Skip to main content
Log in

Structural, Spectroscopy and Magnetic Properties of Copper Doped Nickel Ferrite by the Co-precipitation Method

  • Original Article
  • Published:
Chemistry Africa Aims and scope Submit manuscript

Abstract

The Copper doped nickel ferrites were integrated by the co-precipitation method at 900 °C in this study. XRD patterns reveal the synthesized material are in single phase, face-centered Cubic (FCC) spinel structure and got good crystallinity with 10–20 nm in size. FT-IR confirmed high (426–456 cm−1), low (346–387 cm−1) frequency integration of tetrahedral and octahedral voids and confirmed inverse spinel structure. The ferrimagnetic properties of all synthesized materials at different concentrations were declared by the VSM. EPR analysis confirmed that existence of paramagnetic centers proves the evidence of free radicals in the ferrite materials.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig.6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11

Similar content being viewed by others

References

  1. Nejati K, Zabihi R (2012) Preparation and magnetic properties of nano size nickel ferrite particles using hydrothermal method. Chem Cent J 6:23–23

    Article  CAS  Google Scholar 

  2. Pervaiz E, Gul IH, Anwar H (2013) Hydrothermal synthesis and characterization of CoFe2O4 nanoparticles and nanorods. J Supercond Novel Magn 26:415–424

    Article  CAS  Google Scholar 

  3. Rao P, Godbole RV, Bhagwat S (2016) Copper doped nickel ferrite nano-crystalline thin films: a potential gas sensor towards reducing gases. Mater Chem Phys 171:260–266

    Article  CAS  Google Scholar 

  4. Hashim M, Raghasudha M, Shah J, Shirsath SE, Ravinder D, Kumar S, Meena SS, Bhatt P, Alimuddin, Kumar R, Kotnala RK (2018) High temperature dielectric studies of indium-substituted NiCuZn nanoferrites. J Phys Chem Solids 112:29–36

  5. Sivakumar V, Ramesh R, Ramanand A, Ponnusamy S, Muthamizhchelvan C (2011) Preparation and properties of nickel ferrite (NiFe2O4) nanoparticles via sol–gel auto-combustion method. Mater Res Bull 46:2204–2207

    Article  CAS  Google Scholar 

  6. Lassoued A, Lassoued MS, Karolak F, García-Granda S, Dkhil B, Ammar S, Gadri S (2017) Synthesis, structural, optical, morphological and magnetic characterization of copper substituted nickel ferrite (CuxNi1−xFe2O4) through Co-precipitation method. J Mater Sci: Mater Electron 28:18480–18488

    CAS  Google Scholar 

  7. Sagayaraj R, Dhineshkumar T, Prakash A, Aravazhi S, Chandrasekaran G, Jayarajan D, Sebastian S (2020) Fabrication, microstructure, morphological and magnetic properties of W-type ferrite by co-precipitation method: antibacterial activity. Chem Phys Lett 759:137944

    Article  CAS  Google Scholar 

  8. Hcini S, Omri A, Boudard M, Bouazizi ML, Dhahri A, Touileb K (2018) Microstructural, magnetic and electrical properties of Zn0.4M0.3Co0.3Fe2O4 (M = Ni and Cu) ferrites synthesized by sol–gel method. J Mater Sci: Mater Electron 29:6879–6891

    CAS  Google Scholar 

  9. Chandra Babu Naidu K, Madhuri W (2017) Microwave processed bulk and nano Ni Mg ferrites: a comparative study on X-band electromagnetic interference shielding properties. Mater Chem Phys 187:164–176. https://doi.org/10.1016/j.matchemphys.2016.11.062

    Article  CAS  Google Scholar 

  10. Rajivgandhi GN, Ramachandran G, Kanisha CC, Alharbi NS, Kadaikunnan S, Khaled JM, Li W-J (2021) Effect of Ti and Cu doping on the structural, optical, morphological and anti-bacterial properties of nickel ferrite nanoparticles. Results Phys 23:104065. https://doi.org/10.1016/j.rinp.2021.104065

    Article  Google Scholar 

  11. Babu Naidu KC, Madhuri W (2017) Hydrothermal synthesis of NiFe2O4nano-particles: structural, morphological, optical, electrical and magnetic properties. Bull Mater Sci 40(2):417–425. https://doi.org/10.1007/s12034-017-1374-4

    Article  CAS  Google Scholar 

  12. Kumar GR, Kumar KV, Venudhar YC (2012) Synthesis, structural and magnetic properties of copper substituted nickel ferrites by sol-gel method. Mater Sci Appl 03:87–91

    CAS  Google Scholar 

  13. Zakiyah LB, Saion E, Al-Hada NM, Gharibshahi E, Salem A, Soltani N, Gene S (2015) Up-scalable synthesis of size-controlled copper ferrite nanocrystals by thermal treatment method. Mater Sci Semicond Process 40:564–569

    Article  CAS  Google Scholar 

  14. Anjum S, Rashid A, Bashir F, Riaz S, Pervaiz M, Zia R (2014) Effect of Cu-doped nickel ferrites on structural, magnetic, and dielectric properties. IEEE Trans Magn 50:1–4

    Article  Google Scholar 

  15. Wang H, Zhu D, Zhou W, Luo F (2015) Synthesis and microwave absorbing properties of Ni–Cu ferrite/MWCNTs composites. J Mater Sci: Mater Electron 26:7698–7704

    CAS  Google Scholar 

  16. Ahamad HS, Meshram NS, Bankar SB, Dhoble SJ, Rewatkar KG (2017) Structural properties of CuxNi1-xFe2O4 nano ferrites prepared by urea-gel microwave auto combustion method. Ferroelectrics 516:67–73

    Article  CAS  Google Scholar 

  17. Madhu BJ, Ashwini ST, Shruthi B, Divyashree BS, Manjunath A, Jayanna HS (2014) Structural, dielectric and electromagnetic shielding properties of Ni–Cu nanoferrite /PVP composites. Mater Sci Eng, B 186:1–6

    Article  CAS  Google Scholar 

  18. Xu S, Shangguan W, Yuan J, Chen M, Shi J (2007) Preparation and photocatalytic properties of magnetically separable TiO2 supported on nickel ferrite. Chin J Chem Eng 15:190–195

    Article  CAS  Google Scholar 

  19. Cheng R, Fan X, Wang M, Li M, Tian J, Zhang L (2016) Facile construction of CuFe2O4/g-C3N4 photocatalyst for enhanced visible-light hydrogen evolution. RSC Adv 6:18990–18995

    Article  CAS  Google Scholar 

  20. Veinger AI, Zabrodskii AG, Tisnek TV, Mokhov EN (2004) Specific features of electron spin resonance in 4H-SiC in the vicinity of the insulator-metal phase transition: II. Analysis of the width and shape of lines. Semiconductors 38:782–787

    Article  CAS  Google Scholar 

  21. Liu SQ, Xiao B, Feng LR, Zhou SS, Chen ZG, Liu CG, Chen F, Wu ZY, Xu N, Oh WO, Meng ZD (2013) Graphene oxide enhances the Fenton-like photocatalytic activity of nickel ferrite for degradation of dyes under visible light irradiation. Carbon 64:197–206

    Article  CAS  Google Scholar 

  22. Xiao B, Liu SQ (2014) Enhancing the photocatalytic activity of nickel ferrite doped with graphene. Asian J Chem 26:1391–1393

    Article  CAS  Google Scholar 

  23. Sharma R, Bansal S, Singhal S (2015) Tailoring the photo-Fenton activity of spinel ferrites (MFe2O4) by incorporating different cations (M = Cu, Zn, Ni and Co) in the structure. RSC Adv 5:6006–6018

    Article  CAS  Google Scholar 

  24. Li Z, Zhao K, Chen P, Guo J (2012) Performance of NiCu ferrite fine particles and ceramics synthesized using egg white. Procedia Eng 27:1492–1501. https://doi.org/10.1016/j.proeng.2011.12.613

    Article  CAS  Google Scholar 

  25. Gaikwad PV, Kamble RJ, Gavade SJM, Sabale SR, Kamble PD (2018) Magneto-structural properties and photocatalytic performance of sol-gel synthesized cobalt substituted Ni Cu ferrites for degradation of methylene blue under sunlight. Physica B. https://doi.org/10.1016/j.physb.2018.11.032

    Article  Google Scholar 

  26. Wahaab FA, Adebayo LL, Adekoya AA, Hakeem IG, Alqasem B, Obalalu AM (2020) Physiochemical properties and electromagnetic wave absorption performance of Ni0.5Cu0.5Fe2O4 nanoparticles at X-band frequency. J Alloys Compounds 836:155272. https://doi.org/10.1016/j.jallcom.2020.155272

    Article  CAS  Google Scholar 

  27. Manju BG, Raji P (2018) Synthesis and magnetic properties of nano-sized Cu 0.5 Ni 0.5 Fe 2 O 4 via citrate and aloe vera: a comparative study. Ceramics Int 44(7):7329–7333. https://doi.org/10.1016/j.ceramint.2018.01.201

    Article  CAS  Google Scholar 

  28. Sagayaraj R, Aravazhi S, Chandrasekaran G (2021) Microstructure and magnetic properties of Cu0.5Co0.3Mo0.2Fe2O4 ferrite nanoparticles synthesized by Coprecipitation method. Appl Phys A 127:1–8

    Article  Google Scholar 

  29. Sagayaraj R, Aravazhi S, Chandrasekaran G (2021) Review on structural and magnetic properties of (Co–Zn) ferrite nanoparticles. Int Nano Lett 11(4):307–319

    Article  CAS  Google Scholar 

  30. Sridhar R, Ravinder D, Kumar KV (2012) Synthesis and characterization of copper substituted nickel nano-ferrites by citrate-gel technique. Adv Mater Phys Chem 02:192–199

    Article  Google Scholar 

  31. Batoo KM, El-sadek M-SA (2013) Electrical and magnetic transport properties of Ni–Cu–Mg ferrite nanoparticles prepared by sol–gel method. J Alloy Compd 566:112–119

    Article  CAS  Google Scholar 

  32. Hankare PP, Sanadi KR, Pandav RS, Patil NM, Garadkar KM, Mulla IS (2012) Structural, electrical and magnetic properties of cadmium substituted copper ferrite by sol–gel method. J Alloy Compd 540:290–296

    Article  CAS  Google Scholar 

  33. Velhal NB, Patil ND, Shelke AR, Deshpande NG, Puri VR (2015) Structural, dielectric and magnetic properties of nickel substituted cobalt ferrite nanoparticles: effect of nickel concentration. AIP Adv 5:097166

    Article  Google Scholar 

  34. Devmunde BH, Raut AV, Birajdar SD, Shukla SJ, Shengule DR, Jadhav KM (2016) Structural, electrical, dielectric, and magnetic properties of Cd2+ substituted nickel ferrite nanoparticles. J Nanoparticles 2016:1–8

    Article  Google Scholar 

  35. Almeida TP, Fay MW, Zhu Y, Brown PD (2012) Hydrothermal synthesis of mixed cobalt-nickel ferrite nanoparticles. J Phys: Conf Ser 371:012074

    Google Scholar 

  36. Udhayan S, Udhayan S, Udayakumar R, Sagayaraj R, Gurusamy K et al (2021) Evaluation of bioactive potential of a Tragia involucrata healthy leaf extract @ ZnO nanoparticles. BioNanoSci 11:703–719. https://doi.org/10.1007/s12668-021-00864-z

    Article  Google Scholar 

  37. Sagayaraj R, Aravazhi S, Praveen P, Chandrasekaran G (2018) Structural, morphological and magnetic characters of PVP coated ZnFe2O4 nanoparticles. J Mater Sci: Mater Electron 29:2151–2158

    CAS  Google Scholar 

  38. Murugesan C, MDgazzali PM, Chandrasekaran G (2013) Influence of oxidizer to fuel ratio on structural and magnetic properties of Mn–Zn ferrite nanoparticles. J Mater Sci: Mater Electron 24:3136–3141

    CAS  Google Scholar 

  39. Goodarz Naseri M, Saion EB, Ahangar HA, Hashim M, Shaari AH (2011) Synthesis and characterization of manganese ferrite nanoparticles by thermal treatment method. J Magn Magn Mater 323:1745–1749

    Article  CAS  Google Scholar 

  40. Elsaid Bakeer D, Abou-Aly AI, Mohammed NH, Awad R, Hasebbo M (2017) Characterization and magnetic properties of nanoferrite ZnFe2-xLaxO4 prepared by co-precipitation method. J Supercond Novel Magn 30:893–902

    Article  Google Scholar 

  41. Sagayaraj R, Jegadheeswari M, Aravazhi S, Chandrasekaran G, Dhanalakshmi A (2020) Structural, spectroscopic and magnetic study of nanocrystalline terbium-nickel ferrite by oxalate co-precipitation method. Chem Afr 3:955–963

    Article  CAS  Google Scholar 

  42. Elilarassi R, Chandrasekaran G (2017) Influence of nickel doping on the structural, optical and magnetic properties of TiO2 diluted magnetic semiconductor nanoparticles prepared by high energy ball-milling technique. J Mater Sci: Mater Electron 28:14536–14542

    CAS  Google Scholar 

  43. Sanpo N, Berndt CC, Wang J (2012) Microstructural and antibacterial properties of zinc-substituted cobalt ferrite nanopowders synthesized by sol-gel methods. J Appl Phys 112:084333

    Article  Google Scholar 

  44. Sagayaraj R, Aravazhi S, Selva Kumar C, Senthil Kumar S, Chandrasekaran G (2019) Tuning of ferrites (CoxFe3-xO4) nanoparticles by co precipitation technique. SN Appl Sci 1:271

    Article  Google Scholar 

  45. Sagayaraj R, Aravazhi S, Chandrasekaran G (2019) Effect of zinc content on structural, functional, morphological, resonance, thermal and magnetic properties of Co1−xZnxFe2O4/PVP nanocomposites. J Inorg Organomet Polym Mater 29:2252–2261

    Article  CAS  Google Scholar 

  46. Waheed IF et al (2019) Synthesis of Mg-Ferrite nanoparticles via auto combustion method and investigation their structural, morphological and magnetic properties. Tikrit J Pure Sci 24:52–58

    Article  Google Scholar 

  47. Pradeep A, Priyadharsini P, Chandrasekaran G (2008) Sol-gel route of synthesis of nanoparticles of MgFe2O4 and XRD, FTIR and VSM study. J Magn Magn Mater 320:2774–2779

    Article  CAS  Google Scholar 

  48. Rabanal ME, Várez A, Levenfeld B, Torralba JM (2003) Magnetic properties of Mg ferrite after milling process. J Mater Process Technol 143–144:470–474

    Article  Google Scholar 

Download references

Acknowledgements

Authors would like to thank the Periyar Arts College Cuddalore, Tamil Nadu, and India for providing the laboratory. St. Joseph’s College of Arts and Science (Autonomous) Cuddalore, Tamil Nadu, India for library facilities.

Funding

The authors did not receive any funding from any of the agencies.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to A. Christy Ferdinand or R. Sagayaraj.

Ethics declarations

Conflict of Interest

The authors declare that they have no known competing financial interests or personal relationships that could have appeared to influence the work reported in this paper.

Ethical Approval

This article does not contain any studies with human volunteers or animals being involved by any of the authors.

Informed Consent

None.

Rights and permissions

Springer Nature or its licensor holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Subhashini, J., Ferdinand, A.C. & Sagayaraj, R. Structural, Spectroscopy and Magnetic Properties of Copper Doped Nickel Ferrite by the Co-precipitation Method. Chemistry Africa 5, 1387–1396 (2022). https://doi.org/10.1007/s42250-022-00438-w

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s42250-022-00438-w

Keywords

Navigation