Skip to main content
Log in

Wear and Corrosion Properties for the Effect of Addition Cu to Ti–18Nb Biomaterial

  • Original Article
  • Published:
Chemistry Africa Aims and scope Submit manuscript

Abstract

The current work related to investigate wear and corrosion properties for addition three weight% of copper to Ti–18Nb alloy using powder metallurgy technique including (5, 7 and 9 wt%). The percent of 7% gave the lowest wear rate for base alloy (Ti–18Nb) because of formation a hard Ti2Cu phase, with different properties for the corrosion behavior because of the variation in produced cathodic and anodic areas in tested medium (simulated body fluid) and then increasing the micro-galvanic cells over the alloy’s surface, adding 9% Cu gave polarization resistance equal to (448.46 kΩ cm2) that was higher than resistance of base alloy and alloy with 5 and 7% Cu. Atomic force microscopy was used to analysis the surface topography with measuring the roughness of surface; also 7% of Cu gave the highest surface roughness (20.06 nm) compared with other percents due to the formed hard phase.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

Data Availability

All measurements and data are listed in published article.

References

  1. Yoshimitsu O (2001) A new Ti–15Zr–4Nb–4Ta alloy for medical applications. Curr Opin Solid State Mater Sci 5:45–53

    Article  Google Scholar 

  2. Godley R, Starosvetsky D, Gotman I (2006) Corrosion behavior of a low modulus β-Ti–45%Nb alloy for use in medical implants. J Mater Sci Mater Med 17:63–67

    Article  CAS  PubMed  Google Scholar 

  3. Assis S, Wolynec S, Costa I (2008) The electrochemical behaviour of Ti–13Nb–13Zr alloy in various solutions. Mater Corros 59:739–743

    Article  CAS  Google Scholar 

  4. Danielle Q, Martins W, Osório M, Souza R, Caram A (2008) Effects of Zr content on microstructure and corrosion resistance of Ti–30Nb–Zr casting alloys for biomedical applications. Electrochim Acta 53(6):2809–2817

    Article  Google Scholar 

  5. Cvijović-Alagić I, Cvijović Z, Mitrović S, Panić V, Rakin M (2011) Wear and corrosion behaviour of Ti–13Nb–13Zr and Ti–6Al–4V alloys in simulated physiological solution. Corros Sci 53:796–808

    Article  Google Scholar 

  6. Yong Y, Meng Q, De-sheng C, Xiao-bing X, Xian-long Z (2012) In vitro corrosion resistance and cytotoxicity of novel TiNbTaZr alloy. Trans Nonferr Met Soc China 22:s175–s180

    Article  Google Scholar 

  7. Ana L, Roselino R, Peter H, Luís G, Luís A (2013) Are new TiNbZr alloys potential substitutes of the Ti6Al4V alloy for dental applications: an electrochemical corrosion study. Biomed Mater 8:6. https://doi.org/10.1088/1748-6041/8/6/065005

  8. Jose M, Cora V, Silviu I, Steliana I, Petre O, Paula D, Monica P, Silviu P, Ecaterina V (2014) Microstructural and mechanical properties, surface and electrochemical characterisation of a new Ti–Zr–Nb alloy for implant applications. J Alloys Compd 612:398–410

    Article  Google Scholar 

  9. Weijiu H, Zhenguo W, Chenglong L, Yongmei Y (2015) Wear and electrochemical corrosion behavior of biomedical Ti–25Nb–3Mo–3Zr–2Sn alloy in simulated physiological solutions. J Bio Tribo Corros 1:1

    Article  Google Scholar 

  10. Correa D, Kuroda P, Grandini C, Rocha L, Oliveira F, Alves A, Toptan F (2016) Tribocorrosion behavior of β-type Ti–15Zr–based alloys. Mater Lett 179:118–121

    Article  CAS  Google Scholar 

  11. Mianmian B, Xiaoyan W, Lei Y, Gaowu Q, Erlin Z (2018) Tribocorrosion behavior of Ti–Cu alloy in Hank’s solution for biomedical application. J Bio Tribo Corros 4:1

    Google Scholar 

  12. Ureña J, Tsipas S, Pinto A, Toptan F, Gordo E, Jiménez A (2018) Corrosion and tribocorrosion behaviour of β-type Ti–Nb and Ti–Mo surfaces designed by diffusion treatments for biomedical applications. Corros Sci 140:51–60

    Article  Google Scholar 

  13. Fabiana L, Leonardo M, Maria R, Cesar A, Célia M (2020) A new ternary alloy Ti26Zr24Nb for biomedical application: behavior in corrosion, wear, and tribocorrosion. J Bio Tribo Corros 6:86

    Article  Google Scholar 

  14. Mahundla M, Matizamhuka W, Yamamoto A, Shongwe M, Machaka R (2020) Corrosion behaviour of Ti–34Nb–25Zr alloy fabricated by spark plasma sintering. J Bio Tribo Corros 6:38

    Article  Google Scholar 

  15. Jassim M, Haydar H, Shahad R (2021) Investigation of the effect of indium addition on the mechanical and electrochemical properties of the Ti–15Mo biomedical alloy. J Bio Tribo Corros 7:148

    Article  Google Scholar 

  16. Shivaram M, Shashi B, Jagannath N, Bharat B (2021) Tribocorrosion behaviour of biomedical porous Ti–20Nb–5Ag alloy in simulated body fluid. J Bio Tribo Corros 7:59

    Article  Google Scholar 

  17. Mohamed A, Abdul A, Madhan A, Saravanan S, Nestor A, Ahmad S (2023) Design and processing of near-β Ti–Nb–Ag alloy with low elastic modulus and enhanced corrosion resistance for orthopedic implants. J Mater Res Technol. https://doi.org/10.1016/j.jmrt.2023.03.003

    Article  Google Scholar 

  18. Aydin B, Michael G (2023) Electrochemical and biological characterization of Ti–Nb–Zr–Si alloy for orthopedic applications. Sci Rep. https://doi.org/10.1038/s41598-023-29553-5

    Article  PubMed  PubMed Central  Google Scholar 

  19. Ludovico A, Jithin V, Yohan D, Kevin P, Ana-Maria S, Nicolas C, Annett G, Benoit T, Mariana C (2023) Tribocorrosion behavior of β-type Ti–Nb–Ga alloys in a physiological solution. Tribol Int. https://doi.org/10.1016/j.triboint.2023.108325

    Article  Google Scholar 

  20. Petr V, Jaroslav F, Jan K, Jan D, Vojtech S (2021) Surface pre-treatments of Ti–Nb–Zr–Ta beta titanium alloy: the effect of chemical, electrochemical and ion sputter etching on morphology, residual stress, corrosion stability and the MG-63 cell response. Results Phys 28:104613

    Article  Google Scholar 

  21. Hsin Ch, Yung S, Pei P, Yung P, Keng O (2008) Biomechanical research of Ti–Nb alloys with electrochemical treatment using finite element method. ECS Trans 13:1–11

    Article  Google Scholar 

  22. Kikuchi M, Yukyo M, Takada Y, Kiyosue S, Yoda M, Woldu M, Cai Z, Okuno O, Okabe T (2003) Mechanical properties and microstructures of cast Ti–Cu alloys. Dent Mater 19:174–181

    Article  CAS  PubMed  Google Scholar 

  23. Ilven M, Sinem Y, Enver O (2016) Production and precipitation hardening of beta-Type Ti–35Nb–10Cu alloy foam for implant applications. J Mater Eng Perform 25:1586–1593

    Article  Google Scholar 

  24. Anaee R (2016) Behavior of Ti/HA in saliva at different temperatures as restorative materials. J Bio Tribo Corros 2:5

    Article  Google Scholar 

  25. Imen G, Wafa S, Paula O, Sergio C, Achraf G, Mario D (2022) Optimization and comparison study of adsorption and photosorption processes of mesoporous nano–TiO2 during discoloration of Indigo Carmine dye. Microporous Mesoporous Mater 342:112138

    Article  Google Scholar 

  26. Sassi W, Dhouibi L, Hihn J, Berc P, Rezrazi M, Ammar S (2019) Corrosion protection of Cu electrical cable by W–Ni composite coatings doped with TiO2 nanoparticles: influence of pulse currents. J Mater Eng Perform. https://doi.org/10.1007/s11665-019-04288-5

    Article  Google Scholar 

  27. Wang Y, Zheng Y (2009) Corrosion behaviour and biocompatibility evaluation of low modulus Ti–16Nb shape memory alloy as potential biomaterial. Mater Lett 63:1293–1295

    Article  CAS  Google Scholar 

  28. Mutlu I, Oktay E (2015) Localised corrosion behaviour of biomedical implant materials using electrochemical potentiokinetic reactivation and critical pitting potential methods. Corros Eng Sci Technol 50:72–79

    Article  CAS  Google Scholar 

  29. Mutlu I, Yeniyol S, Oktay E (2016) Characterisation of corrosion properties of Ti–Nb–Cu alloy foam by electrochemical impedance spectroscopy method. Corros Eng Sci Technol 51:110–117

    Article  CAS  Google Scholar 

  30. Naema A, Ahlam M, Anaee R (2009) Effect of chloride ions on the passive layer for three Al- alloys at pH = 9. J Al-Nahrain Univ 12:23–32

    Article  Google Scholar 

  31. Anaee R, Wafaa M, Ban F (2017) Improvement in corrosion behavior of Al–Ti alloy by adding 2 wt% magnesia and 1 wt% silicon carbide. J Bio Tribo Corros 3:38

    Article  Google Scholar 

  32. Noor N, Ali H, Anaee R (2022) Effect of indium coating on corrosion behavior of AZ31 mg alloy by DC sputtering. Mater Today Proc 62:4551–4555

    Article  Google Scholar 

  33. Hiba A, Raad S, Anaee R (2022) Deposition of CaO to protect carbon steel by electrophoretic method. Mater Today Proc 26:4556–4561

    Google Scholar 

  34. Cheng X, Nan W, Yongnan Ch, Binbin H, Qinyang Z, Lei Ch, Yufei T, Binli L, Yongqing Z, Xiaokang Y (2022) Biological corrosion behaviour and antibacterial properties of Ti–Cu alloy with different Ti2Cu morphologies for dental applications. Mater Des 215:110540

    Article  Google Scholar 

  35. Ren L, Ma Z, Li M, Zhang Y, Liu W, Liao Z, Yang K (2014) Antibacterial properties of Ti–6Al–4V–xCu alloys. J Mater Sci Technol 30:699–705

    Article  CAS  Google Scholar 

  36. Daroonparvar M, Khan M, Saadeh Y, Kay C, Kasar A, Kumar P, Esteves L, Misra M, Menezes P, Kalvala P, Bakhsheshi-Rad H, Gupta R (2020) Modification of surface hardness, wear resistance and corrosion resistance of cold spray Al coated AZ31B mg alloy using cold spray double layered Ta/Ti coating in 3.5 wt% NaCl solution. Corros Sci 176:109–1029

    Article  Google Scholar 

  37. Gai X, Bai Y, Li S, Hou W, Hao Y, Zhang X, Yang R, Misra R (2020) In-situ monitoring of the electrochemical behaviour of cellular structured bio medical Ti–6Al–4V alloy fabricated by electron beam melting in simulated physiological fluid. Acta Biomater 106:387–395

    Article  CAS  PubMed  Google Scholar 

  38. Noor N, Ali H, Anaee R (2022) Annealing and coating influence on the mechanical properties, microstructure, and corrosion properties of biodegradable mg alloy (AZ91). J Bio Tribo Corros 8:64

    Article  Google Scholar 

  39. Sato K, Takahashi M, Takada Y (2020) Construction of Ti–Nb–Ti2Cu pseudo-ternary phase diagram. Dent Mater J 39:422–428

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

This work was achieved at Karabuk University and University of Technology—Department of Materials Eng.

Funding

No funding.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Rana Anaee.

Ethics declarations

Conflict of interest

No conflicts for interests.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Demirtaş, H., Riyadh, M. & Anaee, R. Wear and Corrosion Properties for the Effect of Addition Cu to Ti–18Nb Biomaterial. Chemistry Africa 6, 3185–3193 (2023). https://doi.org/10.1007/s42250-023-00690-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s42250-023-00690-8

Keywords

Navigation