Skip to main content

Advertisement

Log in

Use of Mixture Design Approach for the Optimization and Performance of Cost-Effective Cementitious Quaternary System: Portland Cement–Fly Ash–Silica Fume–Phosphogypsum

  • Original Article
  • Published:
Chemistry Africa Aims and scope Submit manuscript

Abstract

The present study investigated the effect of partial Portland cement replacement by mineral admixtures including silica fume, fly ash and purified phosphogypsum at different proportions on the mechanical properties of mortar such as compressive strength and flexural strength, and on the initial setting time using the mixture design approach. This research aims to save environment from pollution with recycling solids wastes materials especially fly ash and phosphogypsum in cement building as well as to improve more the mechanical strength of ordinary Portland cement and to accelerate the initial setting time for specific applications. Based on response surface methodology, a compromise between setting time, compressive strength and flexural strength was successfully found and the optimum proportions of different constituents are as follows: 85.3% of cement, 3% of purified phosphogypsum, 6.7% of silica fume and 5% of fly ash. These conditions allow the development of cement with initial setting time of 111.2 min, compressive strength of 49.54 MPa and flexural strength of 18.85 MPa which are more important than that of the ordinary Portland cement. Interestingly, the development of compressive strength at curing ages with incorporation of pozzolans indicated that inclusion of combined pozzolans increases the 28 days strength significantly compared to cement reference. This behavior was observed through the scanning electron microscopy.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Toutanji H, Delatte N, Aggoun S, Duval R, Danson A (2004) Effect of supplementary cementitious materials on the compressive strength and durability of short-term cured concrete. Cem ConcrRes 34(2):311–319

    CAS  Google Scholar 

  2. Gesoglu M, Guneyisi E, Ozbay E (2009) Properties of self-compacting concretes made with binary, ternary, and quaternary cementitious blends of fly ash, blast furnace slag, and silica fume. Constr Build Mater 23(5):1847–1854

    Article  Google Scholar 

  3. Abolhasani A, Nazarpour H, Dehestani M (2021) Effects of silicate impurities on fracture behavior and microstructure of calcium aluminate cement concrete. Eng Fract Mech 242:107446

    Article  Google Scholar 

  4. Park J, Tae S, Kim T (2012) Life cycle CO2 assessment of concrete by compressive strength on construction site in Korea. Renew Sust Energ Rev 16(5):2940–2946

    Article  CAS  Google Scholar 

  5. Paris JM, Roessler JG, Ferraro CC, DeFord HD, Townsend TG (2016) A review of waste products utilized as supplements to Portland cement in concrete. J Clean Prod 121:1–18

    Article  CAS  Google Scholar 

  6. Adil G, Kevern JT, Mann D (2020) Influence of silica fume on mechanical and durability of pervious concrete. Constr Build Mater 247:118453

    Article  CAS  Google Scholar 

  7. Jagan S, Neelakan TR (2021) Effect of silica fume on the hardened and durability properties of concrete. Int J Appl Sci Eng 12(1):44–49

    Google Scholar 

  8. Golewski GL (2021) The beneficial effect of the addition of fly ash on reduction of the size of microcracks in the ITZ of concrete composites under dynamic loading. Energies 14(3):668

    Article  CAS  Google Scholar 

  9. Huseien GH, Sam ARM, Algaifi HA, Alyousef R (2021) Development of a sustainable concrete incorporated with effective microorganism and fly ash: characteristics and modeling studies. Constr Build Mater 285:122899

    Article  Google Scholar 

  10. Girao AV, Richardson IG, Taylor R, Brydson RDM (2010) RMD Composition, morphology and nanostructure of C-S–H in 70 % white Portland cement-30% fly ash blends hydrated at 55 °C. Cem Concr Res 40(9):1350–1359

    Article  CAS  Google Scholar 

  11. Abolhasani A, Aslani F, Samali B, Ghaffar SH, Fallahnejad H, Banihashemi S (2021) Silicate impurities incorporation in calcium aluminate cement concrete: mechanical and microstructural assessment. Adv Appl Ceram 120(2):104–116

    Article  CAS  Google Scholar 

  12. Abolhasani A, Nazarpour H, Dehestani M (2020) The fracture behavior and microstructure of calcium aluminate cement concrete with various water-cement ratios. Theor Appl Fract Mech 109:102690

    Article  CAS  Google Scholar 

  13. Singh NB, Kalra M, Kumar M, Rai S (2015) Hydration of ternary cementitious system: Portland cement, fly ash and silica fume. J Therm Anal Calorim 119:381–389

    Article  CAS  Google Scholar 

  14. Mohamed HA (2011) Effect of fly ash and silica fume on compressive strength of self-compacting concrete under different curing conditions. Ain Shams Eng J 2(2):79–86

    Article  CAS  Google Scholar 

  15. Singh M (2002) Treating waste phosphogypsum for cement and plaster manufacture. Cem Concr Res 32(7):1033–1038

    Article  CAS  Google Scholar 

  16. Singh M, Garg M, Rehsi SS (1992) Purifying phosphogypsum for cement manufacture. Constr Build Mater 7(1):3–7

    Article  Google Scholar 

  17. Liu L, Zhang Y, Tan K (2015) Cementitious binder of phosphogypsum and other materials. Adv Cem Res 27(10):567–570

    Article  Google Scholar 

  18. EN B 2005 196-1 (2005) Methods of testing cement. Determination of strength.

  19. EN T 2000 196-3 (2000) Methods of testing cement—part 3: determination of setting times and soundness.

  20. Montgomery DC (1996) Design and analysis of experiments. John Wiley & Sons, Mishawaka, IN, USA

    Google Scholar 

  21. Mathieu D, Phan Tan Luu R (1999) Nemrod-W software. Aix-Marseille III University, Aix-en-Provence, France

    Google Scholar 

  22. Shen W, Gan G, Dong R, Chen H, Tan Y, Zhou M (2012) Utilization of solidified phosphogypsum as Portland cement retarder. J Mater Cycles Waste Manag 14:228–233

    Article  CAS  Google Scholar 

  23. Altun A, Sert Y (2004) Utilization of weathered phosphogypsum as set retarder in Portland cement. Cem Concr Res 34(4):677–680

    Article  Google Scholar 

  24. Fajun W, Grutzeck MW, Roy DM (1985) The retarding effects of fly ash upon the hydration of cement pastes: the first 24 hours. Cem Concr Res 15(1):174–184

    Article  CAS  Google Scholar 

  25. Ogawa G, Uchikawa H, Takemoto K, Yasui I (1980) The mechanism of the hydration in the system C3S-pozzolana. Cem Concr Res 10(5):683–696

    Article  CAS  Google Scholar 

  26. Yuan HJ, Scheetz BE, Roy DM (1984) Hydration of fly ash-portland cements. Cem Concr Res 14(4):505–512

    Article  Google Scholar 

  27. Jeong Y, Kang SH, Kim MO, Moon J (2020) Acceleration of cement hydration by hydrophobic effect 1 from supplementary cementitious materials: performance comparison between silica fume and hydrophobic silica. Cem Concr Compos 112:103688

    Article  CAS  Google Scholar 

  28. Sounthararajan VM, Srinivasan K, Sivakumar A (2013) Micro filler effects of silica-fume on the setting and hardened properties of concrete. Res J Appl Sci Eng Tech 6(14):2649–2654

    Article  CAS  Google Scholar 

  29. Brooks JJ, Megat Johari MA, Mazloom M (2000) Effect of admixtures on the setting times of high strength concrete. Cem Concr Compos 22(4):293–301

    Article  CAS  Google Scholar 

  30. Sellevold EJ, Nilsen T (1987) Condensed silica fume in concrete: a world review. In: Malhotra VM (ed) Supplementary cementing materials for concrete. CANMET, Ottawa, Canada, pp 165–243

    Google Scholar 

  31. Mostafa NY, Brown PW (2005) Heat of hydration of high reactive pozzolans in blended cements: Isothermal conduction calorimetry. Thermochim Acta 435(2):162–167

    Article  CAS  Google Scholar 

  32. Barbhuiya SA, Russell MI, Basheer PAM (2009) Properties of fly ash concrete modified with hydrated lime and silica fume. Constr Build Mater 23(10):3233–3239

    Article  Google Scholar 

  33. Ambalavanan R, Roja A (1996) A Feasibility study on utilization of waste lime and gypsum with fly ash’. Indian Concr J 70(11):611–616

    Google Scholar 

  34. Malhotra VM, Zhang MH, Read PH, Ryell J (2000) Long-term mechanical properties and durability characteristics of high-strength/high-performance concrete incorporating supplementary cementing materials under outdoor exposure conditions. ACI J Mater 97(5):518–525

    CAS  Google Scholar 

  35. Blenszynski R, Hooton RD, Thomas MDA, Rogers CA (2002) Durability of ternary blend concrete with silica fume and blast-furnace slag: laboratory and outdoor exposure site studies. ACI J Mater 99(5):499–508

    Google Scholar 

  36. Lothenbach B, Scrivener K, Hooton RD (2011) Supplementary cementitious materials. Cem Concr Res 41(12):1244–1256

    Article  CAS  Google Scholar 

  37. Jeong Y, Park H, Jun Y, Jeong J-H, Oh JE (2015) Microstructural verification of the strength performance of ternary blended cement systems with high volumes of fly ash and GGBFS. Constr Build Mater 95:96–107

    Article  Google Scholar 

  38. Fernández Á, GarcíaCalvo JL, Alonso MC (2018) Ordinary Portland cement composition for the optimization of the synergies of supplementary cementitious materials of ternary binders in hydration processes. Cem Concr Compos 89:238–250

    Article  Google Scholar 

  39. Gafoori N, Diawara H (2007) Strength and wear resistance of sand—replaced silica fume concrete. ACI J Mater 104(2):206–214

    Google Scholar 

  40. Yogendran Y, Langan BW, Haque MN, Ward MA (1987) Silica fume in high strength concrete. ACI J Mater 84(2):124–129

    CAS  Google Scholar 

  41. Khayat KH, Vachon M, Lanctot MC (1997) Use of blended silica fume cement in commercial concrete mixtures. ACI J Mater 94(3):183–192

    CAS  Google Scholar 

  42. Srivastava V, Kumar R, Agarwal VC, Mehta PK (2014) Effect of silica fume on workability and compressive strength of OPC concrete. J Environ Nanotechnol 3(3):32–35

    Article  Google Scholar 

  43. Popovics S (1993) Portland Cement–fly ash–silica fume systems in concrete. Adv Cem Based Mater 1:83–91

    Article  CAS  Google Scholar 

  44. ELKhadiri I, Diouri A, Boukhari A, Aride J, Puertas F (2002) Mechanical behaviour of various mortars made by combined fly ash and limestone in moroccan Portland cement. Cem Concr Res 32(10):1597–1603

    Article  CAS  Google Scholar 

  45. Khan MI, Lynsdale CJ (2002) Strength, permeability and carbonation of high performance concrete. Cem Concr Res 32(1):123–131

    Article  CAS  Google Scholar 

  46. Thanongsak N, Watcharapong W, Arnon C (2010) Utilization of fly ash with silica fuma and properties of Portland cement fly ash–silica fume concrete. Fuel 89(3):768–774

    Article  Google Scholar 

  47. Singh M, Garg M (1992) Phosphogypsum–fly ash cementitious binder—its hydration and strength development central. Cem Concr Res 25(4):752–785

    Article  Google Scholar 

  48. Burgos-Montes O, Alonso MM, Puertas F (2013) Viscosity and water demand of limestone- and fly ash-blended cement pastes in the presence of superplasticisers. Constr Build Mater 48:417–423

    Article  Google Scholar 

  49. Sathawane SH, Vairagade VS, Kene KS (2013) Combine effect of rice husk ash and fly ash on concrete by 30% cement replacement. Procedia Eng 51:35–44

  50. Sargent P (2015) Handbook of Alkali-Activated Cements, Mortars and Concretes. The development of alkali-activated mixtures for soil stabilisation. Woodhead Publishing, Sawston, Cambridge, pp 555–604

    Google Scholar 

  51. Yun H, Zongshou L (2011) A binder of phosphogypsum-ground granulated blast furnace slag-ordinary Portland cement. J Wuhan Univ Technol Mater Sci Ed 26(3):548–551

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Khaoula Mkadmini Hammi.

Ethics declarations

Conflict of interest

Halim Hammi is managing editor of chemistry Africa

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Mkadmini Hammi, K., Hammi, H. & Hamzaoui, A.H. Use of Mixture Design Approach for the Optimization and Performance of Cost-Effective Cementitious Quaternary System: Portland Cement–Fly Ash–Silica Fume–Phosphogypsum. Chemistry Africa 4, 835–848 (2021). https://doi.org/10.1007/s42250-021-00262-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s42250-021-00262-8

Keywords

Navigation