Skip to main content
Log in

Flavonoids from Stem Bark of Artocarpus altilis (Parkinson ex F.A.Zorn) Fosberg

  • Original Article
  • Published:
Chemistry Africa Aims and scope Submit manuscript

Abstract

Purpose

The growing antimicrobial resistance to available chemotherapies has been generating concerns globally. Tropical rain forest of Nigeria is rich in medicinal plants used by traditional healers to combat various human pathologies. This study investigated the stem bark of Artocarpus altilis for antibacterial compounds.

Methods

Hydroalcoholic stem bark extract of A. altilis (Parkinson ex F.A.Zorn) Fosberg was obtained by maceration and subsequently partitioned. The EtOAc fraction was repeatedly fractionated and purified using column chromatography, size exclusion chromatography and recrystallization methods to afford compounds 15, which were identified by extensive analysis of 1H, 13C, DEPT, APT, COSY, HSQC, HMBC, and HRESIMS spectra. Broth microdilution assay was used to determine the antibacterial activity of 15.

Results

Four flavonoids: An isomer of Artonine E (1) and Artonine E (4), 9-(3,3-dimethylpyranyl)-5,6-dihydro-2,3,4,8 tetrahydroxy-11-(3-methylbut-2-enyl)-5-(1-propen-2-yl) benzo [c] xanthen-7-one (2), 5-hydroxy-8,8-dimethyl-3-(3-methylbut-2-enyl)-2-(3,4,5-trihydroxyphenyl) pyrano [6,7-c]-4H-chromen-4-one (3) and one unprenylated flavonoid: 3,5,7-trihydroxyl-2-(2,4-dihydroxylphenyl)-4H-chromene-4-one (5) are hereby reported. The minimum inhibitory concentration of compounds ranged from 3.91–62.5 µg/mL.

Conclusion

This study provides insights into the antibacterial chemical components of A. altilis stem bark, thereby contributing to the chemistry of the plant. It also justifies the ethnomedicinal use of the plant in the treatment microbial infection in wounds in Nigeria.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

Abbreviations

DCM:

Dichloromethane

EtOAc:

Ethyl acetate

TMPs:

Traditional medical practitioners

r.t.:

Room temperature

NCIB:

National collection of industrial bacteria

DBE:

Double bond equivalence

HRESIMS:

High resolution electrospray ionisation mass spectrometry

MHA:

Mueller Hinton agar

NA:

Nutrient Agar

NB:

Nutrient broth

References

  1. Ying Lu, Ragone D, Murch SJ (2015) Breadfruit (Artocarpus altilis): a source of some high-quality protein for food security and novel food products. Amino Acids 47(4):847–856. https://doi.org/10.1007/s00726-015-1914-4

    Article  CAS  Google Scholar 

  2. Jagtap UB, Bapat VA (2010) Artocarpus: a review of its traditional uses, phytochemistry and pharmacology. J Ethnopharmacol 129(2):142–166. https://doi.org/10.1016/j.jep.2010.03.031

    Article  CAS  Google Scholar 

  3. Suhartati T, Achmad SA, Aimi N, Hakim HE, Kitajima M, Takayama H, Takeya K (2001) Artoindonesianin L, a new prenylated flavone with cytotoxic activity from Artocarpus rotunda. Fitoterapia 72(8):912–918. https://doi.org/10.1016/s0367-326x(01)00343-4

    Article  CAS  Google Scholar 

  4. Wang Y, Deng T, Lin L, Pan Y, Zheng X (2006) Bioassay-guided isolation of antiatherosclerotic phytochemicals from Artocarpus altilis. Phytother Res 20(12):1052–1055. https://doi.org/10.1002/ptr.1990

    Article  CAS  Google Scholar 

  5. Nguyen MT, Nguyen NT, Nguyen KD, Dau TTH, Nuguyen HX, Dang PH, Le MT, Phan NTH, Tran AH, Nguyen DB, Ueda J, Awale S (2014) Geranyl dihydrochalcones from Artocarpus altilis and their antiausteric activity. Planta Med 80(2–3):193–200. https://doi.org/10.1055/s-0033-1360181

    Article  CAS  Google Scholar 

  6. Luangpraditkun K, Tissot M, Joompang A, Charoensit P, Grandmottet F, Viyoch J, Viennet C (2021) Prevention by the natural artocarpin of morphological and biochemical alterations on UVB-induced HaCaT cells. Oxid Med Cell Longev. https://doi.org/10.1155/2021/5067957

    Article  Google Scholar 

  7. Tiraravesit N, Humbert P, Robin S, Tissot M, Viennet C, Viyoch J (2021) Artocarpin-enriched (Artocarpus altilis) heartwood extract provides protection against UVB-induced mechanical damage in dermal fibroblasts. Photochem Photobiol 93(5):1232–1239. https://doi.org/10.1111/php.12788

    Article  CAS  Google Scholar 

  8. Hakim EH, Achmad SA, Juliawaty LD, Makmur L, Syah YM, Aimi N, Kitajima M, Takayama H, Ghisalbathi EL (2006) Prenylated flavonoids and related compounds of the Indonesian Artocarpus (Moraceae). J Nat Med 60(3):161–184. https://doi.org/10.1007/s11418-006-0048-0

    Article  CAS  Google Scholar 

  9. Shamaun SS, Rahmani M, Hashim NM, Ismail Hazar BM, Sukari AM, Cheng Lian GE, Go R (2010) Prenylated flavones from Artocarpus altilis. J Nat Med 64(4):478–481. https://doi.org/10.1007/s11418-010-0427-4

    Article  CAS  Google Scholar 

  10. Nwokocha CR, Owu DU, McLaren M, Murray J, Delgoda R, Thaxter K, McCalla G, Young L (2012) Possible mechanisms of action of the aqueous extract of Artocarpus altilis (breadfruit) leaves in producing hypotension in normotensive Sprague-Dawley rats. Pharm Biol 50(9):1096–1102. https://doi.org/10.3109/13880209.2012.658113

    Article  Google Scholar 

  11. Nwokocha C, Palacios J, Simirgiotis MJ, Thomas J, Nwokocha M, Youing L, Thompson R, Cifuentis F, Paredes A, Delgoda R (2017) Aqueous extract from leaf of Artocarpus altilis provides cardio-protection from isoproterenol induced myocardial damage in rats: Negative chronotropic and inotropic effects. J Ethnopharmacol 203:163–170. https://doi.org/10.1016/j.jep.2017.03.037

    Article  CAS  Google Scholar 

  12. Thomas J, Anderson T, Green TJ, Nwokocha M, Palacios J, Pepple D, Nwokocha C (2022) Artocarpus altilis (breadfruit) could reverse myocardial infarction through the normalization of the Oxygen haemoglobin dissociation curve. Cardiovasc Hematol Agents Med Chem. https://doi.org/10.2174/1871525720666220203110919

    Article  Google Scholar 

  13. Jalal TK, Ahmed IA, Mikail M, Momand L, Draman S, Isa ML, Abdull Rasad MS, Nor Omar M, Ibrahim M, Abdul WR (2015) Evaluation of antioxidant, total phenol and flavonoid content and antimicrobial activities of Artocarpus altilis (breadfruit) of underutilized tropical fruit extracts. Appl Biochem Biotechnol 175(7):3231–3243. https://doi.org/10.1007/s12010-015-1499-0

    Article  CAS  Google Scholar 

  14. Ahmad MN, Karim NU, Normaya E, Mat Piah B, Iqbal A, Ku Bulat KH (2020) Artocarpus altilis extracts as a food-borne pathogen and oxidation inhibitors: RSM, COSMO RS, and molecular docking approaches. Sci Rep 10(1):9566. https://doi.org/10.1038/s41598-020-66488-7

    Article  CAS  Google Scholar 

  15. Soifoini T, Donno D, Jeannoda V, Rakoto DD, Msahazi A, Farhat SMM, Oulam MZ, Beccaro GL (2021) Phytochemical composition, antibacterial activity, and antioxidant properties of the Artocarpus altilis fruits to promote their consumption in the comoros islands as potential health-promoting food or a source of bioactive molecules for the food industry. Foods 10(9):2136. https://doi.org/10.3390/foods10092136

    Article  CAS  Google Scholar 

  16. Tiraravesit N, Yakaew S, Rukchay R, Luangbudnark W, Viennet C, Humbert P, Viyoch J (2015) Artocarpus altilis heartwood extract protects skin against UVB in vitro and in vivo. J Ethnopharmacol 175:153–162. https://doi.org/10.1016/j.jep.2015.09.023

    Article  CAS  Google Scholar 

  17. World Flora Online (WFO) (2022) Artocarpus altilis (Parkinson ex F.A.Zom) Fosberg. Published on the Internet; http://www.worldfloraonline.org/taxon/wfo-000050425. Accessed on 6th January, 2022.

  18. Balouiri M, Sadiki M, Ibnsouda SK (2016) Methods for in vitro evaluating antimicrobial activity: a review. J Pharm Anal 6(2):71–79. https://doi.org/10.1016/j.jpha.2015.11.005

    Article  Google Scholar 

  19. Yoshio H, Yamagani Y, Kobayashi M, Isohata R (1990) Artonines E and F, two new prenylflavones from the bark of Artocarpus cummunis. Forst. https://doi.org/10.3987/COM-90-5350

    Article  Google Scholar 

  20. Mei-ing C, Chai-Ming Lu, Huang P-L, Lin C-N (1995) Prenylflavonoids of Artocarpus heterophyllus. Phytochemistry 40(4):1279–1282. https://doi.org/10.1016/0031-9422(95)00442-a

    Article  Google Scholar 

  21. Wu T, He M, Zang X, Zhou Y, Qiu T, Pan S (2013) A structure-activity relationship study of flavonoids as inhibitors of E. coli by membrane interaction effect. Biochim Biophys Acta. 11:2751–2756. https://doi.org/10.1016/j.bbamem.2013.07.029

    Article  CAS  Google Scholar 

  22. Schwechheimer C, Kuehn MJ (2015) Outer-membrane vesicles from Gram-negative bacteria: biogenesis and functions. Nat Rev Microbiol 13(10):605–619. https://doi.org/10.1038/nrmicro3525

    Article  CAS  Google Scholar 

  23. Araya-Cloutier C, Vincken JP, van de Schans MGM, Hageman J, Schaftenaar G, den Besten HMW, Gruppen H (2018) QSAR-based molecular signatures of prenylated (iso)flavonoids underlying antimicrobial potency against and membrane-disruption in Gram positive and Gram negative bacteria. Sci Rep 8(1):9267. https://doi.org/10.1038/s41598-018-27545-4

    Article  CAS  Google Scholar 

  24. Koch AL (1998) The Biophysics of the gram-negative periplasmic space. Crit Rev Microboil 24(1):23–59. https://doi.org/10.1080/10408419891294172

    Article  CAS  Google Scholar 

  25. Sperandeo P, Deho G, Polissi A (2009) The lipopolysaccharide transport system of Gram-negative bacteria. Biochim Biophys Acta 1791(7):594–602. https://doi.org/10.1016/j.bbalip.2009.01.011

    Article  CAS  Google Scholar 

  26. Li XZ, Plésiat P, Nikaido H (2015) The challenge of efflux-mediated antibiotic resistance in Gram-negative bacteria. Clin Microbiol Rev 28(2):337–418. https://doi.org/10.1128/CMR.00117-14

    Article  Google Scholar 

  27. van de Schans MG, Ritschel T, Bovee TF, Sanders MG, de Waard P, Gruppen H, Vincken JP (2015) Involvement of a hydrophobic pocket and Helix 11 in determining the modes of action of prenylated flavonoids and isoflavonoids in the human estrogen receptor. ChemBioChem 16(18):2668–2677. https://doi.org/10.1002/cbic.201500343

    Article  CAS  Google Scholar 

  28. Mukne AP, Viswanathan V, Phadatare AG (2011) Structure pre-requisites for isoflavones as effective antibacterial agents. Pharmacogn Rev 5(9):13–18. https://doi.org/10.4103/0973-7847.79095

    Article  CAS  Google Scholar 

Download references

Acknowledgements

The authors are grateful to the NMR and MS Units of the Central Analytical Facilities of the Stellenbosch University, South Africa for recording the NMR and HRESIMS spectra.

Funding

This research did not receive any funding or grant from funding agencies in public, private, commercial or not-for-profit sectors.

Author information

Authors and Affiliations

Authors

Contributions

Conceptualisation, Study design, and Administration of Research (JMA), Data curation, Methodology, Investigation of Experimental work, Interpretation and Analysis of Results and Writing the original draft (SBO), Supervision and Resources (AOO & FOO), NMR and MS Instrumentation (AOO). All authors approved the final manuscript draft.

Corresponding author

Correspondence to Seun B. Ogundele.

Ethics declarations

Competing interests

The authors declare no conflicts of interest regarding this article.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (PDF 1923 KB)

Rights and permissions

Springer Nature or its licensor holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ogundele, S.B., Oriola, A.O., Oyedeji, A.O. et al. Flavonoids from Stem Bark of Artocarpus altilis (Parkinson ex F.A.Zorn) Fosberg. Chemistry Africa 5, 1921–1935 (2022). https://doi.org/10.1007/s42250-022-00489-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s42250-022-00489-z

Keywords

Navigation