Skip to main content

Advertisement

Log in

Removal of Toxic Pb (II) Ion from Aqueous Solution Using ZnO/K2SO4 Nanocomposites: Kinetics, Isotherms and Error Function Analyses

  • Original Article
  • Published:
Chemistry Africa Aims and scope Submit manuscript

Abstract

Heavy metals are considered one of the most serious toxic substances since they are non-biodegradable and can cause several health implications. The removal of heavy metals enhances the quality of the water and makes it suitable for drinking as well as other domestic uses. Therefore, the goal of the current work was to synthesize and utilize ZnO/K2SO4 nanocomposites as an adsorbent for the efficient removal of Pb (II) ions from the aqueous solution. X-ray diffraction (XRD), Field Emission Scanning Electron Microscopy (FESEM), Energy-Dispersive X-ray Spectroscopy (EDX), and Fourier Transform Infrared (FTIR) Spectroscopy were employed to characterize the synthesized nanocomposites. The FTIR and EDX data confirmed the successful incorporation of K2SO4 in the ZnO structure. The XRD result revealed that the average particle size of ZnO/K2SO4 was ~ 34 nm. Batch adsorption studies showed that the maximum percentage of Pb (II) ions was eliminated at pH 5, contact time of 60 min, adsorbate concentration of 60 mg/L, and adsorbent dosage of 0.04 g. The analysis of Langmuir and Freundlich’s isotherms implied that the Freundlich model provided the maximum fit for the adsorption of Pb (II) ions. From a kinetic perspective, the pseudo-second-order kinetics was most suitable to explain the adsorption process rather than pseudo-first-order kinetics, which was also confirmed by the error function analyses. Overall, the present study concluded that the newly synthesized ZnO/K2SO4 nanosorbents could be used as a promising material for the sequestration of Pb (II) ions.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Scheme 1
Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13

Similar content being viewed by others

Availability of Data And Materials

Not applicable.

References

  1. Ali H, Khan EJECL (2017) Environmental chemistry in the twenty-first century. Environ Chem Lett 15(2):329–346. https://doi.org/10.1007/s10311-016-0601-3

    Article  CAS  Google Scholar 

  2. Hashem MA, Nur-A-Tomal MS, Mondal NR, Rahman MA (2017) Hair burning and liming in tanneries is a source of pollution by arsenic, lead, zinc, manganese and iron. Environ Chem Lett 15:501–506. https://doi.org/10.1007/s10311-017-0634-2

    Article  CAS  Google Scholar 

  3. Fu F, Wang Q (2011) Removal of heavy metal ions from wastewaters: a review. J J Environ Manag 92(3):407–418. https://doi.org/10.1016/j.jenvman.2010.11.011

    Article  CAS  Google Scholar 

  4. Khan FU, Rahman AU, Jan A, Riaz M (2011) Removal of heavy metal ions from wastewaters: a review. J Environ Manag 92(3):407–418. https://doi.org/10.1016/j.jenvman.2010.11.011

    Article  CAS  Google Scholar 

  5. Ke F, Qiu LG, Yuan YP, Peng FM, Jiang X, Xie AJ, Shen YH, Zhu JF (2011) Thiol-functionalization of metal-organic framework by a facile coordination-based postsynthetic strategy and enhanced removal of Hg2+ from water. J Hazard Mater 196:36–43. https://doi.org/10.1016/j.jhazmat.2011.08.069

    Article  CAS  PubMed  Google Scholar 

  6. Ge F, Li MM, Ye H, Zhao BX (2012) Effective removal of heavy metal ions Cd2+, Zn2+, Pb2+, Cu2+ from aqueous solution by polymer-modified magnetic nanoparticles. J Hazard Mater 211:366–372. https://doi.org/10.1016/j.jhazmat.2011.12.013

    Article  CAS  PubMed  Google Scholar 

  7. Abbasizadeh S, Questar AR, Mousavian MA (2014) Sorption of heavy metal ions from aqueous solution by a novel cast PVA/TiO2 nanohybrid adsorbent functionalized with amine groups. J Ind Eng Chem 20(4):1656–1664. https://doi.org/10.1016/j.jiec.2013.08.013

    Article  CAS  Google Scholar 

  8. Gautam AK, Markandeya SNB (2020) Lead removal efficiency of various natural adsorbents (Moringa oleifera, Prosopis juliflora, peanut shell) from textile wastewater. SN Appl Sci 2(2):288. https://doi.org/10.1007/s42452-020-2065-0

    Article  CAS  Google Scholar 

  9. Bhattacharyya KG, Sharma A (2003) Zinc (II) selective removal from other transition metal ions by solvent extraction and transport through polymer inclusion membranes with D2EHPA. Ars Separatoria Acta 47–55.

  10. Wdjtowicz A, Stokosa A (2002) Removal of heavy metal ions on smectite ion-exchange column. Pol J Environ Stud 11(1):97–101

    Google Scholar 

  11. Ulewiczi M, Walkowliak W, Gega J, Pospiech B (2003) Zinc(II) selective removal from other transition metal ions by solvent extraction and transport through polymer inclusion membranes with D2EHPA. Ars Separatoria Acta 2:47–55

    Google Scholar 

  12. Taty-Costodes VC, Fauduet H, Porte C, Delacroix A (2003) Removal of Cd (II) and Pb (II) ions, from aqueous solutions, by adsorption onto sawdust of Pinus sylvestris. J Hazard Mater 105(1–3):121–142. https://doi.org/10.1016/j.jhazmat.2003.07.009

    Article  CAS  PubMed  Google Scholar 

  13. Ozaki H, Sharmab K, Saktaywirf W (2002) Performance of an ultra-low-pressure reverse osmosis membrane (ULPROM) for separating heavy metal: effects of interference parameters. Desalination 144(1–3):287–294. https://doi.org/10.1016/S0011-9164(02)00329-6

    Article  CAS  Google Scholar 

  14. Feng Y, Gong J, Zeng GM, Niu QY, Zhang HY, Niu CG (2010) Adsorption of Cd (II) and Zn (II) from aqueous solutions using magnetic hydroxyapatite nanoparticles as adsorbents. Chem Eng J 162(2):487–494. https://doi.org/10.1016/j.cej.2010.05.049

    Article  CAS  Google Scholar 

  15. Jainaea K, Sanuwong K, Nuangjamnong J, Sukpirom N, Unob F (2010) Extraction and recovery of precious metal ions in wastewater by polystyrene-coated magnetic particles functionalized with 2-(3-(2-aminoethylthio) propylthio) ethanamine. Chem Eng J. 160(2):586–593. https://doi.org/10.1016/j.cej.2010.03.080

    Article  CAS  Google Scholar 

  16. Sharma YC, Srivastavaa V, Singh VK, Kaul SN, Weng (2009) Nano-adsorbents for the removal of metallic pollutants from water and wastewater. Environ Technol 30(6):583–609. https://doi.org/10.1080/09593330902838080

    Article  CAS  PubMed  Google Scholar 

  17. Rao MM, Ramesh A, Rao GPC, Seshaiah K (2006) Removal of copper and cadmium from the aqueous solutions by activated carbon derived from Cebia pentandia hulls. J Hazard Mater 129(1–3):123–129. https://doi.org/10.1016/j.jhazmat.2005.08.018

    Article  CAS  PubMed  Google Scholar 

  18. Rao M, Parwate AV, Bhole AG (2002) Removal of Cr6+ and Ni2+ from aqueous solution using bagasse and fly ash. Waste Manag 22(7):821–830. https://doi.org/10.1016/s0956-053x(02)00011-9

    Article  CAS  PubMed  Google Scholar 

  19. Covas CP, Alvarez LW, Argulles WM (1992) Argüelles-Monal, The adsorption of mercuric ions by chitosan. J Appl Polym Sci 46(7):1147–1150. https://doi.org/10.1002/app.1992.070460703

    Article  Google Scholar 

  20. Ayuso EA, Sanchez AG, Querol X (2003) Purification of metal electroplating waste waters using zeolites. Water Res 37(20):4855–4862. https://doi.org/10.1016/j.watres.2003.08.009

    Article  CAS  Google Scholar 

  21. Yavuz O, Altunkaynak Y, Guzel F (2003) Removal of copper, nickel, cobalt and manganese from aqueous solution by kaolinite. Water Res 37:948–952. https://doi.org/10.1016/s0043-1354(02)00409-8

    Article  CAS  PubMed  Google Scholar 

  22. Sharma DC, Forster CF (1993) Removal of hexavalent chromium using sphagnum moss peat. Water Res 27(7):1201–1208. https://doi.org/10.1016/0043-1354(93)90012-7

    Article  CAS  Google Scholar 

  23. Viraraghvan T, Kapoor A (1994) Adsorption of mercury from wastewater by bentonite. Aplied clay sci 9(1):31–49. https://doi.org/10.1016/0169-1317(94)90013-2

    Article  Google Scholar 

  24. Vijayaraghavan K, Jegan J, Palanivelu K, Velan M (2005) Biosorption of cobalt (II) and nickel (II) by seaweeds: batch and column studies. Sep Purif Technol 44(1):53–59. https://doi.org/10.1016/j.seppur.2004.12.003

    Article  CAS  Google Scholar 

  25. Memon SQ, Memon N, Shah SW, Khuhawar MY, Bhanger MI (2007) Sawdust—a green and economical sorbent for the removal of cadmium (II) ions. J Hazard Mater 139(1):116–121. https://doi.org/10.1016/j.jhazmat.2006.06.013

    Article  CAS  PubMed  Google Scholar 

  26. Pradhan J, Das SN, Thakur RS (1999) Adsorption of hexavalent chromium from aqueous solution by using activated red mud. J Colloid Interface Sci 217(1):137–141. https://doi.org/10.1006/jcis.1999.6288

    Article  CAS  PubMed  Google Scholar 

  27. Bhatia M, Satish Babu R, Sonawane SH (2017) Application of nanoadsorbents for removal of lead from water. J Environ Sci Technol 14:1135–1154. https://doi.org/10.1007/s13762-016-1198-6

    Article  CAS  Google Scholar 

  28. Liu H, Ning G, Gan Z, Lin YA (2009) Simple procedure to prepare spherical α-alumina powders. Mater Res Bull 44:785–788

    Article  CAS  Google Scholar 

  29. Ingle AP, Duran N, Rai M (2014) Bioactivity, mechanism of action, and cytotoxicity of copper-based nanoparticles: a review. Appl Microbiol Biotechnol 98:1001–1009. https://doi.org/10.1007/s00253-013-5422-8

    Article  CAS  PubMed  Google Scholar 

  30. Benschoten JEV, Reed BE, Matsumoto MR, McGarvey PJ (1994) Metal removal by soil washing for an iron oxide coated sandy soil. Water Environ Res 66(2):168–174

    Article  Google Scholar 

  31. Coston JA, Fuller CC, Davis JA (1995) Pb2+ and Zn2+ adsorption by a natural aluminum-and iron-bearing surface coating on an aquifer sand. Geochim Cosmochim Acta 59(17):3535–3547. https://doi.org/10.1016/0016-7037(95)00231-N

    Article  CAS  Google Scholar 

  32. Agrawal A, Sahu KK (2006) Kinetic and isotherm studies of cadmium adsorption on manganese nodule residue. J Hazard Mater 137(2):915–924. https://doi.org/10.1016/j.jhazmat.2006.03.039

    Article  CAS  PubMed  Google Scholar 

  33. Mahdavi S, Jalali M, Afkhami A (2012) Removal of heavy metals from aqueous solutions using Fe3O4, ZnO, and CuO nanoparticles. J Nanopart Res 14:846–863. https://doi.org/10.1007/s11051-012-0846-0

    Article  CAS  Google Scholar 

  34. Kumar KY, Muralidhara HB, Nayaka YA, Balasubramanyam J, Hanumanthappa H (2013) Low-cost synthesis of metal oxide nanoparticles and their application in adsorption of commercial dye and heavy metal ion in aqueous solution. Powder Technol 246:125–136. https://doi.org/10.1016/j.powtec.2013.05.017

    Article  CAS  Google Scholar 

  35. Lee JC, Kim HS, Lee JH, Park S (2008) Photocatalytic removal of Cu ions from aqueous Cu-EDTA solution using solution combusted zinc oxide nanopowder. J Nanosci Nanotechnol 8(10):5284–5287. https://doi.org/10.1166/jnn.2008.1093

    Article  CAS  PubMed  Google Scholar 

  36. Dhiman V, Kondal N (2021) ZnO Nanoadsorbents: a potent material for removal of heavy metal ions from wastewater. Colloids Interface Sci Commun 41:100–380. https://doi.org/10.1016/j.colcom.2021.100380

    Article  CAS  Google Scholar 

  37. Hua M, Zhang S, Pan B, Zhang W, Lv L, Zhang Q (2012) Heavy metal removal from water/wastewater by nanosized metal oxides: a review. J Hazard Mater 211:317–331. https://doi.org/10.1016/j.jhazmat.2011.10.016

    Article  CAS  PubMed  Google Scholar 

  38. Yuan J, Zhang W, Xiao Z, Zhou X, Zeng Q (2020) + Efficient dewatering and heavy-metal removal in municipal sewage using oxidants. Chem Eng J 388:124298. https://doi.org/10.1016/j.cej.2020.124298

    Article  CAS  Google Scholar 

  39. Karimi Z, Goli M (2021) The effect of chelating agents including potassium tartrate and citrate on the maximum reduction of lead and cadmium during soaking and cooking from some different varieties of rice available in Iran. Food Sci Nutr 9(9):5112–5118. https://doi.org/10.1002/fsn3.2473

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  40. Alam MG, Tokunaga S, Maekawa T (2001) Extraction of arsenic in a synthetic arsenic-contaminated soil using phosphate. Chemosphere 43(8):1035–1041. https://doi.org/10.1016/s0045-6535(00)00205-8

    Article  CAS  PubMed  Google Scholar 

  41. Chakrabarty S, Tamim A, Yılmaz M, Palash KD, Rad MM, Sagar KD (2023) Adsorption of Pb (II) ions from aqueous solution using CuO-ZnO nanocomposites. Chem Africa 6(3):1449–1462. https://doi.org/10.1007/s42250-022-00554-7

    Article  CAS  Google Scholar 

  42. Hosseinkhani O, Hamzehlouy A, Dan S, Sanchouli N, Tavakkoli M, Hashemipour H (2023) Graphene oxide/ZnO nanocomposites for efficient removal of heavy metal and organic contaminants from water. Arab J Chem 16(10):105176. https://doi.org/10.1016/j.arabjc.2023.105176

    Article  CAS  Google Scholar 

  43. Rahman TU, Roy H, Shoronika AZ, Fariha A, Hasan M, Islam MS, Marwani HM, Islam A, Hasan MM, Alsukaibi AK, Rahman MM (2023) Sustainable toxic dye removal and degradation from wastewater using novel chitosan-modified TiO2 and ZnO nanocomposites. J Mol Liq 388:122764. https://doi.org/10.1016/j.molliq.2023.122764

    Article  CAS  Google Scholar 

  44. Rodríguez C, Tapia C, Leiva-Aravena E, Leiva E (2020) Graphene Oxide-ZnO nanocomposites for removal of aluminum and copper ions from acid mine drainage wastewater. Int J Environ Res Public Health 17(18):6911. https://doi.org/10.3390/ijerph17186911

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  45. Saad AH, Azzam AM, El-Wakeel ST, Mostafa BB, Abd El-latif MB (2018) Removal of toxic metal ions from wastewater using ZnO@ Chitosan core-shell nanocomposite. Environ Nanotechnol Monit Manag 9:67–75. https://doi.org/10.1016/j.enmm.2017.12.004

    Article  Google Scholar 

  46. Liu Y, Song H, Zhang Q (2012) Study on the synthesis of ZnO/K2SO4 composite material by sol–gel method and its photocatalytic properties. Res Chem Intermed 38(2):651–657. https://doi.org/10.1007/s11164-011-0405-9

    Article  CAS  Google Scholar 

  47. Uko CA, Tijani JO, Abdulkareem SA, Mustapha S, Egbosiuba TC, Muzenda E (2022) Adsorptive properties of MgO/WO3 nanoadsorbent for selected heavy metals removal from indigenous dyeing wastewater. Process Saf Environ Prot 162:775–794. https://doi.org/10.1016/j.psep.2022.04.057

    Article  CAS  Google Scholar 

  48. Freundlich H (1996) Uber die adsorption in Iosungen. Zeitschrift fur physikalische Chemie (Leipzig) 57:385–470

    Google Scholar 

  49. Langmuir I (1916) The constitution and fundamental properties of solids and liquids. Part I. Solids. J Am Chem Soc 38(11):2221–2295. https://doi.org/10.1021/ja02268a002

    Article  CAS  Google Scholar 

  50. Lagergren S (1898) About the theory of so-called adsorption of soluble substances. Kungliga Svenska Vetenskapsakademiens Handlingar 24:1–39

    Google Scholar 

  51. Ho YS, McKay G (1999) Pseudo-second order model for sorption processes. Process Biochem 34(5):451–465. https://doi.org/10.1016/S0032-9592(98)00112-5

    Article  CAS  Google Scholar 

  52. Suwannahong K, Wongcharee S, Kreetachart T, Sirilamduan C, Rioyo J, Wongphat A (2021) Evaluation of the microsoft excel solver spreadsheet-based program for nonlinear expressions of adsorption isotherm models onto magnetic nanosorbent. Appl Sci 11(16):7432. https://doi.org/10.3390/app11167432

    Article  CAS  Google Scholar 

  53. Kapoor A, Yang RT (1998) Correlation of equilibrium adsorption data of condensible vapours on porous adsorbents. Gas Sep Purif 3(4):187–192. https://doi.org/10.1016/0950-4214(89)80004-0

    Article  Google Scholar 

  54. Pal A (2018) Statistical analysis of optimized isotherm model for maxsorb III/ethanol and silica gel/water pairs. Evergreen 5(4):1–12. https://doi.org/10.5109/2174852

    Article  Google Scholar 

  55. Foo KY, Hameed BH (2010) Insights into the modeling of adsorption isotherm systems. Chem Eng J 156(1):2–10. https://doi.org/10.1016/j.cej.2009.09.013

    Article  CAS  Google Scholar 

  56. Jasper EE, Ajibola VO, Onwuka JC (2020) Nonlinear regression analysis of the sorption of crystal violet and methylene blue from aqueous solutions onto an agro-waste derived activated carbon. Appl Water Sci 10:132. https://doi.org/10.1007/s13201-020-01218-y

    Article  CAS  Google Scholar 

  57. Chan LS, Cheung WH, Allen SJ, McKay G (2012) Error analysis of adsorption isotherm models for acid dyes onto bamboo derived activated carbon. Chin J Chem Eng 20(3):535–542. https://doi.org/10.1016/S1004-9541(11)60216-4

    Article  CAS  Google Scholar 

  58. Handore K, Bhavsar S, Horne A, Chhattise P, Mohite K, Ambekar J, Pande N, Chabukswar V (2014) Novel green route of synthesis of ZnO nanoparticles by using natural biodegradable polymer and its application as a catalyst for oxidation of aldehydes. J Macromol Sci Part A Pure Appl Chem 51(12):941–947. https://doi.org/10.1080/10601325.2014.967078

    Article  CAS  Google Scholar 

  59. Periasamy A, Muruganand S, Palaniswamy M (2009) Vibrational studies of Na2SO4, K2SO4, NaHSO4 and KHSO4 crystals. Rasayan J Chem 2(4):981–989

    CAS  Google Scholar 

  60. Jilani A, Iqbal J, Rafique S, Abdel-wahab MS, Jamil Y, Al-Ghamdi AA (2016) Morphological, optical and X-ray photoelectron chemical state shift investigations of ZnO thin films. Optik 127(16):6358–6365. https://doi.org/10.1016/j.ijleo.2016.04.127

    Article  CAS  Google Scholar 

  61. Bashir A, Manzoor T, Malik LA, Qureashi A, Pandith AH (2020) Enhanced and selective adsorption of Zn (II), Pb (II), Cd (II), and Hg (II) ions by a dumbbell-and flower-shaped potato starch phosphate polymer: a combined experimental and DFT calculation study. ACS Omega 5(10):4853–4867. https://doi.org/10.1021/acsomega.9b03607

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  62. Doyurum S, Celik A (2006) Pb (II) and Cd (II) removal from aqueous solutions by olive cake. J Hazard Mater 138(1):22–28. https://doi.org/10.1016/j.jhazmat.2006.03.071

    Article  CAS  PubMed  Google Scholar 

  63. Tunali S, Akar T, Özcan AS, Kiran I, Özcan A (2006) Equilibrium and kinetics of biosorption of lead (II) from aqueous solutions by Cephalosporium aphidicola. Sep Purif Technol 47(3):105–112. https://doi.org/10.1016/j.seppur.2005.06.009

    Article  CAS  Google Scholar 

  64. Srinivasa JR, Kesava RC, Prabhakar G (2013) Optimization of biosorption performance of Casuarina leaf powder for the removal of lead using central composite design. J Environ Anal Toxicol 3(2):166. https://doi.org/10.4172/2161-0525.1000166

    Article  Google Scholar 

  65. Raul PK, Senapati S, Sahoo AK, Umlong IM, Devi RR, Thakur AJ, Veer V (2014) CuO nanorods: a potential and efficient adsorbent in water purification. Thermodyn Techno-Econ Study Environ Process 4(76):40580–40587. https://doi.org/10.1007/s40710-023-00651-w

    Article  CAS  Google Scholar 

  66. Kosa SA, Al-Zhrani G, Salam MA (2012) Removal of heavy metals from aqueous solutions by multi-walled carbon nanotubes modified with 8-hydroxyquinoline. Chem Eng J 181:159–168. https://doi.org/10.1016/j.cej.2011.11.044

    Article  CAS  Google Scholar 

  67. Ogbodu RO, Omorogie MO, Unuabonah EI, Babalola JO (2015) Biosorption of heavy metals from aqueous solutions by P arkia biglobosa biomass: equilibrium, kinetics, and thermodynamic studies. Environ Prog Sustain Energy 34(6):1694–1704. https://doi.org/10.1002/ep.12175

    Article  CAS  Google Scholar 

  68. Uddin MT, Islam MS, Abedin MZ (2007) Adsorption of phenol from aqueous solution by water hyacinth ash. J Nanomater 2(2):11–17. https://doi.org/10.1155/2015/405036

    Article  CAS  Google Scholar 

  69. Gorzin F, Bahri Rasht Abadi MM (2018) Adsorption of Cr (VI) from aqueous solution by adsorbent prepared from paper mill sludge: kinetics and thermodynamics studies. Adsorpt Sci Technol 36(1–2):149–169. https://doi.org/10.1016/j.scitotenv.2021.152055

    Article  CAS  Google Scholar 

  70. Shahbazi A, Younesi H, Badiei A (2012) Synthesis of organic-inorganic hybrid amine based on nanostructured silicate materials and its application for removal of heavy metal ions from aqueous solution. J Water Wastewater 23(4):13–21

    Google Scholar 

  71. Nassar NN (2010) Rapid removal and recovery of Pb (II) from wastewater by magnetic nanoadsorbents. J Hazard Mater 184(1–3):538–546. https://doi.org/10.1016/j.jhazmat.2010.08.069

    Article  CAS  PubMed  Google Scholar 

  72. Idris A, Ismail NS, Hassan N, Misran E, Ngomsik AF (2012) Synthesis of magnetic alginate beads based on maghemite nanoparticles for Pb (II) removal in aqueous solution. J Ind Eng Chem 18(5):1582–1589. https://doi.org/10.1016/j.jiec.2012.02.018

    Article  CAS  Google Scholar 

  73. Sani HA, Ahmad MB, Saleh TA (2016) Synthesis of zinc oxide/talc nanocomposite for enhanced lead adsorption from aqueous solutions. RSC Adv 6(110):108819–108827. https://doi.org/10.1039/C6RA24615J

    Article  CAS  Google Scholar 

  74. Sharma M, Poddar M, Gupta Y, Nigam S, Avasthi DK, Adelung R, Abolhassani R, Fiutowski J, Joshi M, Mishra YK (2020) Solar light assisted degradation of dyes and adsorption of heavy metal ions from water by CuO–ZnO tetrapodal hybrid nanocomposite. Mater Today Chem 17:100336. https://doi.org/10.1016/j.mtchem.2020.100336

    Article  CAS  Google Scholar 

  75. Alswat AA, Ahmad MB, Saleh TA (2016) Zeolite modified with copper oxide and iron oxide for lead and arsenic adsorption from aqueous solutions. J Water Supply Res Technol AQUA 65(6):465–479. https://doi.org/10.2166/aqua.2016.014

    Article  Google Scholar 

  76. Venkatesham V, Madhu GM, Satyanarayana SV, Preetham HS (2013) Adsorption of lead on gel combustion derived nano ZnO. Procedia Eng 51:308–313. https://doi.org/10.1016/j.proeng.2013.01.041

    Article  CAS  Google Scholar 

  77. Wu T, Ni Y, Ma X, Hong J (2013) La-doped ZnO nanoparticles: simple solution-combusting preparation and applications in the wastewater treatment. Mater Res Bull 48(11):4754–4758. https://doi.org/10.1016/j.materresbull.2013.08.018

    Article  CAS  Google Scholar 

  78. Jawed PLM (2019) Application of bimetallic Al-doped ZnO nano-assembly for heavy metal removal and decontamination of wastewater. Water Sci Technol 80(11):2067–2078. https://doi.org/10.2166/wst.2019.393

    Article  CAS  PubMed  Google Scholar 

  79. Dargahi A, Golestanifar H, Darvishi P, Karam A (2016) An investigation and comparison of removing heavy metals (lead and chromium) from aqueous solutions using magnesium oxide nanoparticles. Pol J Environ Stud 25(2):557. https://doi.org/10.15244/pjoes/60281

    Article  CAS  Google Scholar 

  80. Fan HT, Wu JB, Fan XL, Zhang DS, Su ZJ, Yan F, Sun T (2012) Removal of cadmium (II) and lead (II) from aqueous solution using sulfur-functionalized silica prepared by hydrothermal-assisted grafting method. Chem Eng J 198:355–363. https://doi.org/10.1016/j.cej.2012.05.109

    Article  CAS  Google Scholar 

  81. Tabesh S, Davar F, Loghman-Estarki MR (2018) Preparation of γ-Al2O3 nanoparticles using modified sol-gel method and its use for the adsorption of lead and cadmium ions. J Alloy Compd 730:441–449. https://doi.org/10.1016/j.jallcom.2017.09.246

    Article  CAS  Google Scholar 

  82. Kheyrabadi FB, Zare EN (2022) Antimicrobial nanocomposite adsorbent based on poly (meta-phenylenediamine) for remediation of lead (II) from water medium. Sci Report 12(1):4632. https://doi.org/10.1038/s41598-022-08668-1

    Article  CAS  Google Scholar 

  83. Kocaoba S (2022) Determination of some heavy metals from aqueous solutions using modified amberlite XAD-4 resin by selective solid-phase extraction. J Anal Sci Technol 13:15. https://doi.org/10.1186/s40543-022-00324-7

    Article  CAS  Google Scholar 

Download references

Acknowledgements

The authors are grateful to Chemistry Discipline, Khulna University for providing the necessary laboratory facilities.

Funding

The study was financially supported by the Research and Innovation Center, Khulna University, Bangladesh.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Sumon Chakrabarty.

Ethics declarations

Conflict of Interest

The authors declare no conflict of interest.

Ethical Approval and Consent to Participate

No human participants or animals were involved in this research; therefore, ethical approval was not applicable.

Consent to Publish

All authors consent to the publication of this work.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Chakrabarty, S., Mim, R.M., Tonu, N.T. et al. Removal of Toxic Pb (II) Ion from Aqueous Solution Using ZnO/K2SO4 Nanocomposites: Kinetics, Isotherms and Error Function Analyses. Chemistry Africa 7, 1467–1480 (2024). https://doi.org/10.1007/s42250-023-00843-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s42250-023-00843-9

Keywords

Navigation