Skip to main content
Log in

Green synthesis, Structural and Magnetic Properties of Mg0.5Zn0.5Fe2O4 Ferrite Nanoparticles by the Coprecipitation Method: Averrhoa bilimbi fruit

  • Original Article
  • Published:
Chemistry Africa Aims and scope Submit manuscript

Abstract

The addition of Averrhoa bilimbi (AB) extract to the Mg0.5Zn0.5Fe2O4 nanoparticles has been demonstrated to enhance the magnetic properties of the material, which was synthesized by the Coprecipitation method. XRD reveals that Mg0.5Zn0.5Fe2O4 has an average crystallite size of 8 nm and a lattice constant of 8.0554 Å; whereas the addition of Averrhoa bilimbi juice to Mg0.5Zn0.5Fe2O4 has an average crystallite size of 12 nm and a lattice constant of 8.042 Å. This small difference of 4 nm significantly impacted the spinel nanostructure. The FTIR spectrum of the AB-Mg0.5Zn0.5Fe2O4 nanoparticles has revealed two significant absorption bands; the first absorption band is attributed to the stretching vibration of the tetrahedral Mg–O and Zn–O bonds. The second absorption band is attributed to the stretching vibration of the octahedral Fe–O bonds and confirming the spinel ferrite structure. VSM shows that the coercivity of Mg0.5Zn0.5Fe2O4 soft ferrimagnetic material decreases at 600 °C when Averrhoa Bilimbi is added, while its saturation magnetization increases. Consequently, Averrhoa Bilimbi fruit acts as an excellent capping agent to enhance magnetization. These ferrite nanoparticles have been demonstrated to exhibit antibacterial activity, inhibiting the growth of harmful bacteria such as Staphylococcus aureus, Proteus vulgaris, and Escherichia coli. This is achieved by creating a magnetic field that disrupts the bacterial cell membrane, resulting in cell death. So, this material has very interesting potential applications in the biological field, such as Magnetic Resonance Imaging (MRI), Magnetic Hyperthermia Therapy, Magnetic Drug Targeting, Magnetic Separation of Cells, Magnetic Biosensors, Magnetic Filters, Magnetic Particle Imaging, Magnetic Separation of DNA, Magnetic Separation of Proteins, Magnetic Separation of Enzymes, and Magnetic Separation of Cells.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

Data availability

Data are confidential.

Abbreviations

NPs:

Nanoparticles

AB:

Averrhoa bilimbi

FTIR:

Fourier Transform Infra-red Spectroscopy

XRD:

X-ray diffraction

VSM:

Vibrating sample magnetometer

TV:

Tetrahedral voids

OV:

Octahedral voids

CFSE:

Crystal field stabilization energy

RT:

Room temperature

ROS:

Reactive oxygen species

ABA:

Antibacterial activity

MZF:

Mg0.5Zn0.5Fe2O4

MZFAB:

Mg0.5Zn0.5Fe2O4/Averrhoa Bilimbi

References

  1. Pradhan SK, Bid S, Gateshki M, Petkov V (2005) Microstructure characterization and cation distribution of nanocrystalline magnesium ferrite prepared by ball milling. Mater Chem Phys 93:224–230. https://doi.org/10.1016/j.matchemphys.2005.03.017

    Article  CAS  Google Scholar 

  2. Krithiga R, Chandrasekaran G (2009) Synthesis, strucutral and optical properties of vanadium doped zinc oxide nanograins. J Cryst Growth 311:4610–4614. https://doi.org/10.1016/j.jcrysgro.2009.08.033

    Article  CAS  Google Scholar 

  3. Elilarassi R, Chandrasekaran G (2010) Structural, optical and magnetic properties of nanoparticles of ZnO:Ni—DMS prepared by sol–gel method. Mater Chem Phys 123:450–455. https://doi.org/10.1016/j.matchemphys.2010.04.039

    Article  CAS  Google Scholar 

  4. Rashad M (2007) Magnetic properties of nanocrystalline magnesium ferrite by co-precipitation assisted with ultrasound irradiation. J Mater Sci 42:5248–5255. https://doi.org/10.1007/s10853-006-0389-9

    Article  CAS  Google Scholar 

  5. Elilarassi R, Chandrasekaran G (2010) Structural, optical and magnetic characterization of Cu-doped ZnO nanoparticles synthesized using solid state reaction method. J Mater Sci: Mater Electron 21:1168–1173. https://doi.org/10.1007/s10854-009-0041-y

    Article  CAS  Google Scholar 

  6. Pradeep A, Chandrasekaran G (2006) FTIR study of Ni, Cu and Zn substituted nano-particles of MgFe2O4. Mater Lett 60:371–374. https://doi.org/10.1016/j.matlet.2005.08.053

    Article  CAS  Google Scholar 

  7. Yue Z, Li L, Zhou J, Zhang H, Gui Z (1999) Preparation and characterization of NiCuZn ferrite nanocrystalline powders by auto-combustion of nitrate–citrate gels. Mater Sci Eng B 64:68–72. https://doi.org/10.1016/S0921-5107(99)00152-X

    Article  Google Scholar 

  8. Sagayaraj R, Aravazhi S, Chandrasekaran G (2021) Microstructure and magnetic properties of Cu0.5Co0.3Mo0.2Fe2O4 ferrite nanoparticles synthesized by Coprecipitation method. Appl Phys A 127:502. https://doi.org/10.1007/s00339-021-04653-z

    Article  CAS  Google Scholar 

  9. Bohra M, Alman V, Arras R (2021) Nanostructured ZnFe2O4: An exotic energy material. Nanomaterials 11:1286. https://doi.org/10.3390/nano11051286

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Bahadur D (1992) Current trends in applications of magnetic ceramic materials. Bull Mater Sci 15:431–439. https://doi.org/10.1007/BF02745292

    Article  CAS  Google Scholar 

  11. Pradeep A, Priyadharsini P, Chandrasekaran G (2011) Structural, magnetic and electrical properties of nanocrystalline zinc ferrite. J Alloy Compd 509(9):3917–3923. https://doi.org/10.1016/j.jallcom.2010.12.168

    Article  CAS  Google Scholar 

  12. Willey RJ, Noirclerc P, Busca G (1993) Preparation and characterization of magnesium chromite and magnesium ferrite aerogels. Chem Eng Commun 123:1–16. https://doi.org/10.1080/00986449308936161

    Article  CAS  Google Scholar 

  13. de Haart LGJ, Blasse G (1985) Photoelectrochemical properties of ferrites with the spinel structure. J Electrochem Soc 132:2933. https://doi.org/10.1149/1.2113696

    Article  Google Scholar 

  14. Huang Y, Tang Y, Wang J, Chen Q (2006) Synthesis of MgFe2O4 nanocrystallites under mild conditions. Mater Chem Phys 97:394–397. https://doi.org/10.1016/j.matchemphys.2005.08.035

    Article  CAS  Google Scholar 

  15. Priyadharsini P, Pradeep A, Sambasiva Rao P, Chandrasekaran G (2009) Structural, spectroscopic and magnetic study of nanocrystalline Ni–Zn ferrites. Mater Chem Phys 116(1):207–213. https://doi.org/10.1016/j.matchemphys.2009.03.011

    Article  CAS  Google Scholar 

  16. Sivakumar M, Takami T, Ikuta H, Towata A, Yasui K, Tuziuti T, Kozuka T, Bhattacharya D, Iida Y (2006) Fabrication of zinc ferrite nanocrystals by sonochemical emulsifcation and evaporation: observation of magnetization and its relaxation at low temperature. J Phys Chem B 110:15234–15243. https://doi.org/10.1021/jp055024c

    Article  CAS  PubMed  Google Scholar 

  17. Xuan SH, Wang F, Wang Y-XJ, Yu JC, Leung KC-F (2010) Facile synthesis of size-controllable monodispersed ferrite nanospheres. J Mater Chem 20:5086–5094. https://doi.org/10.1039/c0jm00159g

    Article  CAS  Google Scholar 

  18. Cornell RM, Schwertmann U (2003) The iron oxides: structure, properties, reactions, occurences and uses. Wiley-Blackwell, Hoboken. https://doi.org/10.1002/3527602097

    Book  Google Scholar 

  19. Sagayaraj R, Aravazhi S, Praveen P et al (2018) Structural, morphological and magnetic characters of PVP coated ZnFe2O4 nanoparticles. J Mater Sci: Mater Electron 29:2151–2158. https://doi.org/10.1007/s10854-017-8127-4

    Article  CAS  Google Scholar 

  20. Revathi V, Karthik K (2018) Microwave-assisted CdO-ZnO-MgO nanocomposites and its photocatalytic and antibacterial studies. J Mater Sci: Mater Electron 29:18519–18530. https://doi.org/10.1007/s10854-018-9968-1

    Article  CAS  Google Scholar 

  21. Soberón JR, Sgariglia MA, Sampietro DA, Quiroga EN, Vattuone MA (2010) Free radical scavenging activities and inhibition of inflammatory enzymes of phenolics isolated from Tripodanthus acutifolius. J Ethnopharmacol 130(2):329–333. https://doi.org/10.1016/j.jep.2010.05.015

    Article  CAS  PubMed  Google Scholar 

  22. Halliwell B (1996) Oxidative stress, nutrition and health. Experimental strategies for optimization of nutritional antioxidant intake in humans. Free Radic Res 25:57–74. https://doi.org/10.3109/10715769609145656

    Article  CAS  PubMed  Google Scholar 

  23. Naik MM, Naik HSB, Nagaraju G, Vinuth M, Vinu K, Rashmi SK (2018) Effect of aluminium doping on structural, optical, photocatalytic and antibacterial activity on nickel ferrite nanoparticles by sol–gel auto-combustion method. J Mater Sci: Mater Electron 29:20395–20414. https://doi.org/10.1007/s10854-018-0174-y

    Article  CAS  Google Scholar 

  24. Karthik K, Dhanuskodi S, Gobinath C, Prabukumar S, Sivaramakrishnan S (2018) Multifunctional properties of microwave assisted CdO–NiO–ZnO mixed metal oxide nanocomposite: enhanced photocatalytic and antibacterial activities. J Mater Sci: Mater Electron 29:5459–5471. https://doi.org/10.1007/s10854-017-8513-y

    Article  CAS  Google Scholar 

  25. Saha SK, Lee SB, Won J, Choi HY, Kim K, Yang G-M, Dayem AA, Cho S (2017) Correlation between oxidative stress, nutrition, and cancer initiation. Int J Mol Sci 18(7):1544. https://doi.org/10.3390/ijms18071544

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Mannan A, Rahman MM, Habib MR, Hasan MA, Al Amin M, Saha A (2014) Comparative assessment on in vitro antioxidant activities of ethanol extracts of Averrhoa bilimbi, Gymnema sylvestre and Capsicum frutescens. Pharmacogn Res 6(1):36. https://doi.org/10.4103/0974-8490.122915

    Article  Google Scholar 

  27. Nadeem K, Rahman S, Mumtaz M (2015) Effect of annealing on properties of Mg doped Zn-ferrite nanoparticles. Progr Nat Sci Mater Int 25(2):111–116. https://doi.org/10.1016/j.pnsc.2015.02.001

    Article  CAS  Google Scholar 

  28. Sebastian RM, Xavier S, Mohammed EM (2015) Dielectric behavior and AC conductivity of Mg2+ doped zinc ferrite nanoparticles synthesized by sol-gel technique. Ferroelectrics 481(1):48–56. https://doi.org/10.1080/00150193.2015.1049491

    Article  CAS  Google Scholar 

  29. John SP, Mathew J (2018) Determination of ferromagnetic, superparamagnetic and paramagnetic components of magnetization and the effect of magnesium substitution on structural, magnetic and hyperfine properties of zinc ferrite nanoparticles. J Magn Magn Mater 475:160–170. https://doi.org/10.1016/j.jmmm.2018.11.030

    Article  CAS  Google Scholar 

  30. Tsay C-Y, Chiu Y-C, Tseng Y-K (2019) Investigation on structural, magnetic, and FMR properties for hydrothermally-synthesized magnesium-zinc ferrite nanoparticles. Physica B 570:29–34. https://doi.org/10.1016/j.physb.2019.05.037

    Article  CAS  Google Scholar 

  31. Tatarchuk T, Myslin M, Mironyuk I, Bououdina M, Pędziwiatr A, Gargula R, Kurzydło P (2019) Synthesis, morphology, crystallite size and adsorption properties of nanostructured Mg–Zn ferrites with enhanced porous structure. J Alloys Compd. https://doi.org/10.1016/j.jallcom.2019.152945

    Article  Google Scholar 

  32. Soumya SL, Nair BR (2016) Assessment of heavy metals in Averrhoa bilimbi and A. carambolafruit samples at two developmental stages. Environ Monit Assess 188(5):291. https://doi.org/10.1007/s10661-016-5298-z

    Article  CAS  PubMed  Google Scholar 

  33. Petrova E, Kotsikau D, Pankov V, Fahmi A (2018) Influence of synthesis methods on structural and magnetic characteristics of Mg–Zn-ferrite nanopowders. J Magn Magn Mater. https://doi.org/10.1016/j.jmmm.2018.09.128

    Article  Google Scholar 

  34. El-Sayed HM, Ali IA, Azzam A, Sattar AA (2017) Influence of the magnetic dead layer thickness of Mg-Zn ferrites nanoparticle on their magnetic properties. J Magn Magn Mater 424:226–232. https://doi.org/10.1016/j.jmmm.2016.10.049

    Article  CAS  Google Scholar 

  35. Ashok A, Ratnaji T, John Kennedy L, Judith Vijaya J, GnanaPragash R (2020) Magnetically recoverable Mg substituted zinc ferrite nanocatalyst for biodiesel production: process optimization, kinetic and thermodynamic analysis. Renewable Energy. https://doi.org/10.1016/j.renene.2020.08.081

    Article  Google Scholar 

  36. Mezher SJ, Kadhim KJ, Abdulmunem OM, Mejbel MK (2019) Microwave properties of Mg–Zn ferrite deposited by the thermal evaporation technique. Vacuum. https://doi.org/10.1016/j.vacuum.2019.109114

    Article  Google Scholar 

  37. Ghazi N, MahmoudiChenari H, Ghodsi FE (2018) Rietveld refinement, morphology analysis, optical and magnetic properties of magnesium-zinc ferrite nanofibers. J Magn Magn Mater 468:132–140. https://doi.org/10.1016/j.jmmm.2018.07.084

    Article  CAS  Google Scholar 

  38. Liu L, Han A, Ye M, Feng W (2015) The evaluation of thermal performance of cool coatings colored with high near-infrared reflective nano-brown inorganic pigments: Magnesium doped ZnFe2O4 compounds. Sol Energy 113:48–56. https://doi.org/10.1016/j.solener.2014.12.034

    Article  CAS  Google Scholar 

  39. Tatarchuk T, Naushad M, Tomaszewska J, Kosobucki P, Myslin M, Vasylyeva H, Ścigalski P (2020) Adsorption of Sr(II) ions and salicylic acid onto magnetic magnesium-zinc ferrites: isotherms and kinetic studies. Environ Sci Pollut Res 27(21):26681–26693. https://doi.org/10.1007/s11356-020-09043-1

    Article  CAS  Google Scholar 

  40. Patil SN, Pawar AM, Tilekar SK, Ladgaonkar BP (2016) Investigation of magnesium substituted nano particle zinc ferrites for relative humidity sensors. Sens Actuators, A 244:35–43. https://doi.org/10.1016/j.sna.2016.04.019

    Article  CAS  Google Scholar 

  41. Sundararajan M, Kennedy LJ, Aruldoss U, Pasha SK, Vijaya JJ, Dunn S (2015) Microwave combustion synthesis of zinc substituted nanocrystalline spinel cobalt ferrite: structural and magnetic studies. Mater Sci Semicond Process. https://doi.org/10.1016/j.mssp.2015.06.002

    Article  Google Scholar 

  42. Torkian S, Ghasemi A, Razavi RS (2016) Structural and magnetic consequences of Mn0.6Zn0.4Fe2−x Gd x O4 ferrite. J Supercond Nov Magn 29:1617–1625. https://doi.org/10.1007/s10948-016-3458-6

    Article  CAS  Google Scholar 

  43. Pradeep A, Priyadharsini P, Chandrasekaran G (2008) Sol–gel route of synthesis of nanoparticles of MgFe2O4 and XRD, FTIR and VSM study. J Magn Magn Mater 320(21):2774–2779. https://doi.org/10.1016/j.jmmm.2008.06.012

    Article  CAS  Google Scholar 

  44. Rabanal ME, Varez A, Levenfeld B, Torralba JM (2003) Magnetic properties of Mg-ferrite after milling process. J Mater Process Technol 143:470–474. https://doi.org/10.1016/S0924-0136(03)00464-3

    Article  CAS  Google Scholar 

  45. Dhir G, Uniyal P, Verma N (2014) K, Effect of particle size on multiferroism of barium-doped bismuth ferrite nanoparticles. Mater Sci Semicond Process 27:611–618. https://doi.org/10.1016/j.mssp.2014.07.041

    Article  CAS  Google Scholar 

  46. Karthik K, Dhanuskodi S, Gobinath C, Prabukumar S, Sivaramakrishnan S (2018) Multifunctional properties of CdO nanostructures Synthesised through microwave assisted hydrothermal method. Mater Res Innov. https://doi.org/10.1080/14328917.2018.1475443

    Article  Google Scholar 

  47. Karthik K, Dhanuskodi S, Kumar SP, Gobinath C, Sivaramakrishnan S (2017) Microwave assisted green synthesis of MgO nanorods and their antibacterial and anti-breast cancer activities. Mater Lett 206:217–220. https://doi.org/10.1016/j.matlet.2017.07.004

    Article  CAS  Google Scholar 

  48. Prakash RS, Jayarajan D, Aravazhi S, Chandrasekaran G, Nithya R (2022) Influence of Ce3+ substitution on magnetic properties and antibacterial activity of manganese ferrite nanoparticles synthesized by coprecipitation method. Asian J Chem 34:2288–2296. https://doi.org/10.14233/ajchem.2022.23840

    Article  CAS  Google Scholar 

  49. Prakash A, Sagayaraj R, Jayarajan D et al (2022) Influence of Ce3+ (rare earth element) on the structural, morphological, impedance, binding energy and ferrimagnetic properties of spinel ZnFe2O4 nanoparticles fabricated by the coprecipitation method: antibacterial activity. Chem Afr. https://doi.org/10.1007/s42250-022-00570-7

    Article  Google Scholar 

  50. Sagayaraj R, Sebastian S (2023) Improved optical and magnetic properties of polycrystalline Z-type hexaferrites by co-precipitation method. Appl Phys A 129:98. https://doi.org/10.1007/s00339-022-06370-7

    Article  CAS  Google Scholar 

Download references

Acknowledgements

The St. Joseph's College of Arts and Science (Autonomous) provided the research lab and library facilities, which the authors gratefully acknowledge.

Funding

The authors did not receive any funding from any of the agencies.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to R. Sagayaraj.

Ethics declarations

Conflict of interest

The authors affirm that they have no known financial or interpersonal conflicts that would have perceived to have an impact on the research presented in this study.

Ethical approval

No one who wrote this article used either human or animal subjects in their research.

Informed consent

None.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (DOCX 383 KB)

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Jayarajan, D., Sagayaraj, R., Silvan, S. et al. Green synthesis, Structural and Magnetic Properties of Mg0.5Zn0.5Fe2O4 Ferrite Nanoparticles by the Coprecipitation Method: Averrhoa bilimbi fruit. Chemistry Africa 6, 1875–1885 (2023). https://doi.org/10.1007/s42250-023-00615-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s42250-023-00615-5

Keywords

Navigation