Skip to main content

Advertisement

Log in

High Content Microfibrillated Cellulose Suspensions Produced from Deep Eutectic Solvents Treated Fibres Using Twin-Screw Extruder

  • Original Article
  • Published:
Chemistry Africa Aims and scope Submit manuscript

Abstract

In this study, cellulosic fibres (bleached Kraft pulp of Eucalyptus), pre-treated with Deep Eutectic Solvents (DES), have been microfibrillated using a twin-screw extruder (TSE). DES pre-treatment was performed for 4 h at 100 °C with three eutectic systems: betaine hydrochloride–urea, choline chloride–urea and choline chloride–monoethanolamine. DES-treated fibres were first refined (PFI-mill) and then passed four times through the TSE whose advantage is to obtain microfibrillated cellulose (MFC) at high solid content (20%). Several characterisations were carried out before and after TSE to evaluate the effects of these treatments on both the fibres and MFC. The Young’s modulus of the obtained nanopapers was, for instance, around 6 GPa. Extruded-MFC were compared to those produced by ultrafine grinding. The comparison showed that the ultrafine grinding allows obtaining MFC of better quality. This result can be attributed to the slipping phenomenon occurred during extrusion.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

Abbreviations

BHCl:

Betaine hydrochloride

CC:

Choline chloride

CrI:

Crystallinity index

DP:

Degree of polymerisation

EF:

Eucalyptus fibres

M:

Monoethanolamine

MFC:

Microfibrillated cellulose

QI*:

Simplified quality index

TSE:

Twin-screw extruder

U:

Urea

References

  1. Siró I, Plackett D (2010) Microfibrillated cellulose and new nanocomposite materials: a review. Cellulose 17:459–494. https://doi.org/10.1007/s10570-010-9405-y

    Article  CAS  Google Scholar 

  2. Cousins SK, Brown RM (1995) Cellulose I microfibril assembly: computational molecular mechanics energy analysis favours bonding by van der Waals forces as the initial step in crystallization. Polymer 36:3885–3888. https://doi.org/10.1016/0032-3861(95)99782-P

    Article  CAS  Google Scholar 

  3. Spence KL, Venditti RA, Rojas OJ et al (2011) A comparative study of energy consumption and physical properties of microfibrillated cellulose produced by different processing methods. Cellulose 18:1097–1111. https://doi.org/10.1007/s10570-011-9533-z

    Article  CAS  Google Scholar 

  4. Abdul Khalil HPS, Davoudpour Y, Islam MdN et al (2014) Production and modification of nanofibrillated cellulose using various mechanical processes: a review. Carbohyd Polym 99:649–665. https://doi.org/10.1016/j.carbpol.2013.08.069

    Article  CAS  Google Scholar 

  5. Boufi S, Gandini A (2015) Triticale crop residue: a cheap material for high performance nanofibrillated cellulose. RSC Adv 5:3141–3151. https://doi.org/10.1039/C4RA12918K

    Article  CAS  Google Scholar 

  6. Nechyporchuk O, Belgacem MN, Bras J (2016) Production of cellulose nanofibrils: a review of recent advances. Ind Crops Prod 93:2–25. https://doi.org/10.1016/j.indcrop.2016.02.016

    Article  CAS  Google Scholar 

  7. Besbes I, Alila S, Boufi S (2011) Nanofibrillated cellulose from TEMPO-oxidized eucalyptus fibres: effect of the carboxyl content. Carbohyd Polym 84:975–983. https://doi.org/10.1016/j.carbpol.2010.12.052

    Article  CAS  Google Scholar 

  8. Isogai A, Saito T, Fukuzumi H (2011) TEMPO-oxidized cellulose nanofibers. Nanoscale 3:71–85. https://doi.org/10.1039/C0NR00583E

    Article  CAS  PubMed  Google Scholar 

  9. Saito T, Kimura S, Nishiyama Y, Isogai A (2007) Cellulose nanofibers prepared by TEMPO-mediated oxidation of native cellulose. Biomacromol 8:2485–2491. https://doi.org/10.1021/bm0703970

    Article  CAS  Google Scholar 

  10. Saito T, Nishiyama Y, Putaux J-L et al (2006) Homogeneous suspensions of individualized microfibrils from TEMPO-catalyzed oxidation of native cellulose. Biomacromol 7:1687–1691. https://doi.org/10.1021/bm060154s

    Article  CAS  Google Scholar 

  11. Chaker A, Boufi S (2015) Cationic nanofibrillar cellulose with high antibacterial properties. Carbohyd Polym 131:224–232. https://doi.org/10.1016/j.carbpol.2015.06.003

    Article  CAS  Google Scholar 

  12. Liimatainen H, Suopajärvi T, Sirviö J et al (2014) Fabrication of cationic cellulosic nanofibrils through aqueous quaternization pretreatment and their use in colloid aggregation. Carbohyd Polym 103:187–192. https://doi.org/10.1016/j.carbpol.2013.12.042

    Article  CAS  Google Scholar 

  13. Henriksson M, Henriksson G, Berglund LA, Lindström T (2007) An environmentally friendly method for enzyme-assisted preparation of microfibrillated cellulose (MFC) nanofibers. Eur Polymer J 43:3434–3441. https://doi.org/10.1016/j.eurpolymj.2007.05.038

    Article  CAS  Google Scholar 

  14. Pääkkö M, Ankerfors M, Kosonen H et al (2007) Enzymatic hydrolysis combined with mechanical shearing and high-pressure homogenization for nanoscale cellulose fibrils and strong gels. Biomacromol 8:1934–1941. https://doi.org/10.1021/bm061215p

    Article  CAS  Google Scholar 

  15. Sirviö J, Hyypiö K, Asaadi S et al (2020) High-strength cellulose nanofibers produced via swelling pretreatment based on a choline chloride–imidazole deep eutectic solvent. Green Chem 22:1763–1775. https://doi.org/10.1039/C9GC04119B

    Article  Google Scholar 

  16. Hong S, Yuan Y, Li P et al (2020) Enhancement of the nanofibrillation of birch cellulose pretreated with natural deep eutectic solvent. Ind Crops Prod 154:112677. https://doi.org/10.1016/j.indcrop.2020.112677

    Article  CAS  Google Scholar 

  17. Liu S, Zhang Q, Gou S et al (2021) Esterification of cellulose using carboxylic acid-based deep eutectic solvents to produce high-yield cellulose nanofibers. Carbohyd Polym 251:117018. https://doi.org/10.1016/j.carbpol.2020.117018

    Article  CAS  Google Scholar 

  18. Li W, Xue Y, He M et al (2021) Facile preparation and characteristic analysis of sulfated cellulose nanofibril via the pretreatment of sulfamic acid-glycerol based deep eutectic solvents. Nanomaterials 11:2778. https://doi.org/10.3390/nano11112778

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Kwon G-J, Bandi R, Yang B-S et al (2021) Choline chloride based deep eutectic solvents for the lignocellulose nanofibril production from Mongolian oak (Quercus mongolica). Cellulose 28:9169–9185. https://doi.org/10.1007/s10570-021-04102-3

    Article  CAS  Google Scholar 

  20. Yu W, Wang C, Yi Y et al (2021) Direct pretreatment of raw ramie fibers using an acidic deep eutectic solvent to produce cellulose nanofibrils in high purity. Cellulose 28:175–188. https://doi.org/10.1007/s10570-020-03538-3

    Article  CAS  Google Scholar 

  21. Rol F, Belgacem MN, Gandini A, Bras J (2019) Recent advances in surface-modified cellulose nanofibrils. Prog Polym Sci 88:241–264. https://doi.org/10.1016/j.progpolymsci.2018.09.002

    Article  CAS  Google Scholar 

  22. Hietala M, Rollo P, Kekäläinen K, Oksman K (2014) Extrusion processing of green biocomposites: compounding, fibrillation efficiency, and fiber dispersion. J Appl Polym Sci. https://doi.org/10.1002/app.39981

    Article  Google Scholar 

  23. Ho TTT, Abe K, Zimmermann T, Yano H (2015) Nanofibrillation of pulp fibers by twin-screw extrusion. Cellulose 22:421–433. https://doi.org/10.1007/s10570-014-0518-6

    Article  CAS  Google Scholar 

  24. Suzuki K, Okumura H, Kitagawa K et al (2013) Development of continuous process enabling nanofibrillation of pulp and melt compounding. Cellulose 20:201–210. https://doi.org/10.1007/s10570-012-9843-9

    Article  CAS  Google Scholar 

  25. Navarchian AH, Jalalian M, Pirooz M (2015) Characterization of starch/poly(vinyl alcohol)/clay nanocomposite films prepared in twin-screw extruder for food packaging application. J Plast Film Sheeting 31:309–336. https://doi.org/10.1177/8756087914568904

    Article  CAS  Google Scholar 

  26. Dhaval M, Sharma S, Dudhat K, Chavda J (2020) Twin-screw extruder in pharmaceutical industry: history, working principle, applications, and marketed products: an in-depth review. J Pharm Innov. https://doi.org/10.1007/s12247-020-09520-7

    Article  Google Scholar 

  27. Uitterhaegen E, Evon P (2017) Twin-screw extrusion technology for vegetable oil extraction: a review. J Food Eng 212:190–200. https://doi.org/10.1016/j.jfoodeng.2017.06.006

    Article  CAS  Google Scholar 

  28. Heiskanen I, Harlin A, Backfolk K, Laitinen R (2011) Process for Production of Microfibrillated Cellulose in an Extruder and Microfibrillated Cellulose Produced According to the Process. WO2011051882 (A1), May 5, 2011

  29. Rol F, Karakashov B, Nechyporchuk O et al (2017) Pilot-scale twin screw extrusion and chemical pretreatment as an energy-efficient method for the production of nanofibrillated cellulose at high solid content. ACS Sustainable Chem Eng 5:6524–6531. https://doi.org/10.1021/acssuschemeng.7b00630

    Article  CAS  Google Scholar 

  30. Rol F, Banvillet G, Meyer V et al (2018) Combination of twin-screw extruder and homogenizer to produce high-quality nanofibrillated cellulose with low energy consumption. J Mater Sci 53:12604–12615. https://doi.org/10.1007/s10853-018-2414-1

    Article  CAS  Google Scholar 

  31. Rol F, Saini S, Meyer V et al (2019) Production of cationic nanofibrils of cellulose by twin-screw extrusion. Ind Crops Prod 137:81–88. https://doi.org/10.1016/j.indcrop.2019.04.031

    Article  CAS  Google Scholar 

  32. Rol F, Vergnes B, El Kissi N, Bras J (2020) Nanocellulose production by twin-screw extrusion: simulation of the screw profile to increase the productivity. ACS Sustain Chem Eng 8:50–59. https://doi.org/10.1021/acssuschemeng.9b01913

    Article  CAS  Google Scholar 

  33. Abbott AP, Capper G, Davies DL et al (2003) Novel solvent properties of choline chloride/urea mixtures. Chem Commun 0:70–71. https://doi.org/10.1039/B210714G

    Article  CAS  Google Scholar 

  34. Suopajärvi T, Sirviö JA, Liimatainen H (2017) Nanofibrillation of deep eutectic solvent-treated paper and board cellulose pulps. Carbohyd Polym 169:167–175. https://doi.org/10.1016/j.carbpol.2017.04.009

    Article  CAS  Google Scholar 

  35. Mnasri A, Dhaouadi H, Khiari R et al (2022) Effects of Deep Eutectic Solvents on cellulosic fibres and paper properties: Green “chemical” refining. Carbohyd Polym. https://doi.org/10.1016/j.carbpol.2022.119606

    Article  Google Scholar 

  36. Naderi A, Lindström T, Sundström J (2015) Repeated homogenization, a route for decreasing the energy consumption in the manufacturing process of carboxymethylated nanofibrillated cellulose? Cellulose 22:1147–1157. https://doi.org/10.1007/s10570-015-0576-4

    Article  CAS  Google Scholar 

  37. Mnasri A, Khiari R, Dhaouadi H, et al (2022) Acidic and alkaline deep eutectic solvents to produce high aspect ratio microfibrillated cellulose. Submitted to be published in Bioresource Technology

  38. Desmaisons J, Boutonnet E, Rueff M et al (2017) A new quality index for benchmarking of different cellulose nanofibrils. Carbohyd Polym 174:318–329. https://doi.org/10.1016/j.carbpol.2017.06.032

    Article  CAS  Google Scholar 

  39. Serpa Guerra AM, Gómez Hoyos C, Velásquez-Cock JA et al (2020) Effect of ultra-fine friction grinding on the physical and chemical properties of curcuma (Curcuma longa L.) suspensions. J Food Sci 85:132–142. https://doi.org/10.1111/1750-3841.14973

    Article  CAS  PubMed  Google Scholar 

  40. Baati R, Magnin A, Boufi S (2017) High solid content production of nanofibrillar cellulose via continuous extrusion. ACS Sustain Chem Eng 5:2350–2359. https://doi.org/10.1021/acssuschemeng.6b02673

    Article  CAS  Google Scholar 

  41. Rol F (2019) Prétraitements de la cellulose pour une nanofibrillation par extrusion. Thesis, Université Grenoble Alpes (ComUE)

  42. Mohamed IO, Ofoli RY, Morgan RG (1990) Modeling the average shear rate in a co-rotating twin screw extruder. J Food Process Eng 12:227–246. https://doi.org/10.1111/j.1745-4530.1990.tb00052.x

    Article  Google Scholar 

  43. Suparno M, Dolan KD, Ng PKW, Steffe JF (2011) Average shear rate in a twin-screw extruder as a function of degree of fill, flow behavior index, screw speed and screw configuration. J Food Process Eng 34:961–982. https://doi.org/10.1111/j.1745-4530.2009.00381.x

    Article  Google Scholar 

Download references

Acknowledgements

This work was financially supported by the “PHC Utique” program of the French Ministry of Foreign Affairs and Ministry of higher education, research and innovation and the Tunisian Ministry of higher education and scientific research in the CMCU project number TN 18G1132//FR 39316VF. LGP2 is part of the LabEx Tec 21 (Investissements d’Avenir—grant agreement n°ANR-11-LABX-0030) and of PolyNat Carnot Institute (Investissements d’Avenir—grant agreement n° ANR-16-CARN-0025-01). This research was made possible thanks to the facilities of the TekLiCell platform funded by the Région Rhône-Alpes (ERDF: European regional development fund). The authors would like to thank thank Thierry Encinas from CMTC—Grenoble, France for the XRD analysis, Bertine Khlifi from LGP2 for SEM observations and Maxime Terrien from LGP2 for the help in using the twin-screw extruder.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ramzi Khiari.

Ethics declarations

Conflict of interest

The authors declare no conflict of interest. Ramzi Khiari is Guest Editor of the Special Issue "Lignocellulose at multiscale: preparation characterization".

Ethics approval and consent to participate

Not applicable.

Consent for publication

Not applicable.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Mnasri, A., Khiari, R., Dhaouadi, H. et al. High Content Microfibrillated Cellulose Suspensions Produced from Deep Eutectic Solvents Treated Fibres Using Twin-Screw Extruder. Chemistry Africa 6, 2297–2307 (2023). https://doi.org/10.1007/s42250-022-00511-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s42250-022-00511-4

Keywords

Navigation