Skip to main content

Advertisement

Log in

Modeling of Dipeptide Sulfonamides as Anti-Plasmodial Drugs: Synthesis, Characterization, DFT and In Silico Studies

  • Original Article
  • Published:
Chemistry Africa Aims and scope Submit manuscript

Abstract

Protein–ligand interactions play a pivotal role in the design of structurally based drugs. In this study, we sought to identify potential candidates for malaria treatment by investigating their interactions with receptor proteins 7k76, 5tbo, and 7jum. Using a computational approach at the DFT/B3LYP/6-311++G(d,p) level of theory, we determined interaction energy values. Compound A, docked with receptor 7k76, exhibited − 5.8 kcal/mol, compared to the commercial drug's − 6.5 kcal/mol. Compound B showed an impressive − 9.0 kcal/mol with receptor 5tbo, surpassing the commercial drug's − 6.8 kcal/mol. Compound C, docking with receptor 7jum, displayed − 6.9 kcal/mol, while the commercial drug had − 9.3 kcal/mol for the same receptor. Compounds B show promise as malaria drugs, with higher binding energies than the commercial drug. Among the proposed drugs, compound B is highly recommended for antimalarial treatment due to its exceptional binding affinity and strong receptor interaction. Of all the proposed drugs, compound B stands out as a highly recommended candidate for antimalarial treatment due to its exceptional binding affinity and strong interaction with the receptor. Moreover, the optimized compounds exhibited varying reactivity levels, with compound C showing the highest reactivity at 2.8575 eV, followed by compound B at 4.8578 eV and compound A at 5.3960 eV. This indicates the superior reactivity of compound C compared to its counterparts. Significant transitions, including π* → π*, π → π*, σ → σ*, σ* → σ*, LP → σ, and LP → π*, were observed, with higher perturbation E(2) energies. Future research should explore the ADME/T properties of these compounds through laboratory testing, paving the way for potential clinical trials. These investigations will provide crucial insights into the suitability and efficacy of these compounds as potential antimalarial drugs, offering promising avenues for effective malaria treatment.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

Availability of Data and Material

All data are contained within the manuscript and electronic supporting information (ESI).

References

  1. Nandhini R (2021) Design, synthesis, characterization and biological evaluation of pyrazole derivatives. Doctoral dissertation, Nandha College of Pharmacy, Erode

  2. Benjamin I, Udoikono AD, Louis H, Agwamba EC, Unimuke TO, Owen AE, Adeyinka AS (2022) Antimalarial potential of naphthalene-sulfonic acid derivatives: Molecular electronic properties, vibrational assignments, and in-silico molecular docking studies. J Mol Struct 1264:133298

    Article  CAS  Google Scholar 

  3. Zareen S, Rehman HU, Gul N, Zareen H, Hisham M, Ullah I, Saeed K et al (2016) Malaria is still a life threatening disease review. J Entomol Zool Stud 105:105–112

    Google Scholar 

  4. He DF et al (2021) Surface charge-convertible quaternary ammonium salt-based micelles for in vivo infection therapy. Chin Chem Lett 32(5):1743–1746

    Article  CAS  Google Scholar 

  5. Rao VS, Srinivas K (2011) Modern drug discovery process: an in silico approach. J Bioinform Seq Anal 2(5):89–94

    Google Scholar 

  6. Su Y, Baena IG, Harle AC, Crosby SW, Micah AE, Siroka A, Dieleman JL et al (2020) Tracking total spending on tuberculosis by source and function in 135 low-income and middle-income countries, 2000–17: a financial modelling study. Lancet Infect Dis 20(8):929–942

    Article  PubMed  PubMed Central  Google Scholar 

  7. Samui P, Mondal J, Khajanchi S (2020) A mathematical model for COVID-19 transmission dynamics with a case study of India. Chaos Solitons Fractals 140:110173

    Article  MathSciNet  PubMed  PubMed Central  Google Scholar 

  8. Wu Y, Zheng Y, Wang X, Tang P, Guo W, Ma H, Yuan C et al (2023) Ginseng-containing Sijunzi decoction ameliorates ulcerative colitis by orchestrating gut homeostasis in microbial modulation and intestinal barrier integrity. Am J Chin Med 51(03):677–699. https://doi.org/10.1142/S0192415X23500325

    Article  PubMed  Google Scholar 

  9. Packard RM (2021) The making of a tropical disease: a short history of malaria. JHU Press, Baltimore

    Book  Google Scholar 

  10. Hays JN (2005) Epidemics and pandemics: their impacts on human history. Bloomsbury Publishing USA

    Google Scholar 

  11. Gerrets RP (2010) Globalizing international health: the cultural politics of ‘partnership’ in Tanzanian malaria control. New York University, New York

    Google Scholar 

  12. Dahal RH, Chaudhary DK (2018) Microbial infections and antimicrobial resistance in Nepal: current trends and recommendations. Open Microbiol J 12:230

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Santos-Magalhães NS, Mosqueira VCF (2010) Nanotechnology applied to the treatment of malaria. Adv Drug Deliv Rev 62(4–5):560–575

    Article  PubMed  Google Scholar 

  14. Mishra M, Mishra VK, Kashaw V, Iyer AK, Kashaw SK (2017) Comprehensive review on various strategies for antimalarial drug discovery. Eur J Med Chem 125:1300–1320

    Article  CAS  PubMed  Google Scholar 

  15. Guo N et al (2022) Self-enhanced photothermal-chemodynamic antibacterial agents for synergistic anti-infective therapy. Chin Chem Lett 34(2):107542

    Article  Google Scholar 

  16. Abubakar TA, Eke UB, Salisu A (2022) Bioorganometallic ferroquine and related compounds as antimalarial chemotherapeutic agents: a short review. J Chem Soc Nigeria 47(3):573–592

    Article  Google Scholar 

  17. Atanasov AG, Waltenberger B, Pferschy-Wenzig EM, Linder T, Wawrosch C, Uhrin P, Stuppner H et al (2015) Discovery and resupply of pharmacologically active plant-derived natural products: a review. Biotechnol Adv 33(8):1582–1614

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Zhang Y, Meng Y, Wang L, Li Y, Zu Y, Zhao X (2021) High hydrostatic pressure-assisted micellar media as an efficient and green strategy to extract artemisinin from Artemisia annua L. J Clean Prod 324:129245

    Article  CAS  Google Scholar 

  19. Zeng Q, Bie B, Guo Q, Yuan Y, Han Q, Han X, Zhou X et al (2020) Hyperpolarized Xe NMR signal advancement by metal-organic framework entrapment in aqueous solution. Proc Natl Acad Sci 117(30):17558–17563. https://doi.org/10.1073/pnas.2004121117

    Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

  20. Gachelin G, Garner P, Ferroni E, Tröhler U, Chalmers I (2017) Evaluating Cinchona bark and quinine for treating and preventing malaria. J R Soc Med 110(1):31–40

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Gurung P, De P (2017) Spectrum of biological properties of cinchona alkaloids: a brief review. J Pharmacogn Phytochem 6(4):162–166

    CAS  Google Scholar 

  22. Christensen SB (2021) Natural products that changed society. Biomedicines 9(5):472

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. He X, Xie S, Xu J, Yin X, Zhang M (2023) Reactive template-engaged synthesis of NiSx/MoS2 nanosheets decorated on hollow and porous carbon microtubes with optimal electronic modulation toward high-performance enzyme-like performance. Inorg Chem 62(20):8033–8042. https://doi.org/10.1021/acs.inorgchem.3c01050

    Article  CAS  PubMed  Google Scholar 

  24. Punihaole D, Workman RJ, Upadhyay S, Van Bruggen C, Schmitz AJ, Reineke TM, Frontiera RR (2018) New insights into quinine–dna binding using raman spectroscopy and molecular dynamics simulations. J Phys Chem B 122(43):9840–9851

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Seghetti F, Belluti F, Rampa A, Gobbi S, Legac J, Parapini S, Bisi A et al (2022) Hitting drug-resistant malaria infection with triazole-linked flavonoid–chloroquine hybrid compounds. Future Med Chem 14(24):1865–1880

    Article  CAS  PubMed  Google Scholar 

  26. Sumithaa C, Ganeshpandian M (2023) Half-sandwich ruthenium arene complexes bearing clinically approved drugs as ligands: the importance of metal-drug synergism in metallodrug design. Mol Pharm 20(3):1453–1479

    Article  CAS  PubMed  Google Scholar 

  27. Korkor C (2023) Mechanism of action studies of phenotypic whole-cell active antimalarial leads through target identification. http://hdl.handle.net/11427/38037

  28. Wan Q, Zhang Z, Hou Z, Wang L (2023) Recent advances in the electrochemical generation of 1,3-dicarbonyl radicals from C-H bonds. Org Chem Front 10(11):2830–2848. https://doi.org/10.1039/D3QO00408B

    Article  CAS  Google Scholar 

  29. Matz JM, Drepper B, Blum TB, van Genderen E, Burrell A, Martin P, Blackman MJ et al (2020) A lipocalin mediates unidirectional heme biomineralization in malaria parasites. Proc Natl Acad Sci 117(28):16546–16556

    Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

  30. Parhizgar AR, Tahghighi A (2017) Introducing new antimalarial analogues of chloroquine and amodiaquine: a narrative review. Iran J Med Sci 42(2):115

    PubMed  PubMed Central  Google Scholar 

  31. de Villiers KA, Egan TJ (2021) Heme detoxification in the malaria parasite: a target for antimalarial drug development. Acc Chem Res 54(11):2649–2659

    Article  PubMed  PubMed Central  Google Scholar 

  32. Shukri AH, Lukinović V, Charih F, Biggar KK (2023) Unraveling the battle for lysine: a review of the competition among post-translational modifications. Biochim Biophys Acta (BBA) Gene Regul Mech 194990. https://doi.org/10.1016/j.bbagrm.2023.194990

  33. Branco Santos JC, De Melo JA, Maheshwari S, De Medeiros WMTQ, de Freitas Oliveira JW, Moreno CJ, Sousa Silva M (2020) Bisphosphonate-based molecules as potential new antiparasitic drugs. Molecules 25(11):2602

    Article  PubMed  PubMed Central  Google Scholar 

  34. Agwupuye JA, Louis H, Gber TE, Ahmad I, Agwamba EC, Samuel AB, Bassey VM et al (2022) Molecular modeling and DFT studies of diazenylphenyl derivatives as a potential HBV and HCV antiviral agents. Chem Phys Impact 5:100122

    Article  Google Scholar 

  35. Maramai S, Benchekroun M, Gabr MT, Yahiaoui S (2020) Multitarget therapeutic strategies for Alzheimer’s disease: review on emerging target combinations. BioMed Res Int 2020. https://doi.org/10.1155/2020/5120230

  36. Smoum R, Rubinstein A, Dembitsky VM, Srebnik M (2012) Boron containing compounds as protease inhibitors. Chem Rev 112(7):4156–4220

    Article  CAS  PubMed  Google Scholar 

  37. Guo CA et al (2022) Polyhexamethylene biguanide chemically modified cotton with desirable hemostatic, inflammation-reducing, intrinsic antibacterial property for infected wound healing. Chin Chem Lett 33(6):2975–2981

    Article  CAS  Google Scholar 

  38. Lopina OD (2017) Enzyme inhibitors and activators. In: Enzyme inhibitors and activators. IntechOpen. https://doi.org/10.5772/67248

  39. Mal S, Malik U, Pal D, Mishra A (2021) Insight γ-secretase: structure, function, and role in alzheimer’s disease. Curr Drug Targets 22(12):1376–1403

    Article  CAS  PubMed  Google Scholar 

  40. Szollosi DE (2023) Antibiotic discoveries and a century of creating superbugs. Cambridge Scholars Publishing, Cambridge

    Google Scholar 

  41. Hadi H, Louis H, Gber TE, Ogungbemiro FO (2023) Molecular modeling of the structural, electronic, excited state dynamic, and the photovoltaic properties of the oligomers of n-corannulene (n = 1–4). Heliyon 9(10):e20706. https://doi.org/10.1016/j.heliyon.2023.e20706

  42. Korkmaz B, Caughey GH, Chapple I, Gauthier F, Hirschfeld J, Jenne DE, Thakker NS et al (2018) Therapeutic targeting of cathepsin C: from pathophysiology to treatment. Pharmacol Ther 190:202–236

    Article  PubMed  Google Scholar 

  43. Izuchukwu UD, Asogwa FC, Louis H, Uchenna EF, Gber TE, Chinasa UM, Chris OU et al (2022) Synthesis, vibrational analysis, molecular property investigation, and molecular docking of new benzenesulphonamide-based carboxamide derivatives against Plasmodium falciparum. J Mol Struct 1269:133796

    Article  CAS  Google Scholar 

  44. Chen Z, Guan D, Wang Z, Li X, Dong S, Huang J, Zhou W (2023) Microbiota in cancer: molecular mechanisms and therapeutic interventions. MedComm 4(6):e417

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  45. Timothy RA, Okon EE, Gber TE, Onwuabusim NA, Obianuju NA, Offiong OE, Louis H et al (2023) Theoretical investigation of single-atoms encapsulated by fullerenes (C59X: X= As, Ga, Ge) as biosensors for uric acid (UA). ChemistrySelect 8(42):e202303442

    Article  CAS  Google Scholar 

  46. Meanwell NA (2018) Fluorine and fluorinated motifs in the design and application of bioisosteres for drug design. J Med Chem 61(14):5822–5880

    Article  CAS  PubMed  Google Scholar 

  47. Wu YJ, Meanwell NA (2021) Geminal diheteroatomic motifs: some applications of acetals, ketals, and their sulfur and nitrogen homologues in medicinal chemistry and drug design. J Med Chem 64(14):9786–9874

    Article  CAS  PubMed  Google Scholar 

  48. Gavriel AG, Sambrook MR, Russell AT, Hayes W (2022) Recent advances in self-immolative linkers and their applications in polymeric reporting systems. Polym Chem 13(22):3188–3269

    Article  CAS  Google Scholar 

  49. Dennington RDII, Keith TA, Millam JM (2016) GaussView, version 6.0.16. Semichem Inc, Shawnee

    Google Scholar 

  50. Frisch ME, Trucks GW, Schlegel HB, Scuseria GE, Robb MA, Cheeseman JR, Fox DJ et al (2016) Gaussian 16

  51. Li Y, Bai Q, Guan Y, Zhang P, Shen R, Lu L, Yao C et al (2022) In situ plasma cleaning of large-aperture optical components in ICF. Nucl Fusion 62(7):76023. https://doi.org/10.1088/1741-4326/ac555c

    Article  CAS  Google Scholar 

  52. Lu T, Chen Q (2021) Interaction region indicator: a simple real space function clearly revealing both chemical bonds and weak interactions. Chem Methods 1(5):231–239

    Article  MathSciNet  CAS  Google Scholar 

  53. Godfrey OC, Louis H, Al-Sehemi AG, Gber TE, Kavil YN, Ede OF, Adeyinka AS et al (2023) Metals (Ga, In) encapsulated aluminum nitride nanotubes (AlNNTs) as nonenzymatic sensors for biomarker volatiles of liver cirrhosis: a computational study. J Mol Liq 392:123398

    Article  CAS  Google Scholar 

  54. Sun C, Qin S, Wang R, Chen S, Pan F, Qiu B, Li Y et al (2020) High efficiency polymer solar cells with efficient hole transfer at zero highest occupied molecular orbital offset between methylated polymer donor and brominated acceptor. J Am Chem Soc 142(3):1465–1474

    Article  CAS  PubMed  Google Scholar 

  55. Fatma S, Rai S, Devi P, Bishnoi A (2023) A combined experimental and theoretical DFT (B3LYP and CAMB3LYP) study on spectral features (FT-IR, NMR, and UV-Visible), first-order hyperpolarizability, NBO and HOMO-LUMO analysis of 4-(dimethylamino)-1, 5-dimethyl-2-phenyl-1H-pyrazol-3 (2H)-one. Lett Org Chem 20(4):312–325

    Article  CAS  Google Scholar 

  56. Ngwang C, Majoumo-Mbe F, Nfor EN, Akongwi M, Edet HO, Afu EA, Louis H et al (2023) Theoretical modeling of the structure, reactivity, and the application of Co (II), Cu (II), and Ni (II) Schiff base complexes as sensor materials for phosgene (COCl2) gas. Chem Phys Impact 7:100352. https://doi.org/10.1016/j.chphi.2023.100352

    Article  Google Scholar 

  57. Zhang P, Wang X, Xu Q, Guo C, Wang P, Lu C, Liu R et al (2021) Enantioselective synthesis of atropisomeric biaryls by Pd-catalyzed asymmetric Buchwald-Hartwig amination. Angew Chem Int Ed 60(40):21718–21722. https://doi.org/10.1002/anie.202108747

    Article  CAS  Google Scholar 

  58. Anozie RC, Louis H, Alshdoukhi IF, Gber TE, Al-Sehemi AG, Agwamba EC, Adeyinka AS et al (2023) Adsorption, excitation analysis, and the mechanism of tetracycline photodegradation by Ca12O12-PEDOT, Mg12O12-PEDOT, and Zn12O12-PEDOT hybrid materials: perspective from first-principles study. Mater Chem Phys 312:128632. https://doi.org/10.1016/j.matchemphys.2023.128632

    Article  CAS  Google Scholar 

  59. Tang T, Zhou M, Lv J, Cheng H, Wang H, Qin D, Liu X et al (2022) Sensitive and selective electrochemical determination of uric acid in urine based on ultrasmall iron oxide nanoparticles decorated urchin-like nitrogen-doped carbon. Colloids Surf B 216:112538. https://doi.org/10.1016/j.colsurfb.2022.112538

    Article  CAS  Google Scholar 

  60. Lu J, Chen Y, Ding M, Fan X, Hu J, Chen Y, Liu W et al (2022) A 4arm-PEG macromolecule crosslinked chitosan hydrogels as antibacterial wound dressing. Carbohydr Polym 277:118871. https://doi.org/10.1016/j.carbpol.2021.118871

    Article  CAS  PubMed  Google Scholar 

  61. Wang V, Xu N, Liu JC, Tang G, Geng WT (2021) VASPKIT: a user-friendly interface facilitating high-throughput computing and analysis using VASP code. Comput Phys Commun 267:108033

    Article  CAS  Google Scholar 

  62. Wang B, Zhang F (2022) Main descriptors to correlate structures with the performances of electrocatalysts. Angew Chem Int Ed 61(4):e202111026

    Article  ADS  MathSciNet  CAS  Google Scholar 

  63. Imojara A, Ishegbe JE, Abdullah H, Edet HO, Gber TE, Eba MBA, Louis H et al (2023) Phosphorus encapsulated gallium nitride and aluminum nitride nanotubes as nonenzymatic sensors for fructose, glucose, and xylose sugars as biomarkers for diabetes-mellitus: outlook from computational study. Chem Phys Impact 7:100348. https://doi.org/10.1016/j.chphi.2023.100348

    Article  Google Scholar 

  64. Lalloo DG, Shingadia D, Bell DJ, Beeching NJ, Whitty CJ, Chiodini PL (2016) UK malaria treatment guidelines 2016. J Infect 72(6):635–649

    Article  PubMed  PubMed Central  Google Scholar 

  65. Salo-Ahen OM, Alanko I, Bhadane R, Bonvin AM, Honorato RV, Hossain S, Vanmeert M et al (2020) Molecular dynamics simulations in drug discovery and pharmaceutical development. Processes 9(1):71

    Article  Google Scholar 

  66. Adelusi TI, Oyedele AQK, Boyenle ID, Ogunlana AT, Adeyemi RO, Ukachi CD, Abdul-Hammed M et al (2022) Molecular modeling in drug discovery. Inform Med Unlocked 29:100880

    Article  Google Scholar 

  67. Wang Z, Chen C, Liu H, Hrynshpan D, Savitskaya T, Chen J, Chen J et al (2020) Enhanced denitrification performance of Alcaligenes sp. TB by Pd stimulating to produce membrane adaptation mechanism coupled with nanoscale zero-valent iron. Sci Total Environ 708:135063. https://doi.org/10.1016/j.scitotenv.2019.135063

    Article  ADS  CAS  PubMed  Google Scholar 

  68. Azad I (2023) Molecular docking in the study of ligand-protein recognition: an overview. Molecular docking-recent advances. https://doi.org/10.5772/intechopen.106583

  69. Azad I, Khan T, Ahmad N, Khan AR, Akhter Y (2023) Updates on drug designing approach through computational strategies: a review. Future Sci OA 9(5):FSO862

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  70. Woodward J (2021) ‘Back to the very beginning’ the inflammatory bowel diseases. In: The gastro-archeologist: revealing the mysteries of the intestine and its diseases, pp 249–296. https://doi.org/10.1007/978-3-030-62621-1_9

  71. Waako PJ, Gumede B, Smith P, Folb PI (2005) The in vitro and in vivo antimalarial activity of Cardiospermum halicacabum L. and Momordica foetida Schumch Et. Thonn. J Ethnopharmacol 99(1):137–143

    Article  CAS  PubMed  Google Scholar 

  72. Liu Z, Fan B, Zhao J, Yang B, Zheng X (2023) Benzothiazole derivatives-based supramolecular assemblies as efficient corrosion inhibitors for copper in artificial seawater: formation, interfacial release and protective mechanisms. Corros Sci 212:110957. https://doi.org/10.1016/j.corsci.2022.110957

    Article  CAS  Google Scholar 

  73. Zhou PJ, Zang Y, Li C, Yuan L, Zeng H, Li J, Xiong J (2022) Forrestiacids C and D, unprecedented triterpene-diterpene adducts from Pseudotsuga forrestii. Chinese Chem Lett 33(9):4264–4268. https://doi.org/10.1016/j.cclet.2021.12.009

    Article  CAS  Google Scholar 

Download references

Acknowledgements

The authors would like to acknowledge the centre for high performance computing (CHPC), at the University of Johannesburg, South Africa for providing computational resources for this research project.

Funding

This research was not funded by any Governmental or Non-governmental agency.

Author information

Authors and Affiliations

Authors

Contributions

Ogechi C. Ekoh: Project conceptualization, design, and supervision. Rawlings A. Timothy: Writing, results extraction, analysis, and manuscript first draft. Fredrick C. Asogwa and David I. Ugwu: Manuscript revision, review, and proofreading. Terkumbur E. Gber and Alexander I. Ikeuba: Manuscript Proofreading and Hitler Louis: Resources, review, and editing.

Corresponding author

Correspondence to Terkumbur E. Gber.

Ethics declarations

Conflict of interest

All authors declare zero financial or inter-personal conflict of interest that could have influenced the research work or results reported in this research paper.

Ethics approval and consent to participate

Not applicable.

Consent for publication

Not applicable.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (DOCX 2661 KB)

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ekoh, O.C., Timothy, R.A., Asogwa, F.C. et al. Modeling of Dipeptide Sulfonamides as Anti-Plasmodial Drugs: Synthesis, Characterization, DFT and In Silico Studies. Chemistry Africa (2024). https://doi.org/10.1007/s42250-024-00908-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s42250-024-00908-3

Keywords

Navigation