Skip to main content
Log in

Synthesis and Crystal Structure–Activity Studies and Possible Therapeutic Application of Diamine Conjugated Furil Schiff Base as Antibacterial Agent

  • Original Article
  • Published:
Chemistry Africa Aims and scope Submit manuscript

Abstract

A novel furil-based asymmetric Schiff base was prepared and characterized by analytical and spectroscopic methods. Schiff base could be produced by the amalgamation of furil with 1,2-diaminotoluene by employing conventional methods in variety of solvents. Synthesized compound was found to be asymmetric without possessing mirror plane and inversion center with all explained physical parameters possessed. Antibacterial activity was performed by in vitro test using an agar-well diffusion technique. This compound showed potent antibacterial activity compared to standard doxycycline drug. This compound could be a better drug candidate for antimicrobial infections though this area needs further persuasion and deliberation by the scientific community.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

Data availability

The datasets generated and analyzed during the current study are available from the corresponding author on reasonable request.

References

  1. Schiff H (1864) Mittheilungen aus dem Universitätslaboratorium in Pisa: Eine neue Reihe organischer Basen. Annalen der Chemie und Pharmacie 131(1):118–119. https://doi.org/10.1002/jlac.18641310113

    Article  Google Scholar 

  2. Di Bernardo P, Zanonato P, Tamburini S, Tomasin P, Vigato P (2006) Complexation behaviour and stability of Schiff bases in aqueous solution. The case of an acyclic diimino (amino) diphenol and its reduced triamine derivative. Dalton Trans 30:4711–4721. https://doi.org/10.1039/b604211b

    Article  CAS  Google Scholar 

  3. Keypour H, Rezaeivala M, Valencia L, Pérez-Lourido P, Khavasi HR (2009) Synthesis and characterization of some new Co(II) and Cd(II) macrocyclic Schiff-base complexes containing piperazine moiety. Polyhedron 28:3755–3758. https://doi.org/10.1016/j.poly.2009.08.021

    Article  CAS  Google Scholar 

  4. Temel H, Ziyadanoğullari B, Aydin I, Aydin F (2005) Synthesis, spectroscopic and thermodynamic studies of new transition metal complexes with N, N′-bis(2-hydroxynaphthalin-1-carbaldehydene)-1,2-bis(m-aminophenoxy)ethane and their determination by spectrophotometric methods. J Coord Chem 58:1177–1185. https://doi.org/10.1080/00958970500078890

    Article  CAS  Google Scholar 

  5. Tümer M, Akgün E, Toroğlu S, Kayraldiz A, Dönbak L (2008) Synthesis and characterization of Schiff base metal complexes: their antimicrobial, genotoxicity and electrochemical properties. J Coord Chem 61:2935–2949. https://doi.org/10.1080/00958970801989902

    Article  CAS  Google Scholar 

  6. Champouret YD, Fawcett J, Nodes WJ, Singh K, Solan GA (2006) Spacially confined M2 centers (M = Fe Co, Ni, Zn) on a sterically bulky binucleating support: synthesis, structures and ethylene oligomerization studies. Inorg Chem 45:9890–9900. https://doi.org/10.1021/ic061286x

    Article  CAS  PubMed  Google Scholar 

  7. Liu X, Manzur C, Novoa N, Celedón S, Carrillo D, Hamon JR (2018) Multidentate unsymmetrically-substituted Schiff bases and their metal complexes: synthesis, functional materials properties, and applications to catalysis. Coord Chem Rev 357:144–172. https://doi.org/10.1016/j.ccr.2017.11.030

    Article  CAS  Google Scholar 

  8. Laidler DA, Milner DJ (1984) Asymmetric synthesis of cyclopropane carboxylates: catalysis of diazoacetate reactions by copper(II) Schiff base complexes derived from α-amino acids. J Organomet Chem 270:121–129. https://doi.org/10.1016/0022-328X(84)80341-1

    Article  CAS  Google Scholar 

  9. Yang J, ZouA CX, Li Y, Zhao C, Weng T, Wu B, Zhu L, Wang D, Xin Z (2021) The stepwise photochromic reactivity of diarylethene tuned by selective ions and fabrication of a molecular logic circuit. Dyes Pigm 191:109361. https://doi.org/10.1016/j.dyepig.2021.109361

    Article  CAS  Google Scholar 

  10. Bar N, Chowdhury P, Roy D, Si A, Mondal S, Das GK, Chandra SK (2021) Photochromism of dye containing Schiff base-metal complex: a revisit through spectro-kinetic, thermodynamic and theoretical analyses for the design of a molecular logic gate. J Photochem Photobiol A 420:113505. https://doi.org/10.1016/j.jphotochem.2021.113505

    Article  CAS  Google Scholar 

  11. Young R, Cooper G (1983) Dissociation of intermolecular linkages of the sperm head and tail by primary amines, aldehydes, sulphydryl reagents and detergents. Reproduction 69:1–10. https://doi.org/10.1530/jrf.0.0690001

    Article  CAS  Google Scholar 

  12. Schuetz SA, Silvernail CM, Incarvito CD, Rheingold AL, Clark JL, Day VW, Belot JA (2004) Mononuclear, five-coordinate lanthanide amido and aryloxide complexes bearing tetradentate (N2O2) Schiff bases. Inorg Chem 43(20):6203–6214. https://doi.org/10.1021/ic040006f

    Article  CAS  PubMed  Google Scholar 

  13. Osypiuk D, Cristóvão B, Bartyzel A (2020) New coordination compounds of CuII with Schiff base ligands-crystal structure, thermal, and spectral investigations. Crystals 10(11):1004. https://doi.org/10.3390/cryst10111004

    Article  CAS  Google Scholar 

  14. Mazzoni R, Roncaglia F (2021) Rigamonti L (2021) When the metal makes the difference: template syntheses of tridentate and tetradentate Salen-type Schiff base ligands and related complexes. Crystals 11(5):483. https://doi.org/10.3390/cryst11050483

    Article  CAS  Google Scholar 

  15. Suyambulingam JK, Karvembu R, Bhuvanesh NSP, Enoch IVMV, Selvakumar PM, Premnath D, Subramanian C, Mayakrishnan P, Kim SH, Chung IM (2020) Synthesis, structure, biological/chemosensor evaluation and molecular docking studies of aminobenzothiazole Schiff bases. J Adhes Sci Technol 34(23):1–23. https://doi.org/10.1080/01694243.2020.1775032

    Article  CAS  Google Scholar 

  16. Durgun M, Turkes C, Isik M, Demir Y, Sakli A, Kuru A, Güzel A, Beydemir S, Akocak S, Osman SM, AlOthman Z, Supuran CT (2020) Synthesis, characterization, biological evaluation and in silico studies of sulphonamides Schiff bases. J Enzyme Inhib Med Chem 35(1):950–962. https://doi.org/10.1080/14756366.2020.1746784

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Mermer A, Demirbas N, Uslu H, Demirbas A, Ceylan S, Sirin Y (2019) Synthesis of novel Schiff bases using green chemistry techniques, antimicrobial, antioxidant, antiurease activity screening and molecular docking studies. J Mol Struct 1181:412–422. https://doi.org/10.1016/j.molstruc.2018.12.114

    Article  CAS  Google Scholar 

  18. Tehrani KHME, Hashemi M, Hassa M, Kobarfard F, Mohebbi S (2015) Synthesis and antibacterial activity of Schiff bases of 5-substituted isatins. Chin Chem Lett 27(2):221–225. https://doi.org/10.1016/j.cclet.2015.10027

    Article  Google Scholar 

  19. Manjunath M, Kulkarni AD, Bagihalli GB, Malladi S, Patil SA (2016) Bio-important antipyrine derived Schiff bases and their transition metal complexes: synthesis, spectroscopic characterization, antimicrobial, anthelmintic and DNA cleavage investigation. J Mol Struct 1127:314–321. https://doi.org/10.1016/j.molstruc.2016.07.123

    Article  CAS  Google Scholar 

  20. Al-Labban HMY, Sadiq HM, Aljanaby AAJ (2019) Synthesis, characterization and study of biological activity of some Schiff bases derivatives from 4-amino antipyrine as a starting material. J Phys: Conf Ser 1294:052007. https://doi.org/10.1088/1742-6596/1294/5/052007

    Article  CAS  Google Scholar 

  21. Mishra VR, Ghanavatkar CW, Mali SN, Chaudhari HK, Sekar N (2019) Schiff base clubbed benzothiazole: synthesis, potent antimicrobial and MCF-7 anticancer activity, DNA cleavage and computational studies. J Biomol Struct Dyn 38(6):1772–1785. https://doi.org/10.1080/07391102.2019.1621213

    Article  CAS  PubMed  Google Scholar 

  22. Teran R, Guevara R, Mora J, Dobronski L, Barrerio-Costa O, Beske T, Perez-Barrera J, Araya-Maturana R, Rojas-Silva P, Poveda A, Haredia-Moya J (2019) Characterization of antimicrobial, antioxidant, and leishmanicidal activities of Schiff base derivatives of 4-amino antipyrine. Molecules 24:2696. https://doi.org/10.3390/molecules24152696

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Singh BB, Shakil NA, Kumar J, Ran VS, Mishra A (2016) Microwave synthesis, characterization and bio-efficacy of novel halogenated Schiff bases. J Environ Sci Health 51(8):558–570. https://doi.org/10.1080/03601234.2016.1170558

    Article  CAS  Google Scholar 

  24. Kizilkaya H, Dag B, Aral T, Genc N, Erenle R (2020) Synthesis, characterization and antioxidant activity of heterocyclic schiff bases. J Chin Chem Soc 67(9):1696–1701. https://doi.org/10.1002/jccs.202000161

    Article  CAS  Google Scholar 

  25. Erturk AG (2019) Synthesis, structural identifications of bioactive two novel Schiff bases. J Mol Struct 1202:127299. https://doi.org/10.1016/j.molstruc.2019.127299

    Article  CAS  Google Scholar 

  26. Kulkarni AA, Wankhede SB, Dhawale ND, Yadav PB, Deore VV, Gonjari ID (2017) Synthesis, characterization and biological behavior of some Schiff’s and Mannich base derivatives of Lamotrigine. Arabian J Chem 10:S184–S189. https://doi.org/10.1016/j.arabjc.2012.07.020

    Article  CAS  Google Scholar 

  27. Aboul-Fadl T, Mohammed FAH, Hassan EAS (2003) Synthesis, antitubercular activity and pharmacokinetic studies of some Schiff bases derived from 1- alkylisatin and isonicotinic acid hydrazide (inh). Arch Pharm Res 26(10):778–784. https://doi.org/10.1007/BF02980020

    Article  CAS  PubMed  Google Scholar 

  28. Joshi NR, Mule SG, Gore VA, Suryawanshi RD, Pawar GT, Bembalkar SR, Pawar RP (2022) Synthesis and biological study of Novel Schiff Base (1-(3-(4-fluorophenyl)-1-isopropyl-1H-indol-2-yl) methylene) hydrazine) ligand and metal complexes. J Explor Res Pharmacol. 7(4):202–207. https://doi.org/10.14218/JERP.2022.00021

    Article  Google Scholar 

  29. Wei D, Li N, Lu G, Yao K (2006) Synthesis, catalytic and biological activity of novel dinuclear copper complex with Schiff base. Sci China Ser B 49(3):225–229. https://doi.org/10.1007/s11426-006-0225-8

    Article  CAS  Google Scholar 

  30. Miri R, Razzaghi-asl N, Mohammadi MK (2013) QM study and conformational analysis of an isatin Schiff base as a potential cytotoxic agent. J Mol Model 19(2):727–735. https://doi.org/10.1007/s00894-012-1586-x

    Article  CAS  PubMed  Google Scholar 

  31. Avaji PG, Kumar CHV, Patil SA, Shivananda KN, Nagaraju C (2009) Synthesis, spectral characterization, in-vitro microbiological evaluation and cytotoxic activities of novel macrocyclic bis hydrazone. Eur J Med Chem 44(9):3552–3559. https://doi.org/10.1016/j.ejmech.2009.03.032

    Article  CAS  PubMed  Google Scholar 

  32. Chohan ZH, Wardell JL, Low JN, Meehan PR, Ferguson G (1998) Tetraethylammonium bromo(1,3-dithiol-2-one-4,5-dithiolato)diethylstannate(1-). Acta Cryst C54(10):1401–1403. https://doi.org/10.1107/S0108270198006027

    Article  CAS  Google Scholar 

  33. Buldurun K, Turan N, Savcı A, Çolak N (2019) Synthesis, structural characterization and biological activities of metal (II) complexes with Schiff bases derived from 5-bromosalicylaldehyde: Ru (II) complexes transfer hydrogenation. J Saudi Chem Soc 23:205–214. https://doi.org/10.1016/j.jscs.2018.06.002

    Article  CAS  Google Scholar 

  34. Shaygan S, Pasdar H, Foroughifar N, Davallo M, Motiee F (2018) Cobalt (II) complexes with Schiff base ligands derived from terephthalaldehyde and ortho-substituted anilines: Synthesis, characterization and antibacterial activity. Appl Sci 8(3):385. https://doi.org/10.3390/app8030385

    Article  CAS  Google Scholar 

  35. Cotton SA (2005) Establishing coordination numbers for the lanthanides in simple complexes. Comptes Rendus Chim 8:129–145. https://doi.org/10.1016/j.crci.2004.07.002

    Article  CAS  Google Scholar 

  36. Vogel AI (1978) A Text book of Practical Organic Chemistry, 4th edn. Longmans Green Co., Ltd., London

    Google Scholar 

  37. Hooft R (1998) Data collection software, COLLECT, Nonius, B V Delt, The Netherlands.

  38. Otowinowaski Z, Minor W (1997) Processing of X-ray diffraction data collected in oscillation mode. Meth Enzymol 276:307–326. https://doi.org/10.1016/s0076-6879(97)76066-x

    Article  Google Scholar 

  39. Sheldrick GM (2008) A short history of SHELX. Acta Cryst A64:112–122. https://doi.org/10.1107/S0108767307043930

    Article  CAS  Google Scholar 

  40. Keller E (1992) SCHAKAL-92: A computer program for the graphic representation of molecular and crystallographic models; Kristallographisches Institut der Universität Freiburg i. Br.: Freiburg, Germany.

  41. Simmons A (1996) Practical medical microbiology 14th edition, vol 11. Churchill Livingston, Edinberg, p 163

    Google Scholar 

  42. Collee JG, Duguid JP, Frase AG, Marmion BD (1989) Practical medical microbiology. Churchill Livingstone, New York

    Google Scholar 

  43. Nag P, Sharma D (2019) Synthesis, characterization and anticandidal activity of dioxomolybdenum(VI) complexes of the type [MoO2{ON=C(CH3)Ar}2] and [MoO2{OC(R)CHC(R’)=NC6H5}2]. Heliyon 5(5):E01729. https://doi.org/10.1016/j.heliyon.2019.e01729

    Article  PubMed  PubMed Central  Google Scholar 

  44. Gautam RK, Singh CP, Rao DP (2022) cis-Dioxomolybdenum (VI) complexes with N-donor macrocyclic ligands. Biointerface Res Appl Chem 12(1):1352–1364. https://doi.org/10.33263/BRIAC121.13521364

    Article  CAS  Google Scholar 

  45. Mousavi SA, Montazerozohori M, Naghiha R, Masoudiasl A, Mojahedi S, Doert T (2020) Some novel hexa-coordinated cadmium Schiff base complexes: X-ray structure, Hirshfeld surface analysis, antimicrobial and thermal analysis. Appl Organometal Chem 34:e5550. https://doi.org/10.1002/aoc.5550

    Article  CAS  Google Scholar 

  46. Dev RK, Mishra P, Chaudhary NK, Bhattarai A (2020) Synthesis, characterization, and antibacterial evaluation of heteroleptic oxytetracycline-salicylaldehyde complexes. J Chem 2020:7961345. https://doi.org/10.1155/2020/7961345

    Article  CAS  Google Scholar 

  47. Rao DP (2019) A review on versatile applications of novel Schiff bases and their metal complexes. Lett Appl NanoBioScience 8(4):675–681. https://doi.org/10.33263/LIANBS84.675681

    Article  Google Scholar 

  48. Dhanaraj CJ, Nair MS (2009) Synthesis, characterization, and antimicrobial studies of some Schiff-base metal(II) complexes. J Coord Chem 62(24):4018–4028. https://doi.org/10.1080/00958970903191142

    Article  CAS  Google Scholar 

  49. Dhanaraj CJ, Nair MS (2009) Synthesis and characterization of metal(II) complexes of poly(3-nitrobenzylidene-1-naphthylamine-co-succinic anhydride). Eur Polym J 42(2):565–572. https://doi.org/10.1016/j.eurpolymj.2008.11.011

    Article  CAS  Google Scholar 

  50. Rana VB, Singh P, Singh DP, Teotia MP (1982) Trivalent chromium, manganese, iron and cobalt chelates of a tetradentate N6 macrocyclie ligand. Transit Met Chem 7:174–177. https://doi.org/10.1007/BF01035836

    Article  CAS  Google Scholar 

  51. Chandra S, Sharma KK (1983) Synthesis and characterization of copper (II) complexes of a macrocyclic ligand. Transit Met Chem 8:1–3. https://doi.org/10.1007/BF00618784

    Article  CAS  Google Scholar 

  52. Malik WU, Bembi R, Singh R (1983) Preparation and characterisation of some new 12- and 14-membered dibenzotetraaza macrocyclic complexes of iron(III). Inorg Chim Acta 68:223–228. https://doi.org/10.1016/S0020-1693(00)88965-3

    Article  CAS  Google Scholar 

  53. Głowiak T, Jerzykiewicz L, Sobczak JM, Ziółkowski JJ (2003) New insights into the chemistry of oxomolybdenum(VI) complexes with N-salicylidene-2-aminoethanol. Inorg Chim Acta 356:387–392. https://doi.org/10.1016/S0020-1693(03)00301-3

    Article  CAS  Google Scholar 

  54. Dyer JR (1965) Applications of absorption spectroscopy of organic compounds. Prentice-Hall Inc, Englewood Cliffs

    Google Scholar 

  55. Singh S, Yadav HS, Yadava AK, Rao D (2011) Synthesis and characterization of oxovanadium(IV) complexes with tetradentate Schiff base ligands having thenil as precursor molecule. Curr Res Chem 3:106–113. https://doi.org/10.3923/crc.2011.106.113

    Article  CAS  Google Scholar 

  56. Rao DP, Yadav HS, Yadava AK, Singh S, Yadav US (2011) In-situ preparation of macrocyclic complexes of dioxomolybdenum(VI) involving a heterocyclic precursor. J Coord Chem 64:293–299. https://doi.org/10.1080/00958972.2010.544037

    Article  CAS  Google Scholar 

  57. Sakata K, Kuroda M, Yanagida S, Hashimoto M (1989) Preparation and spectroscopic properties of oxovanadium(IV) and dioxomolybdenum(VI) complexes with tetraaza[14] annulenes containing pyridine rings. Inorg Chim Acta 156:107–112. https://doi.org/10.1016/S0020-1693(00)90375-X

    Article  CAS  Google Scholar 

  58. Rao DP, Yadav HS, Singh CP (2021) Molybdenum(VI) complexes with Schiff Base containing N-hetero atom. Lett. Appl. NanoBioScience. 10(1):1816–1824. https://doi.org/10.33263/LIANBS101.18161824

    Article  Google Scholar 

  59. Gehrke H, Veal J (1969) Acetylacetonate complexes of molybdenum(V) and molybdenum(VI). Inorg Chim Acta 3:623–627. https://doi.org/10.1016/S0020-1693(00)92563-5

    Article  CAS  Google Scholar 

  60. Yadav HS (1993) Synthesis of spectroscopic studies of oxovanadium(IV) complexes with 16- and 18-membered macrocyclic ligands. Polyhedron 12:313–317. https://doi.org/10.1016/S0277-5387(00)81729-5

    Article  CAS  Google Scholar 

Download references

Acknowledgements

Thanks to Secretary, Board of Management, and the Head of Department of Chemistry, D.A-V. College, Kanpur, for imparting laboratory facilities.

Funding

This work was supported by the Directorate of Higher Education, Uttar Pradesh, Prayagraj (Degree Vikas/225–232/2021–2022 dated 01 April 2021).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Devendra Pratap Rao.

Ethics declarations

Conflict of Interest

The authors declare that there is no conflict of interests regarding the publication of this article.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Katiyar, S., Rao, D.P., Verma, N.K. et al. Synthesis and Crystal Structure–Activity Studies and Possible Therapeutic Application of Diamine Conjugated Furil Schiff Base as Antibacterial Agent. Chemistry Africa 7, 1817–1828 (2024). https://doi.org/10.1007/s42250-023-00868-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s42250-023-00868-0

Keywords

Navigation