Sci. https://doi.org/10.1016/j.solidstatesciences.2011.03.005

    Article  Google Scholar 

  15. Ponce AA, Klabunde KJ (2005) Chemical and catalytic activity of copper nanoparticles prepared via metal vapor synthesis. J Mol Catal Chem. https://doi.org/10.1016/j.molcata.2004.08.019

    Article  Google Scholar 

  16. Vilar-Vidal N, Blanco MC, López-Quintela MA, Rivas J, Serra C (2010) Electrochemical synthesis of very stable photoluminescent copper clusters. J Phys Chem C. https://doi.org/10.1021/jp911380s

    Article  Google Scholar 

  17. Lisiecki I, Pileni MP (1993) Synthesis of copper metallic clusters using reverse micelles as Microreactors. J Am Chem Soc. https://doi.org/10.1021/ja00063a006

    Article  Google Scholar 

  18. Raspolli Galletti AM, Antonetti C, Marracci M, Piccinelli F, Tellini B (2013) Novel microwave-synthesis of Cu nanoparticles in the absence of any stabilizing agent and their antibacterial and antistatic applications. Appl Surf Sci. https://doi.org/10.1016/j.apsusc.2013.05.035

    Article  Google Scholar 

  19. Logutenko OA, Titkov AI, Vorobyov AM, Lyakhov NZ (2021) A novel method to prepare copper microspheres via chemical reduction route. J Mater Res Technol. https://doi.org/10.1016/j.jmrt.2021.05.046

    Article  Google Scholar 

  20. Zhao Y, Zhu JJ, Hong JM, Bian N, Chen HY (2004) Microwave-induced polyol-process synthesis of copper and copper oxide nanocrystals with controllable morphology. Eur J Inorg Chem. https://doi.org/10.1002/ejic.200400258

    Article  Google Scholar 

  21. Guzman A, Arroyo J, Verde L, Rengifo J (2015) Synthesis and Characterization of Copper Nanoparticles/Polyvinyl Chloride (Cu NPs/PVC) Nanocomposites. Procedia Mater Sci. https://doi.org/10.1016/j.mspro.2015.04.038

    Article  Google Scholar 

  22. Rajesh KM, Ajitha B, Ashok Kumar Reddy Y, Suneetha Y, Sreedhara Reddy P (2016) Synthesis of copper nanoparticles and role of pH on particle size control. Mater. Today Proc. https://doi.org/10.1016/j.matpr.2016.04.100

  23. Granata G, Yamaoka T, Pagnanelli F, Fuwa A (2016) Study of the synthesis of copper nanoparticles: the role of capping and kinetic towards control of particle size and stability. J Nanoparticle Res. https://doi.org/10.1007/s11051-016-3438-6

    Article  Google Scholar 

  24. Sreeju N, Rufus A, Philip D (2016) Microwave-assisted rapid synthesis of copper nanoparticles with exceptional stability and their multifaceted applications. J Mol Liq. https://doi.org/10.1016/j.molliq.2016.06.080

    Article  Google Scholar 

  25. Din MI, Rehan R (2017) Synthesis, characterization, and applications of copper nanoparticles. Anal Lett. https://doi.org/10.1080/00032719.2016.1172081

    Article  Google Scholar 

  26. Lee YJ, Kim K, Shin LS, Shin KS (2020) Antioxidative metallic copper nanoparticles prepared by modified polyol method and their catalytic activities. J Nanoparticle Res. https://doi.org/10.1007/s11051-019-4727-7

    Article  Google Scholar 

  27. Michaud T, Nobre SS, Baffie T, Pelissier N, Simonato JP (2019) High-temperature stability of copper nanoparticles through Cu@Ag nanostructures. J Nanoparticle Res. https://doi.org/10.1007/s11051-019-4567-5

    Article  Google Scholar 

  28. Tantubay S, Mukhopadhyay SK, Kalita H, Konar S, Dey S, Pathak A, Pramanik P (2015) Carboxymethylated chitosan-stabilized copper nanoparticles: a promise to contribute a potent antifungal and antibacterial agent. J Nanoparticle Res. https://doi.org/10.1007/s11051-015-3047-9

    Article  Google Scholar 

  29. Wu S (2007) Preparation of fine copper powder using ascorbic acid as reducing agent and its application in MLCC. Mater Lett. https://doi.org/10.1016/j.matlet.2006.06.068

    Article  Google Scholar 

  30. Yadav S, Shrivas K, BajpaiP K (2019) Role of precursors in controlling the size, shape and morphology in the synthesis of copper sulfide nanoparticles and their application for fluorescence detection. J Alloys Compd. https://doi.org/10.1016/j.jallcom.2018.08.132

    Article  Google Scholar 

  31. Long B, Cheng S, Ye D, Yue C, Liao J (2019) Mechanistic aspects of preheating effects of precursors on characteristics of Cu 2 ZnSnS 4 (CZTS) thin films and solar cells. Mater Res Bull. https://doi.org/10.1016/j.materresbull.2019.03.027

    Article  Google Scholar 

  32. Liao XH, Wang H, Zhu JJ, Chen HY (2001) Preparation of Bi2S3 nanorods by microwave irradiation. Mater Res Bull. https://doi.org/10.1016/S0025-5408(01)00734-6

    Article  Google Scholar 

  33. Yu Y, Zhao Y, Huang T, Liu H (2010) Microwave-assisted synthesis of palladium nanocubes and nanobars. Mater Res Bull. https://doi.org/10.1016/j.materresbull.2009.09.028

    Article  Google Scholar 

  34. Wei G, Qin W, Zhang D, Wang G, Kim R, Zheng K, Wang L (2009) Synthesis and field emission of MoO3 nanoflowers by a microwave hydrothermal route. J Alloys Compd. https://doi.org/10.1016/j.jallcom.2009.03.007

    Article  Google Scholar 

  35. Dang TMD, Le TTT, Fribourg-Blanc E, Dang MC (2011) Synthesis and optical properties of copper nanoparticles prepared by a chemical reduction method. Adv Nat Sci Nanosci Nanotechnol. https://doi.org/10.1088/2043-6262/2/1/015009

    Article  Google Scholar 

  36. Han KN, Kim NS (2009) Challenges and opportunities in direct write technology using nano-metal particles. KONA Powder Part J. https://doi.org/10.14356/kona.2009009

    Article  Google Scholar 

  37. Zheng X (2008) Controlling synthesis of copper nanorods and triangular nanoplates. J Nano Res. https://doi.org/10.4028/www.scientific.net/JNanoR.4.145

    Article  Google Scholar 

  38. Kanninen P, Johans C, Merta J, Kontturi K (2008) Influence of ligand structure on the stability and oxidation of copper nanoparticles. J Colloid Interface Sci. https://doi.org/10.1016/j.jcis.2007.09.069

    Article  PubMed  Google Scholar 

  39. Liu X, Zhou Y (2005) Electrochemical synthesis and room temperature oxidation behavior of Cu nanowires. J Mater Res. https://doi.org/10.1557/JMR.2005.0288

    Article  Google Scholar 

  40. Umer A, Naveed S, Ramzan N, Rafique MS, Imran M (2014) A green method for the synthesis of copper nanoparticles using l-ascorbic acid. Rev Mater. https://doi.org/10.1590/S1517-70762014000300002

    Article  Google Scholar 

  41. Baishya K, Idrobo JC, Öǧüt S, Yang M, Jackson KA, Jellinek J (2011) First-principles absorption spectra of Cun (n = 2–20) clusters. Phys Rev B - Condens Matter Mater Phys. https://doi.org/10.1103/PhysRevB.83.245402

    Article  Google Scholar 

  42. Tan M I S M H, Omar AF, Rashid M, Hashim U (2019) VIS-NIR spectral and particles distribution of au, Ag, Cu, Al and Ni nanoparticles synthesized in distilled water using laser ablation. Results Phys. https://doi.org/10.1016/j.rinp.2019.102497

    Article  Google Scholar 

  43. AthawaleA A, Katre PP, KumarM, Majumdar MB (2005) Synthesis of CTAB-IPA reduced copper nanoparticles. Mater Chem Phys. https://doi.org/10.1016/j.matchemphys.2004.12.017

    Article  Google Scholar 

  44. Jain S, Jain A, Kachhawah P, Devra V (2015) Synthesis and size control of copper nanoparticles and their catalytic application. Trans Nonferrous Met Soc China (English Ed). https://doi.org/10.1016/S1003-6326(15)64048-1

    Article  Google Scholar 

  45. Ebnalwaled AA, Said AH, Mahmoud MM, YasserAlsedfy M (2022) XRD and FTIR of ascorbic acid and Monosodium Glutamate Food Additives. Int J Res Publ Rev. https://doi.org/10.55248/gengpi.2022.3.10.1

    Article  Google Scholar 

  46. Menamo DS, Ayele DW, Ali MT (2017) Green synthesis, characterization and antibacterial activity of copper nanoparticles using L-ascorbic acid as a reducing agent. Ethiop J Sci Technol. https://doi.org/10.4314/ejst.v10i3.5

    Article  Google Scholar 

Download references

Acknowledgements

The author gratefully acknowledges funding received from Peelamedu Samanaidu Govindasamy Sons’ and Charities organisation for supporting this publication.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Gnanaprakash Dharmalingam.

Ethics declarations

Conflict of interest

The authors have no conflict of interest to declare.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Electronic Supplementary Material

Below is the link to the electronic supplementary material.

Supplementary Material 1

Supplementary Material 2

Supplementary Material 3

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Indhu, A.R., Dharmalingam, G. Microwave Prepared Oxidation Resistant Cu Microstructures with Tailored Morphologies. Chemistry Africa (2024). https://doi.org/10.1007/s42250-024-00918-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s42250-024-00918-1

Keywords

Navigation