Skip to main content
Log in

Parametric Study and Optimization for the Co-Pyrolysis of Plastic Waste and Spent Coffee Ground for Biochar Production using Response Surface Methodology

  • Original Article
  • Published:
Chemistry Africa Aims and scope Submit manuscript

Abstract

This study focuses on enhancing the sustainability of waste management by investigating the optimization of biochar production from lignocellulosic solid waste and plastic waste. The essential process of transforming spent coffee grounds (SCG) and Polyethylene terephthalate (PET) into valuable resources is explored through an innovative co-pyrolysis approach, blending these diverse feedstocks. Response surface methodology (RSM) and a face-centered central composite design (FCCD) were employed to identify the key parameters influencing biochar production performance, including feedstock blending ratio, pyrolysis temperature, and heat treatment duration. The study conducted an in-depth analysis using thermogravimetric analysis (TGA), ultimate and proximate analysis, as well as scanning electron microscopy combined with energy dispersive X-ray spectroscopy (SEM/EDS) for surface morphology and elemental analysis of both raw and pyrolyzed materials. Optimization results indicate that a maximum co-pyrolyzed biochar yield of 71.33% was achieved at a temperature of 350 °C and a residence time of 30 min, with a SCG: PET blending ratio of 25:75% (w/w%). Conversely, the same blending ratio resulted in the lowest biochar yield when temperature and pyrolysis time were set at 450 °C and 90 min, respectively. The findings reveal a negative correlation between temperature and biochar yield, with higher temperatures leading to a decrease in yield. Furthermore, the study underscores the significance of co-pyrolysis by comparing it to the pyrolysis of a single raw material (SCG), which yielded only 37.90% under the same conditions as the co-pyrolysis of blended material. This highlights the superior efficacy of co-pyrolysis in processing high yield and multi-blended feedstock, emphasizing its importance in sustainable waste management practices.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

Data Availability

All data are available within this article.

References

  1. Ayodele TR, Durodola O, Ogunjuyigbe AS, Lange Munda J (2019) Effects of operating factors on the bio-oil produced from pyrolysis of plastic wastes using response surface methodology. In: IEEE PES/IAS PowerAfrica Conference Power Econ Energy Innov Africa, PowerAfrica 2019, pp 527–32. https://doi.org/10.1109/PowerAfrica.2019.8928780

  2. Chen HL, Nath TK, Chong S, Foo V, Gibbins C, Lechner AM (2021) The plastic waste problem in Malaysia: management, recycling and disposal of local and global plastic waste. SN Appl Sci. https://doi.org/10.1007/s42452-021-04234-y

    Article  Google Scholar 

  3. Oliveira LS, Oliveira DS, Bezerra BS, Pereira BS, Battistelle RAG (2017) Environmental analysis of organic waste treatment focusing on composting scenarios. J Clean Prod 155:229–237. https://doi.org/10.1016/j.jclepro.2016.08.093

    Article  CAS  Google Scholar 

  4. Kim MJ, Choi SW, Kim H, Mun S, Lee KB (2020) Simple synthesis of spent coffee ground-based microporous carbons using K2CO3 as an activation agent and their application to CO2 capture. Chem Eng J 397:125404. https://doi.org/10.1016/J.CEJ.2020.125404

    Article  CAS  Google Scholar 

  5. Colantoni A, Paris E, Bianchini L, Ferri S, Marcantonio V, Carnevale M (2021) Spent coffee ground characterization, pelletization test and emissions assessment in the combustion process. Sci Rep 11(1):1–14. https://doi.org/10.1038/s41598-021-84772-y

    Article  CAS  Google Scholar 

  6. Brachi P, Santes V, Torres-Garcia E (2021) Pyrolytic degradation of spent coffee ground: a thermokinetic analysis through the dependence of activation energy on conversion and temperature. Fuel 302:120995. https://doi.org/10.1016/j.fuel.2021.120995

    Article  CAS  Google Scholar 

  7. Roychand R, Kilmartin-Lynch S, Saberian M, Li J, Zhang G, Li CQ (2023) Transforming spent coffee grounds into a valuable resource for the enhancement of concrete strength. J Clean Prod 419:138205. https://doi.org/10.1016/J.JCLEPRO.2023.138205

    Article  Google Scholar 

  8. Silva MA, Nebra SA, Machado Silva MJ, Sanchez CG (1998) The use of biomass residues in the Brazilian soluble coffee industry. Biomass Bioenerg 14(5–6):457–467. https://doi.org/10.1016/S0961-9534(97)10034-4

    Article  CAS  Google Scholar 

  9. Chao C, Hong C, Arifin NA, Hafriz RSRM, Salmiaton A, Nomanbhay S, Shamsuddin AH (2023) Results in engineering co-pyrolysis of biomass and plastic: co-pyrolysis of biomass and plastic: circularity of wastes and comprehensive review of synergistic mechanism. Results Eng J 17:100989. https://doi.org/10.1016/j.rineng.2023.100989

    Article  CAS  Google Scholar 

  10. Nisticò R (2020) Polyethylene terephthalate (PET) in the packaging industry. Polym Test 90:106707. https://doi.org/10.1016/j.polymertesting.2020.106707

    Article  CAS  Google Scholar 

  11. Sharuddin SD, Abnisa F, Daud WM, Aroua MK (2016) A review on pyrolysis of plastic wastes. Energy Convers Manag 115:308–326. https://doi.org/10.1016/j.enconman.2016.02.037

    Article  CAS  Google Scholar 

  12. Choudhary K, Sangwan KS, Goyal D (2019) Environment and economic impacts assessment of PET waste recycling with conventional and renewable sources of energy. Proc CIRP 80:422–427. https://doi.org/10.1016/j.procir.2019.01.096

    Article  Google Scholar 

  13. Ghayebzadeh M, Taghipour H, Aslani H (2020) Estimation of plastic waste inputs from land into the Persian Gulf and the Gulf of Oman: an environmental disaster, scientific and social concerns. Sci Total Environ 733:138942. https://doi.org/10.1016/J.SCITOTENV.2020.138942

    Article  ADS  CAS  PubMed  Google Scholar 

  14. Brown RC, Wang K (2017) Fast pyrolysis of biomass: advances in science and technology. R Soc Chem. https://doi.org/10.1039/9781788010245

    Article  Google Scholar 

  15. Ogungbenro AE, Quang DV, Al-Ali KA, Vega LF, Abu-Zahra MR (2018) Physical synthesis and characterization of activated carbon from date seeds for CO2 capture. J Environ Chem Eng 6(4):4245–4252. https://doi.org/10.1016/J.JECE.2018.06.030

    Article  CAS  Google Scholar 

  16. Raza M, Inayat A, Ahmed A, Jamil F, Ghenai C, Naqvi SR, Shanableh A, Ayoub M, Waris A, Park YK (2021) Progress of the pyrolyzer reactors and advanced technologies for biomass pyrolysis processing. Sustain 13(19):11061. https://doi.org/10.3390/su131911061

    Article  CAS  Google Scholar 

  17. Ghodake GS, Shinde SK, Kadam AA, Saratale RG, Saratale GD, Kumar M, Palem RR, Al-Shwaiman HA, Elgorban AM, Syed A, Kim DY (2021) Review on biomass feedstocks, pyrolysis mechanism and physicochemical properties of biochar: State-of-the-art framework to speed up vision of circular bioeconomy. J Clean Prod 297:126645. https://doi.org/10.1016/J.JCLEPRO.2021.126645

    Article  CAS  Google Scholar 

  18. Kaydouh MN, El Hassan N (2022) Thermodynamic simulation of the co-gasification of biomass and plastic waste for hydrogen-rich syngas production. Results Eng 16:100771. https://doi.org/10.1016/J.RINENG.2022.100771

    Article  CAS  Google Scholar 

  19. Liao M, Kelley S, Yao Y (2019) Generating energy and greenhouse gas inventory data of activated carbon production using machine learning and kinetic based process simulation. ACS Sustain Chem Eng 8(2):1252–1261. https://doi.org/10.1021/acssuschemeng.9b06522

    Article  CAS  Google Scholar 

  20. Fakhrhoseini SM, Predicting DM (2013) pyrolysis products of PE, PP, and PET using NRTL activity coefficient model. J Chem 2013:7–9. https://doi.org/10.1155/2013/487676

    Article  CAS  Google Scholar 

  21. Fseha YH, Shaheen J, Sizirici B (2023) Phenol contaminated municipal wastewater treatment using date palm frond biochar: Optimization using response surface methodology. Emerg Contam. https://doi.org/10.1016/j.emcon.2022.100202

    Article  Google Scholar 

  22. Brown RC (ed) (2019) Thermochemical processing of biomass: conversion into fuels, chemicals and power. Wiley, New York

    Google Scholar 

  23. Yue L, Xia Q, Wang L, Wang L, Dacosta H, Yang J, Hu X (2018) CO2 adsorption at nitrogen-doped carbons prepared by K2CO3 activation of urea-modified coconut shell. J Colloid Interface Sci 511:259–267. https://doi.org/10.1016/j.jcis.2017.09.040

    Article  ADS  CAS  PubMed  Google Scholar 

  24. Prauchner MJ, Sapag K, Rodríguez-Reinoso F (2016) Tailoring biomass-based activated carbon for CH4 storage by combining chemical activation with H3PO4 or ZnCl2 and physical activation with CO2. Carbon 110:138–147. https://doi.org/10.1016/j.carbon.2016.08.092

    Article  CAS  Google Scholar 

  25. Awwad NS, El-Zahhar AA, Fouda AM, Ibrahium HA (2013) Removal of heavy metal ions from ground and surface water samples using carbons derived from date pits. J Environ Chem Eng 1(3):416–423. https://doi.org/10.1016/j.jece.2013.06.006

    Article  CAS  Google Scholar 

  26. Krishnamoorthy R, Govindan B, Banat F, Sagadevan V, Purushothaman M, Show PL (2019) Date pits activated carbon for divalent lead ions removal. J Biosci Bioeng 128(1):88–97. https://doi.org/10.1016/J.JBIOSC.2018.12.011

    Article  CAS  PubMed  Google Scholar 

  27. Agboola O, Okoli B, Sanni SE, Alaba PA, Popoola P, Sadiku ER, Mubiayi PM, Akinlabi ET, Makhatha ME (2019) Synthesis of activated carbon from olive seeds: investigating the yield, energy efficiency, and dye removal capacity. SN Appl Sci 1:1–10. https://doi.org/10.1007/s42452-018-0089-5

    Article  CAS  Google Scholar 

  28. Nandi R, Jha MK, Guchhait SK, Sutradhar D (2023) Impact of KOH activation on rice husk derived porous activated carbon for carbon capture at flue gas alike temperatures with High CO 2 /N 2 selectivity. ACS Omega 8(5):4802–4812. https://doi.org/10.1021/acsomega.2c06955

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. He S, Chen G, Xiao H, Shi G, Ruan C, Ma Y, Dai H, Yuan B, Chen X, Yang X (2021) Facile preparation of N-doped activated carbon produced from rice husk for CO2 capture. J Colloid Interface Sci 582:90–101. https://doi.org/10.1016/j.jcis.2020.08.021

    Article  ADS  CAS  PubMed  Google Scholar 

  30. Li D, Ma T, Zhang R, Tian Y, Qiao Y (2015) Preparation of porous carbons with high low-pressure CO2 uptake by KOH activation of rice husk char. Fuel 139:68–70. https://doi.org/10.1016/J.FUEL.2014.08.027

    Article  CAS  Google Scholar 

  31. Serafin J, Dziejarski B, Junior OFC, Srenscek-Nazzal J (2023) Design of highly microporous activated carbons based on walnut shell biomass for H2 and CO2 storage. Carbon 201:633–647. https://doi.org/10.1016/j.carbon.2022.09.013

    Article  CAS  Google Scholar 

  32. Asadi-Sangachini Z, Galangash MM, Younesi H, Nowrouzi M (2019) The feasibility of cost-effective manufacturing activated carbon derived from walnut shells for large-scale CO2 capture. Environ Sci Pollut Res 26:26542–26552. https://doi.org/10.1007/s11356-019-05842-3

    Article  CAS  Google Scholar 

  33. Vakili A, Zinatizadeh AA, Rahimi Z, Zinadini S, Mohammadi P, Azizi S, Karami A, Abdulgader M (2023) The impact of activation temperature and time on the characteristics and performance of agricultural waste-based activated carbons for removing dye and residual COD from wastewater. J Clean Prod 382:134899. https://doi.org/10.1016/J.JCLEPRO.2022.134899

    Article  CAS  Google Scholar 

  34. Rattanaphan S, Rungrotmongkol T, Kongsune P (2020) Biogas improving by adsorption of CO2 on modified waste tea activated carbon. Renew Energy 145:622–631. https://doi.org/10.1016/J.RENENE.2019.05.104

    Article  CAS  Google Scholar 

  35. Köseoʇlu E, Akmil-Başar C (2015) Preparation, structural evaluation and adsorptive properties of activated carbon from agricultural waste biomass. Adv Powder Technol 26(3):811–818. https://doi.org/10.1016/J.APT.2015.02.006

    Article  Google Scholar 

  36. Wu W, Wu C, Zhang G, Liu J, Li Y, Li G (2023) Synthesis and characterization of magnetic K2CO3-activated carbon produced from bamboo shoot for the adsorption of Rhodamine b and CO2 capture. Fuel 332:126107. https://doi.org/10.1016/J.FUEL.2022.126107

    Article  CAS  Google Scholar 

  37. Boujibar O, Souikny A, Ghamouss F, Achak O, Dahbi M, Chafik T (2018) CO2 capture using N- containing nanoporous activated carbon obtained from argan fruit shells. J Env Chem Eng 6(2):1995–2002. https://doi.org/10.1016/j.jece.2018.03.005

    Article  CAS  Google Scholar 

  38. Siddiqui MTH, Nizamuddin S, Mubarak NM, Shirin K, Aijaz M, Hussain M, Baloch HA (2017) Characterization and process optimization of biochar produced using novel biomass, waste pomegranate peel: a response surface methodology approach. Waste Biomass Valoriz 10:521–532. https://doi.org/10.1007/s12649-017-0091-y

    Article  CAS  Google Scholar 

  39. Ouzzine M, Serafin J, Sreńscek-Nazzal J (2021) Single step preparation of activated biocarbons derived from pomegranate peels and their CO2 adsorption performance. J Anal Appl Pyrolysis 160:105338. https://doi.org/10.1016/J.JAAP.2021.105338

    Article  CAS  Google Scholar 

  40. Jung SH, Kim JS (2014) Production of biochars by intermediate pyrolysis and activated carbons from oak by three activation methods using CO2. J Anal Appl Pyrolysis 107:116–122. https://doi.org/10.1016/j.jaap.2014.02.011

    Article  CAS  Google Scholar 

  41. Serafin J, Cruz OF Jr (2022) Promising activated carbons derived from common oak leaves and their application in CO2 storage. J Environ Chem Eng 10(3):107642. https://doi.org/10.1016/j.jece.2022.107642

    Article  CAS  Google Scholar 

  42. Zubrik A, Matik M, Hredzák S, Lovás M, Danková Z, Kováčová M, Briančin J (2017) Preparation of chemically activated carbon from waste biomass by single-stage and two-stage pyrolysis. J Clean Prod 143:643–653. https://doi.org/10.1016/j.jclepro.2016.12.061

    Article  CAS  Google Scholar 

  43. Ait Ahsaine H, Zbair M, Anfar Z, Naciri Y, El haouti R, El Alem N, Ezahri M (2018) Cationic dyes adsorption onto high surface area ‘almond shell’ activated carbon: Kinetics, equilibrium isotherms and surface statistical modeling. Mater Today Chem 8:121–132. https://doi.org/10.1016/j.mtchem.2018.03.004

    Article  CAS  Google Scholar 

  44. Plaza MG, Pevida C, Martín CF, Fermoso J, Pis JJ, Rubiera F (2010) Developing almond shell-derived activated carbons as CO2 adsorbents. Sep Purif Technol 71(1):102–106. https://doi.org/10.1016/J.SEPPUR.2009.11.008

    Article  CAS  Google Scholar 

  45. Bevlá FR, Rico DP, Gomis AFM (1984) Activated carbon from almond shells. Chemical Activation. 1. Activating reagent selection and variables influence. Ind Eng Chem Prod Res Dev 23(2):266–269. https://doi.org/10.1021/I300014A019

    Article  Google Scholar 

  46. Marzbali MH, Esmaieli M, Abolghasemi H, Marzbali MH (2016) Tetracycline adsorption by H3PO4-activated carbon produced from apricot nut shells: a batch study. Process Saf Environ Prot 102:700–709. https://doi.org/10.1016/j.psep.2016.05.025

    Article  CAS  Google Scholar 

  47. Rashidi NA, Yusup S (2017) Potential of palm kernel shell as activated carbon precursors through single stage activation technique for carbon dioxide adsorption. J Clean Prod 168:474–486. https://doi.org/10.1016/j.jclepro.2017.09.045

    Article  CAS  Google Scholar 

  48. Hidayu AR, Muda NJ (2016) Preparation and characterization of impregnated activated carbon from palm kernel shell and coconut shell for CO2 capture. Proc Eng 148:106–113. https://doi.org/10.1016/j.proeng.2016.06.463

    Article  CAS  Google Scholar 

  49. Aman AMN, Selvarajoo A, Lau TL, Chen WH (2023) Optimization via response surface methodology of palm kernel shell biochar for supplementary cementitious replacement. Chemosphere 313:137477. https://doi.org/10.1016/J.CHEMOSPHERE.2022.137477

    Article  Google Scholar 

  50. Oliveira WE, Franca AS, Oliveira LS, Rocha SD (2008) Untreated coffee husks as biosorbents for the removal of heavy metals from aqueous solutions. J Hazard Mater 152(3):1073–1081. https://doi.org/10.1016/J.JHAZMAT.2007.07.085

    Article  CAS  PubMed  Google Scholar 

  51. Kourmentza C, Economou CN, Tsafrakidou P, Kornaros M (2018) Spent coffee grounds make much more than waste: Exploring recent advances and future exploitation strategies for the valorization of an emerging food waste stream. J Clean Prod 172:980–992. https://doi.org/10.1016/J.JHAZMAT.2007.07.085

    Article  Google Scholar 

  52. Adan-mas A, Alcaraz L, Arévalo-cid P, López-gómez FA, Montemor F (2021) Coffee-derived activated carbon from second biowaste for supercapacitor applications. Waste Manag J 120:280–289. https://doi.org/10.1016/j.wasman.2020.11.043

    Article  CAS  Google Scholar 

  53. Plaza MG, González AS, Pevida C, Pis JJ, Rubiera F (2012) Valorisation of spent coffee grounds as CO2 adsorbents for postcombustion capture applications. Appl Energy 99:272–279. https://doi.org/10.1016/j.apenergy.2012.05.028

    Article  ADS  CAS  Google Scholar 

  54. Travis W, Gadipelli S, Guo Z (2015) Superior CO2 adsorption from waste coffee ground derived carbons. RSC Adv 5(37):29558–29562. https://doi.org/10.1039/x0xx00000x

    Article  ADS  CAS  Google Scholar 

  55. Batista Júnior R, Silvério BC, Soares RR, Xavier TP, Lira TS, Santos KG (2021) Response surface methodology applied to spent coffee residue pyrolysis: effect of temperature and heating rate on product yield and product characterization. Biomass Convers Biorefin 13(5):3555–3568. https://doi.org/10.1007/s13399-021-01536-4

    Article  CAS  Google Scholar 

  56. Saiyud N, Deethayat T, Asanakham A, Duongbia N, Kamopas W, Kiatsiriroat T (2022) Biochar production from co-pyrolysis of coffee ground and native microalgae consortium. Biomass Convers Biorefin. https://doi.org/10.1007/s13399-022-02954-8

    Article  Google Scholar 

  57. Erdogan S (2020) Recycling of waste plastics into pyrolytic fuels and their use in IC engines. Sustain Mobil 1:1–23

    Google Scholar 

  58. Wang Z, An S, Zhao J, Sun P, Lyu H, Kong W, Shen B (2022) Plastic regulates its co-pyrolysis process with biomass: influencing factors, model calculations, and mechanisms. Front Ecol Evol 10:964936. https://doi.org/10.3389/fevo.2022.964936

    Article  Google Scholar 

  59. Wang Z, Burra KG, Lei T, Gupta AK (2021) Co-pyrolysis of waste plastic and solid biomass for synergistic production of biofuels and chemicals—a review. Prog Energy Combust Sci 84:100899. https://doi.org/10.1016/j.pecs.2020.100899

    Article  Google Scholar 

  60. Uzoejinwa BB, He X, Wang S, Abomohra AE, Hu Y, Wang Q (2018) Co-pyrolysis of biomass and waste plastics as a thermochemical conversion technology for high-grade biofuel production: recent progress and future directions elsewhere worldwide. Energy Convers Manag 163:468–492. https://doi.org/10.1016/j.enconman.2018.02.004

    Article  CAS  Google Scholar 

  61. Wantaneeyakul N, Kositkanawuth K, Turn SQ, Fu J (2021) Investigation of biochar production from copyrolysis of rice husk and plastic. ACS Omega 6:28890–28902. https://doi.org/10.1021/acsomega.1c03874

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  62. Wang G, Dai Y, Yang H, Xiong Q, Wang K, Zhou J, Li Y, Wang S (2020) A review of recent advances in biomass pyrolysis. Energy Fuels 34(12):15557–15578. https://doi.org/10.1021/acs.energyfuels.0c03107

    Article  CAS  Google Scholar 

  63. Özsin G, Pütün AE (2018) A comparative study on co-pyrolysis of lignocellulosic biomass with polyethylene terephthalate, polystyrene, and polyvinyl chloride: synergistic effects and product characteristics. J Clean Prod 205:1127–1138. https://doi.org/10.1016/J.JCLEPRO.2018.09.134

    Article  Google Scholar 

  64. Chen WH, Eng CF, Lin YY, Bach QV (2020) Independent parallel pyrolysis kinetics of cellulose, hemicelluloses and lignin at various heating rates analyzed by evolutionary computation. Energy Convers Manag 221:113165. https://doi.org/10.1016/J.ENCONMAN.2020.113165

    Article  CAS  Google Scholar 

  65. Chen L, Wang S, Meng H, Wu Z, Zhao J (2017) Synergistic effect on thermal behavior and char morphology analysis during co-pyrolysis of paulownia wood blended with different plastics waste. Appl Therm Eng 111:834–846. https://doi.org/10.1016/J.APPLTHERMALENG.2016.09.155

    Article  CAS  Google Scholar 

  66. Onokwai AO, Okokpujie IP, Ajisegiri ES, Oki M, Onokpite E, Babaremu K, Jen TC (2023) Optimization of pyrolysis operating parameters for biochar production from palm kernel shell using response surface methodology. Math Model Eng Probl 10(3):757–766. https://doi.org/10.18280/mmep.100304

    Article  Google Scholar 

  67. Rasyid MA, Salim MS, Akil HM, Ishak ZA (2016) Optimization of processing conditions via response surface methodology (RSM) of nonwoven flax fibre reinforced acrodur biocomposites. Proc Chem 19:469–476. https://doi.org/10.1016/j.proche.2016.03.040

    Article  CAS  Google Scholar 

  68. Khalil KA, Mustafa S, Mohammad R, Ariff AB, Ahmad SA, Dahalan FA, Abdul Manap MY (2019) Encapsulation of bifidobacterium pseudocatenulatum strain G4 within bovine gelatin-genipin-sodium alginate combinations: optimisation approach using face central composition design-response surface methodology (FCCD-RSM). Int J Microbiol. https://doi.org/10.1155/2019/4208986

    Article  PubMed  PubMed Central  Google Scholar 

  69. Elkhalifa S, Parthasarathy P, Mackey HR, Al-Ansari T, Elhassan O, Mansour S, McKay G (2022) Biochar development from thermal TGA studies of individual food waste vegetables and their blended systems. Biomass Convers Biorefin. https://doi.org/10.1007/s13399-022-02441-0

    Article  Google Scholar 

  70. Siddiqui MT, Nizamuddin S, Baloch HA, Mubarak NM, Tunio MM, Riaz S, Shirin K, Ahmed Z, Hussain M (2018) Thermogravimetric pyrolysis for neem char using novel agricultural waste: a study of process optimization and statistical modeling. Biomass Convers Biorefin 8:857–871. https://doi.org/10.1007/s13399-018-0336-4

    Article  CAS  Google Scholar 

  71. Abnisa F, Daud WW, Sahu JN (2011) Optimization and characterization studies on bio-oil production from palm shell by pyrolysis using response surface methodology. Biomass Bioenerg 35(8):3604–3616. https://doi.org/10.1016/J.BIOMBIOE.2011.05.011

    Article  CAS  Google Scholar 

  72. Bezerra MA, Santelli RE, Oliveira EP, Villar LS, Escaleira LA (2008) Response surface methodology (RSM) as a tool for optimization in analytical chemistry. Talanta 76(5):965–977. https://doi.org/10.1016/j.talanta.2008.05.019

    Article  CAS  PubMed  Google Scholar 

  73. Kleijnen JP (2014) Response surface methodology. In: Handbook of simulation optimization. Springer, New York, pp 81–104

  74. Gupta S, Patel P, Mondal P (2022) Biofuels production from pine needles via pyrolysis: process parameters modeling and optimization through combined RSM and ANN based approach. Fuel 310:122230. https://doi.org/10.1016/j.fuel.2021.122230

    Article  CAS  Google Scholar 

  75. Sawyer SF (2009) Analysis of variance: the fundamental concepts. J Manual Manip Ther 17(2):27E-38E

    Article  Google Scholar 

  76. Mariyam S, Alherbawi M, Pradhan S, Al-Ansari T, McKay G (2023) Biochar yield prediction using response surface methodology: effect of fixed carbon and pyrolysis operating conditions. Biomass Convers Biorefin. https://doi.org/10.1007/s13399-023-03825-6

    Article  Google Scholar 

  77. Jia H, Ben H, Luo Y, Wang R (2020) Catalytic fast pyrolysis of poly (ethylene terephthalate)(PET) with zeolite and nickel chloride. Polymers 12(3):705. https://doi.org/10.3390/polym12030705

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  78. Kuczenski B, Geyer R (2010) Material flow analysis of polyethylene terephthalate in the US, 1996–2007. Resour Conserv Recycl 54(12):1161–1169. https://doi.org/10.1016/J.RESCONREC.2010.03.013

    Article  Google Scholar 

  79. Olam M, Karaca H (2019) Effect of sodium boron hydride (NaBH4) on waste polyethylene terephthalate pyrolysis. IOP Conf Ser Earth Environ Sci 362(1):012032. https://doi.org/10.1088/1755-1315/362/1/012032

    Article  Google Scholar 

  80. Polat S, Sayan P (2023) Assessment of the thermal pyrolysis characteristics and kinetic parameters of spent coffee waste: a TGA-MS study. Energy Sources Part A Recov Util Environ Effects 45(1):74–87. https://doi.org/10.1080/15567036.2020.1736693

    Article  CAS  Google Scholar 

  81. Quan C, Zhou Y, Wang J, Wu C, Gao N (2023) Biomass-based carbon materials for CO2 capture: a review. J CO2 Util 68:102373. https://doi.org/10.1016/j.jcou.2022.102373

    Article  CAS  Google Scholar 

  82. Yang C, Liu J, Lu S (2021) Pyrolysis temperature affects pore characteristics of rice straw and canola stalk biochars and biochar-amended soils. Geoderma 397:115097. https://doi.org/10.1016/J.GEODERMA.2021.115097

    Article  ADS  CAS  Google Scholar 

  83. Zulkafli AH, Hassan H, Ahmad MA, Din AT, Wasli SM (2023) Co-pyrolysis of biomass and waste plastics for production of chemicals and liquid fuel: A review on the role of plastics and catalyst types. Arab J Chem 16(1):104389. https://doi.org/10.1016/J.ARABJC.2022.104389

    Article  CAS  Google Scholar 

  84. Te WZ, Muhanin KN, Chu YM, Selvarajoo A, Singh A, Ahmed SF, Vo DV, Show PL (2021) Optimization of pyrolysis parameters for production of biochar from banana peels: evaluation of biochar application on the growth of ipomoea aquatica. Front Energy Res 8:637846. https://doi.org/10.3389/fenrg.2020.637846

    Article  Google Scholar 

  85. Atabani AE, Ali I, Naqvi SR, Badruddin IA, Aslam M, Mahmoud E, Almomani F, Juchelková D, Atelge MR, Khan TY (2022) A state-of-the-art review on spent coffee ground (SCG) pyrolysis for future biorefinery. Chemosphere 286:131730. https://doi.org/10.1016/j.chemosphere.2021.131730

    Article  CAS  PubMed  Google Scholar 

  86. Ko KH, Sahajwalla V, Rawal A (2014) Specific molecular structure changes and radical evolution during biomass–polyethylene terephthalate co-pyrolysis detected by 13C and 1H solid-state NMR. Biores Technol 170:248–255. https://doi.org/10.1016/j.biortech.2014.06.109

    Article  CAS  Google Scholar 

  87. Didier C, Kundu A, Rajaraman S (2020) Capabilities and limitations of 3D printed microserpentines and integrated 3D electrodes for stretchable and conformable biosensor applications. Microsyst Nanoeng 6(1):15. https://doi.org/10.1038/s41378-019-0129-3

    Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

The authors express gratitude to the Research Institute of Science and Engineering at the University of Sharjah for their support in providing equipment and devices.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Haif Aljomard.

Ethics declarations

Conflict of interest

The authors declare no competing interests.

Ethics Approval and Consent to Participate

All authors agree to publish the article in the journal Chemistry Africa.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Aljomard, H., Inayat, A., Jamil, F. et al. Parametric Study and Optimization for the Co-Pyrolysis of Plastic Waste and Spent Coffee Ground for Biochar Production using Response Surface Methodology. Chemistry Africa (2024). https://doi.org/10.1007/s42250-024-00907-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s42250-024-00907-4

Keywords

Navigation