Skip to main content
Log in

Novel Functionalized Triazole/Carbazole-Based Chitosan: In Vitro, In Vivo and In Silico Evaluation of Anti-diabetic and Anti-obesity Activities

  • Original Article
  • Published:
Chemistry Africa Aims and scope Submit manuscript

Abstract

In this work, a new triazole/carbazole based chitosan (Cs-tri-carb), was synthesized via the chemical modification of chitosan extracted from the exoskeleton of the pink shrimp (Parapenaeus longirostris) in an attempt to develop a potent antidiabetic and anti-obesity agent. The biomaterial (Cs-tri-carb) was elaborated by treating a previously protected chitosan azide (Cs-N3) by a propargylated carabzole (Carb-Prop) using Copper catalyzed regiospecific click chemistry. The structure of Cs-tri-carb was characterized using FT-IR, XPS and NMR spectroscopies. The obtained results approve the incorporation of the joined triazole/carbazole unit in the side chain of chitosan. The thermal study of Cs-tri-carb shows that the chemical modification has significantly improved its stability up to 315 °C. The biopolymer Cs-tri-carb was evaluated as an inhibitor of α-amylase and lipase activities. In vitro and in vivo studies revealed that the Cs-tri-carb exhibits a significant inhibitory action against these key enzymes. Moreover, the administration of Cs-tri-carb to surviving diabetic rats reduced the intestinal α-amylase activity by 26 and 32% and decreased the blood glucose by 26 and 40%, respectively compared to untreated diabetic rats. In addition, Chitosan or Chitosan derivative (Cs-tri-carb) decreased the intestinal lipase activities by 33 and 41%, and consequently, modulation of blood lipid levels as total cholesterol (TC), low-density lipoprotein cholesterol (LDL-C) and high-density lipoprotein cholesterol (HDL-C) rates. Overall, the findings of the current study indicate that the biomaterial Cs-tri-carb displays attractive properties and can, therefore, be considered for future application in the development of antidiabetic and hypolipidemic drugs.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Scheme 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

References

  1. Haththotuwa RN, Wijeyaratne CN, Senarath U (2020) Worldwide epidemic of obesity. Obesity and obstetrics, 2nd edn. Elsevier, Amsterdam. https://doi.org/10.1016/B978-0-12-817921-5.00001-1

    Chapter  Google Scholar 

  2. James PT (2004) Obesity: the worldwide epidemic. Clin Dermatol 22:276–280. https://doi.org/10.1016/j.clindermatol.2004.01.010

    Article  PubMed  Google Scholar 

  3. Aguilera CM, Gil-Campos M, Canete R, Gil A (2008) Alterations in plasma and tissue lipids associated with obesity and metabolic syndrome. Clin Sci 114:183–193. https://doi.org/10.1042/CS20070115

    Article  CAS  Google Scholar 

  4. Hotamisligil GS (2000) Molecular mechanisms of insulin resistance and the role of the adipocyte. Int J Obes 24:S23–S27. https://doi.org/10.1038/sj.ijo.0801497

    Article  CAS  Google Scholar 

  5. Dubey SK, Chaturvedi VK, Mishra D, Bajpeyee A, Tiwari A, Singh MP (2019) Role of edible mushroom as potent therapeutics for the diabetes and obesity. 3 Biotech 9:1–12. https://doi.org/10.1007/s13205-019-1982-3

    Article  Google Scholar 

  6. Wu TR, Lin CS, Chang CJ, Lin TL, Martel J, Ko YF, Lai HC (2019) Gut commensal Parabacteroides goldsteinii plays a predominant role in the anti-obesity effects of polysaccharides isolated from Hirsutella sinensis. Gut 68:248–262. https://doi.org/10.1136/gutjnl-2017-315458

    Article  CAS  PubMed  Google Scholar 

  7. Xie JH, Jin ML, Morris GA, Zha XQ, Chen XQ, Yi XQ, Xie XQ (2016) Advances on bioactive polysaccharides from medicinal plants. Crit Rev Food Sci Nutr 56:S60–S84. https://doi.org/10.1080/10408398.2015.1069255

    Article  CAS  PubMed  Google Scholar 

  8. Wasupalli GK, Verma D (2018) Polysaccharides as biomaterials. Fundamental Biomaterials: Polymers, 1st edn. Elsevier, pp 37–70. https://doi.org/10.1016/B978-0-08-102194-1.00003-7

    Chapter  Google Scholar 

  9. Yu Y, Shen M, Song Q, Xie J (2018) Biological activities and pharmaceutical applications of polysaccharide from natural resources: a review. Carbohydr Polym 183:91–101. https://doi.org/10.1016/j.carbpol.2017.12.009

    Article  CAS  PubMed  Google Scholar 

  10. Anna B, Solaiman D, Alexey S, Sali D (2020) Pharmacological and biological effects of chitosan. Res J Pharm Technol 13(2):1043–1049. https://doi.org/10.5958/0974-360X.2020.00192.4

    Article  Google Scholar 

  11. Mittal H, Ray SS, Kaith BS, Bhatia JK, Sharma J, Alhassan SM (2018) Recent progress in the structural modification of chitosan for applications in diversified biomedical fields. Eur Polym J 109:402–434. https://doi.org/10.1016/j.eurpolymj.2018.10.013

    Article  CAS  Google Scholar 

  12. Wang W, Xue C, Mao X (2020) Chitosan: structural modification, biological activity and application. Int J Biol Macromol 164:4532–4546. https://doi.org/10.1016/j.ijbiomac.2020.09.042

    Article  CAS  PubMed  Google Scholar 

  13. Rodrigues S, Dionísio M, Remunan Lopez C, Grenha C (2012) Biocompatibility of chitosan carriers with application in drug delivery. J Funct Biomater 3:615–641. https://doi.org/10.3390/jfb3030615

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Pavoni JMF, Luchese CL, Tessaro IC (2019) Impact of acid type for chitosan dissolution on the characteristics and biodegradability of cornstarch/chitosan-based films. Int J Biol Macromol 138:693–703. https://doi.org/10.1016/j.ijbiomac.2019.07.089

    Article  CAS  PubMed  Google Scholar 

  15. Hong W, Guo F, Chen J, Wang X, Zhao X, Xiao P (2018) Bioactive glass–chitosan composite coatings on PEEK: Effects of surface wettability and roughness on the interfacial fracture resistance and in vitro cell response. Appl Surf Sci 440:514–523. https://doi.org/10.1016/j.apsusc.2018.01.183

    Article  ADS  CAS  Google Scholar 

  16. Fakhri E, Eslami H, Maroufi P, Pakdel F, Taghizadeh S, Ganbarov K, Kafil HS (2020) Chitosan biomaterials application in dentistry. Int J Biol Macromol 162:956–974. https://doi.org/10.1016/j.ijbiomac.2020.06.211

    Article  CAS  PubMed  Google Scholar 

  17. Ahmed S, Ikram S (2016) Chitosan based scaffolds and their applications in wound healing: achievements in the life sciences. Achiev Life Sci 10:27–37. https://doi.org/10.1016/j.als.2016.04.001

    Article  Google Scholar 

  18. Park Y, Huh KM, Kang SW (2021) Applications of biomaterials in 3D cell culture and contributions of 3D cell culture to drug development and basic biomedical research. Int J Mol Sci 22:2491–2512. https://doi.org/10.3390/ijms22052491

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Zhang S, Xu Z, Gao C, Ren QC, Chang L, Lv ZS, Feng LS (2017) Triazole derivatives and their anti-tubercular activity. Eur J Med Chem 138:501–513. https://doi.org/10.1016/j.ejmech.2017.06.051

    Article  CAS  PubMed  Google Scholar 

  20. Abuo-Rahma GEDA, Abdel-Aziz M, Beshr EA, Ali TF (2014) 1, 2, 4-Triazole/oxime hybrids as new strategy for nitric oxide donors: synthesis, anti-inflammatory, ulceroginicity and antiproliferative activities. Eur J Med Chem 71:185–198. https://doi.org/10.1016/j.ejmech.2013.11.006

    Article  CAS  PubMed  Google Scholar 

  21. Bashir M, Bano A, Ijaz AS, Chaudhary AB (2015) Recent developments and biological activities of N-substituted carbazole derivatives: a review. Molecules 20:13496–13517. https://doi.org/10.3390/molecules200813496

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Hafsa J, Smach MA, Charfeddine B, Limem K, Majdoub H, Rouatbi S (2016) Antioxidant and antimicrobial proprieties of chitin and chitosan extracted from Parapenaeus Longirostris shrimp shell waste. Ann Pharm Fr 74:27–33. https://doi.org/10.1016/j.pharma.2015.07.005

    Article  CAS  PubMed  Google Scholar 

  23. Casadidio C, Peregrina DV, Gigliobianco DV, Deng S, Censi R, Di MP (2019) Chitin and chitosans: characteristics, eco-friendly processes, and applications in cosmetic science. Mar Drugs 17(6):369–399. https://doi.org/10.3390/md17060369

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Saidi SA, Al-Shaikh TM, Alghamdi OA, Hamden K (2022) Ephedra alata subsp. alenda (Ephedraceae) leaf extracts: phytochemical screening, anti-diabetic, anti-obesity and anti-toxic activities on diabetic-induced liver-kidney-testes toxicities and inhibition of α-amylase and lipase enzymes. Heliyon 8:e11954. https://doi.org/10.1016/j.heliyon.2022.e11954

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Tiss M, Souiy Z, ben Abdeljelil N, Njima M, Achour L, Hamden K (2020) Fermented soy milk prepared using kefir grains prevents and ameliorates obesity, type 2 diabetes, hyperlipidemia and liver-kidney toxicities in HFFD-rats. J Funct Foods 67:103869. https://doi.org/10.1016/j.jff.2020.103869

    Article  CAS  Google Scholar 

  26. Kurita K (2006) Chitin and chitosan: functional biopolymers from marine crustaceans. Mar Biotechnol 8:203–226. https://doi.org/10.1007/s10126-005-0097-5

    Article  CAS  Google Scholar 

  27. Marianti A, Anggraito YU, Christijanti W (2020) Effective gamma irradiation dose on viscosity and molecular weight reduction of chitosan. J Phys Conf Ser 1567:042096. https://doi.org/10.1088/1742-6596/1567/4/042096

    Article  CAS  Google Scholar 

  28. Abd El-Hack ME, El-Saadony MT, Shafi ME, Zabermawi NM, Arif M, Batiha GE, Al-Sagheer AA (2020) Antimicrobial and antioxidant properties of chitosan and its derivatives and their applications: a review. Int J Biol Macromol 164:2726–2744. https://doi.org/10.1016/j.ijbiomac.2020.08.153

    Article  CAS  PubMed  Google Scholar 

  29. Elchinger PH, Faugeras PA, Boëns B, Brouillette F, Montplaisir D, Zerrouki R, Lucas R (2011) Polysaccharides: the click chemistry impact. Polymers 3(4):1607–1651. https://doi.org/10.3390/polym3041607

    Article  CAS  Google Scholar 

  30. Chuc-Gamboa MG, Vargas-Coronado RF, Cervantes-Uc JM, Cauich-Rodríguez JV, Escobar-García DM, Pozos-Guillén A, San Román del Barrio J (2019) The effect of PEGDE concentration and temperature on physicochemical and biological properties of chitosan. Polym (Basel) 11:1830–1851. https://doi.org/10.3390/polym11111830

    Article  CAS  Google Scholar 

  31. Sajjadi M, Nasrollahzadeh M, Ghafuri H, Baran T, Orooji Y, Baran NY, Shokouhimehr M (2022) Modified chitosan-zeolite supported pd nanoparticles: a reusable catalyst for the synthesis of 5-substituted-1H-tetrazoles from aryl halides. Int J Biol Macromol 209:1573–1585. https://doi.org/10.1016/j.ijbiomac.2022.04.075

    Article  CAS  PubMed  Google Scholar 

  32. Ifuku S, Wada M, Morimoto M, Saimoto H (2012) A short synthesis of highly soluble chemoselective chitosan derivatives via click chemistry. Carbohydr Polym 90:1182–1186. https://doi.org/10.1016/j.carbpol.2012.06.074

    Article  CAS  PubMed  Google Scholar 

  33. Kurita K, Ikeda H, Yoshida Y, Shimojoh M, Harata M (2002) Chemoselective protection of the amino groups of chitosan by controlled phthaloylation: facile preparation of a precursor useful for chemical modifications. Biomacromol 3:1–4. https://doi.org/10.1021/bm0101163

    Article  CAS  Google Scholar 

  34. Brugnerotto J, Lizardi J, Goycoolea FM, Argüelles-Monal W, Desbrieres J, Rinaudo M (2001) An infrared investigation in relation with chitin and chitosan characterization. Polymers 42:3569–3580. https://doi.org/10.1016/S0032-3861(00)00713-8

    Article  CAS  Google Scholar 

  35. Vino AB, Ramasamy P, Shanmugam V, Shanmugam A (2012) Extraction, characterization and in vitro antioxidative potential of chitosan and sulfated chitosan from Cuttlebone of Sepia aculeata Orbigny, 1848. Asian Pac J Trop Biomed 2:S334–S341. https://doi.org/10.1016/S2221-1691(12)60184-1

    Article  Google Scholar 

  36. Khan TA, Peh KK, Ch’ng HS (2002) Reporting degree of deacetylation values of chitosan: the influence of analytical methods. J Pharm Pharmaceut Sci 5:205–212

    CAS  Google Scholar 

  37. Amaral IF, Granja PL, Barbosa PL (2005) Chemical modification of chitosan by phosphorylation: an XPS, FT-IR and SEM study. J Biomater Sci Polym Ed 16:1575–1593. https://doi.org/10.1163/156856205774576736

    Article  CAS  PubMed  Google Scholar 

  38. Demetgül C, Beyazit N (2018) Synthesis, characterization and antioxidant activity of chitosan-chromone derivatives. Carbohydr Polym 181:812–817. https://doi.org/10.1016/j.carbpol.2017.11.074

    Article  CAS  PubMed  Google Scholar 

  39. Hammouda MB, Boudriga S, Hamden K, Askri M, Knorr M, Strohmann C, Kadri A (2022) New spiropyrrolothiazole derivatives bearing an oxazolone moiety as potential antidiabetic agent: design, synthesis, crystal structure, Hirshfeld surface analysis, ADME and molecular docking studies. J Mol Struct 1254:132398. https://doi.org/10.1016/j.molstruc.2022.132398

    Article  CAS  Google Scholar 

  40. Bekircan O, Danış Ö, Şahin ME, Cetin M (2022) Monoamine oxidase A and B inhibitory activities of 3, 5-diphenyl-1, 2, 4-triazole substituted [1, 2, 4] triazolo [3, 4-b] [1, 3, 4] thiadiazole derivatives. Bioorg Chem 118:105493. https://doi.org/10.1016/j.bioorg.2021.105493

    Article  CAS  PubMed  Google Scholar 

  41. Hameed S, Seraj F, Rafique R, Chigurupati S, Wadood A, Rehman AU, Khan KM (2019) Synthesis of benzotriazoles derivatives and their dual potential as α-amylase and α-glucosidase inhibitors in vitro: structure-activity relationship, molecular docking, and kinetic studies. Eur J Med Chem 183:111677. https://doi.org/10.1016/j.ejmech.2019.111677

    Article  CAS  PubMed  Google Scholar 

  42. Zhou Q, Cai X, Huang Y, Zhou Y (2023) Pluronic F127-liposome-encapsulated curcumin activates Nrf2/Keap1 signaling pathway to promote cell migration of HaCaT cells. Mol Cell Biochem 478:241–247. https://doi.org/10.1007/s11010-022-04481-6

    Article  CAS  PubMed  Google Scholar 

  43. Grande F, Ioele G, Caruso A, Occhiuzzi MA, El-Kashef H, Saturnino C, Sinicropi MS (2022) Carbazoles: role and functions in fighting diabetes. Appl Sci 13:349. https://doi.org/10.3390/app13010349

    Article  CAS  Google Scholar 

  44. Fallah Z, Tajbakhsh M, Alikhani M, Larijani B, Faramarzi MA, Hamedifar H, Mahdavi M (2022) A review on synthesis, mechanism of action, and structure-activity relationships of 1, 2, 3-triazole-based α-glucosidase inhibitors as promising anti-diabetic agents. J Mol Struct 13:2469. https://doi.org/10.1016/j.molstruc.2022.132469

    Article  CAS  Google Scholar 

  45. Rammohan A, Venkatesh BC, Basha NM, Zyryanov GV, Nageswararao M (2023) Comprehensive review on natural pharmacophore tethered 1, 2, 3-triazoles as active pharmaceuticals. Chem Biol Drug Des 101:1181–1203. https://doi.org/10.1111/cbdd.14148

    Article  CAS  PubMed  Google Scholar 

  46. Rani A, Singh G, Singh A, Maqbool U, Kaur G, Singh J (2020) CuAAC-ensembled 1, 2, 3-triazole-linked isosteres as pharmacophores in drug discovery. RSC Adv 10:5610–5635. https://doi.org/10.1039/C9RA09510A

    Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

  47. Kumar A, Chauhan S (2021) Pancreatic lipase inhibitors: the road voyaged and successes. Life Sci 271:119115. https://doi.org/10.1016/j.lfs.2021.119115

    Article  CAS  PubMed  Google Scholar 

  48. Luo S, Lenon GB, Gill H, Hung A, Dias DA, Li M, Nguyen LT (2020) Inhibitory effect of a weight-loss chinese herbal formula RCM-107 on pancreatic α-amylase activity: enzymatic and in silico approaches. PLoS One 15:e0231815. https://doi.org/10.1371/journal.pone.0231815

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  49. Saidi I, Manachou M, Znati M, Bouajila J, Ben Jannet H (2022) Synthesis of new halogenated flavonoid-based isoxazoles: in vitro and in silico evaluation of a-amylase inhibitory potential, a SAR analysis and DFT studies. J Mol Struct 1247:131379. https://doi.org/10.1016/j.molstruc.2021.131379

    Article  CAS  Google Scholar 

  50. Algethami FK, Saidi I, Abdelhamid HN, Elamin MR, Abdulkhair BY, Chrouda A, Ben Jannet H (2021) Trifluoromethylated flavonoid-based isoxazoles as antidiabetic and anti-obesity agents: synthesis, in vitro α-amylase inhibitory activity, molecular docking and structure–activity relationship analysis. Molecules 26:5214. https://doi.org/10.3390/molecules26175214

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  51. Hermoso J, Pignol D, Kerfelec B, Crenon I, Chapus C, Fontecilla-Camps JC (1996) Lipase activation by nonionic detergents: the crystal structure of the porcine lipase-colipase-tetraethylene glycol monooctyl ether complex. J Biol Chem 271:18007–18016. https://doi.org/10.1074/jbc.271.30.18007

    Article  CAS  PubMed  Google Scholar 

  52. Hou XD, Guan XQ, Cao YF, Weng ZM, Hu Q, Liu HB, Hou J (2020) Inhibition of pancreatic lipase by the constituents in St. John’s wort: in vitro and in silico investigations. Int J Biol Macromol 145:620–633. https://doi.org/10.1016/j.ijbiomac.2019.12.231

    Article  CAS  PubMed  Google Scholar 

  53. Candela MF, Arenas NE, Caicedo O, Malagon A (2021) Inhibition of lipase by orlistat: kinetics combined with in silico approaches to visualize interactions. J Chem Educ 98:1762–1767. https://doi.org/10.1021/acs.jchemed.0c01184

    Article  CAS  Google Scholar 

  54. Point V, Kumar KP, Marc S, Delorme V, Parsiegla G, Amara S, Cavalier JF (2012) Analysis of the discriminative inhibition of mammalian digestive lipases by 3-phenyl substituted 1, 3, 4-oxadiazol-2 (3H)-ones. Eur J Med Chem 58:452–463. https://doi.org/10.1016/j.ejmech.2012.10.040

    Article  CAS  PubMed  Google Scholar 

  55. Martinez-Gonzalez AI, Alvarez-Parrilla E, Díaz-Sánchez ÁGLA, de la Rosa, Núñez-Gastélum LA, Vazquez-Flores AA, Gonzalez-Aguilar GA (2017) In vitro inhibition of pancreatic lipase by polyphenols: a kinetic, fluorescence spectroscopy and molecular docking study. Food Technol Biotechnol 55:519–530. https://doi.org/10.17113/ftb.55.04.17.5138

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

The authors are grateful for the financial support of the Ministry of Higher Education and Scientific Research, Tunisia, granted to the Laboratory of Advanced Materials and Interfaces (LR-11-ES-55).

Funding

Not applicable.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Khaled Hriz.

Ethics declarations

Conflict of Interest

The author declares no conflict of interest.

Ethical Approval

Not applicable.

Informed Consent

Not applicable.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Electronic Supplementary Material

Below is the link to the electronic supplementary material.

Supplementary Material 1

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Hassine, K., Zrida, H., Saidi, I. et al. Novel Functionalized Triazole/Carbazole-Based Chitosan: In Vitro, In Vivo and In Silico Evaluation of Anti-diabetic and Anti-obesity Activities. Chemistry Africa 7, 643–659 (2024). https://doi.org/10.1007/s42250-023-00790-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s42250-023-00790-5

Keywords

Navigation