Skip to main content
Log in

Completely Unexpected Coordination Selectivity of Copper Iodide for Thioether Over Ethynyl

  • Original Article
  • Published:
Chemistry Africa Aims and scope Submit manuscript

Abstract

The reactivity of the tetradentate ligand bis(p-thiomethylphenylacetylene) (MeSC6H4C≡C–C≡CC6H4SMe; L2) towards the CuI salt is compared to that for the known organometallic analogue trans-bis(p-thiomethylethynylbenzene)bis(trimethyl-phosphine)platinum(II) (trans-Pt(PMe3)2(C≡CC6H4SMe)2; L1). While L1 with CuI form a highly luminescent porous 2D coordination polymer (CP) of general formula ([Cu4I4]L1 · EtCN)n (CP1; Juvenal et al. in Inorg Chem 55:11096–11109, 2016) exhibiting both Cu(η2–C≡C) and Cu–S bonds, L2 reacts with CuI to produce a luminescent non-porous 2D CP exhibiting the general formula ([Cu4I4]{L2}3)n, CP2, which does not use the highly expected Cu(η2–C≡C) linkage, relying strictly upon Cu–S coordination. An examination of the X-ray structures for both L2 and CP2 indicates that CP2 network is built upon an expansion of the L2 lattice (plane sliding and slight L2L2 distance separation) resembling to a sort of template effect. CP2 has been characterized by TGA, UV–Vis, emission spectroscopy, and photophysics, which are accompanied by DFT and TDDFT computations.

Graphical abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Scheme 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

References

  1. Olbrich FA, Kopf JO, Weiss ER, Krebs AD, Müller S (1990) Acta Crystallogr C Cryst Struct Commun 46:1650–1652

    Article  Google Scholar 

  2. Olbrich F, Gröger G, Behrens U (1999) Zeitschrift für Kristallographie-New Crystal Structures 214:195–200

    Article  CAS  Google Scholar 

  3. Olbrich F, Schmidt G, Weiss E, Behrens U (1993) J Organomet Chem 456:299–303

    Article  CAS  Google Scholar 

  4. Gröger G, Olbrich F, Weiss E, Behrens U (1996) J Organomet Chem 514:81–86

    Article  Google Scholar 

  5. Gröger G, Olbrich F, Schulte P, Behrens U (1998) J Organomet Chem 557:251–258

    Article  Google Scholar 

  6. Olbrich F, Behrens U, Schmidt G, Weiss E (1993) J Organomet Chem 463:249–254

    Article  CAS  Google Scholar 

  7. Olbrich F, Behrens U, Gröger G, Weiss E (1993) J Organomet Chem 448:C10–C12

    Article  CAS  Google Scholar 

  8. Olbrich F, Behrens U, Weiss E (1994) J Organomet Chem 472:365–370

    Article  CAS  Google Scholar 

  9. Schmidt G, Behrens U (1996) J Organomet Chem 509:49–55

    Article  CAS  Google Scholar 

  10. Schulte P, Gröger G, Behrens U (1999) Z Anorg Allg Chem 625:1447–1452

    Article  CAS  Google Scholar 

  11. Schulte P, Gröger G, Behrens U (2000) Z Anorg Allg Chem 626:679–686

    Article  CAS  Google Scholar 

  12. Schulte P, Schmidt G, Kramer CP, Krebs A, Behrens U (1997) J Organomet Chem 530:95–100

    Article  CAS  Google Scholar 

  13. Schulte P, Behrens U, Olbrich F (2000) Z Anorg Allg Chem 626:1692–1696

    Article  CAS  Google Scholar 

  14. Brussaard Y, Olbrich F, Behrens U (1996) J Organomet Chem 519:115–123

    Article  CAS  Google Scholar 

  15. Gröger G, Behrens U, Olbrich F (2000) Organometallics 19:3354–3360

    Article  CAS  Google Scholar 

  16. Olbrich F, Schmidt G, Behrens U, Weiss E (1991) J Organomet Chem 418:421–429

    Article  CAS  Google Scholar 

  17. Olbrich F, Kopf J, Weiss E (1993) J Organomet Chem 456:293–298

    Article  CAS  Google Scholar 

  18. Schulte P, Gröger G, Behrens U (1999) J Organomet Chem 584:1–10

    Article  CAS  Google Scholar 

  19. Kuznetsova OA, Khmara EF, Filyakova VI, Uimin MA, Ermakov AE, Rhee CK, Charushin VN (2007) Russ J Gen Chem 77:404–408

    Article  CAS  Google Scholar 

  20. Shirtcliff LD, Haley MM, Herges R (2007) J Org Chem 72:2411–2418

    Article  CAS  PubMed  Google Scholar 

  21. Biswas M, Nguyen P, Marder TB, Khundkar LR (1997) J Phys Chem A 101:1689–1695

    Article  CAS  Google Scholar 

  22. Steffen A, Ward RM, Tay MG, Edkins RM, Seeler F, van Leeuwen M, Pålsson LO, Beeby A, Batsanov AS, Howard JA, Marder TB (2014) Chem Eur J 20:3652–3666

    Article  CAS  PubMed  Google Scholar 

  23. Juvenal F, Bonnot A, Fortin D, Harvey PD (2017) ACS Omega 2:7433–7443

    Article  CAS  Google Scholar 

  24. Juvenal F, Langlois A, Bonnot A, Fortin D, Harvey PD (2016) Inorg Chem 55:11096–11109

    Article  CAS  PubMed  Google Scholar 

  25. Aly SM, Pam A, Khatyr A, Knorr M, Rousselin Y, Kubicki MM, Bauer JO, Strohmann C, Harvey PD (2014) J Inorg Organomet Poly Mat 24:190–200

    Article  CAS  Google Scholar 

  26. Knorr M, Guyon F, Khatyr A, Daeschlein C, Strohmann C, Aly SM, Abd-El-Aziz AS, Fortin D, Harvey PD (2009) Dalton Trans (6):948–955

  27. Cardolaccia T, Li Y, Schanze KS (2008) J Am Chem Soc 130:2535–2545

    Article  CAS  PubMed  Google Scholar 

  28. Frisch MJ, Trucks GW, Schlegel HB, Scuseria GE, Robb MA, Cheeseman JR, Montgomery JA Jr, Vreven TK, Kudin KN, Burant JC, Millam JM (2004) Gaussian 03, revision C. 02. Gaussian Inc, Wallingford, p 26

    Google Scholar 

  29. Hohenberg P, Kohn W (1964) Phys Rev 136:B864–B871

    Article  Google Scholar 

  30. Kohn W, Sham LJ (1965) J Phys Rev 140:A1133–A1138

    Article  Google Scholar 

  31. Parr RG, Yang W (1989) Density-functional theory of atoms and molecules. Oxford University Press, Oxford

    Google Scholar 

  32. Salahub DR, Zerner MC (1989) The challenge of d and f electrons: theory and computation. American Chemical Society, Washington, DC

    Book  Google Scholar 

  33. Bauernschmitt R, Ahlrichs R (1996) Chem Phys Lett 256:454–464

    Article  CAS  Google Scholar 

  34. Casida ME, Jamorski C, Casida KC, Salahub DR (1998) J Chem Phys 108:4439–4449

    Article  CAS  Google Scholar 

  35. Stratmann RE, Scuseria GE, Frisch MJ (1998) J Chem Phys 109:8218–8224

    Article  CAS  Google Scholar 

  36. Lee C, Yang W, Parr RG (1988) Phys Rev B 37:785–789

    Article  CAS  Google Scholar 

  37. Miehlich B, Savin A, Stoll H, Preuss H (1989) Chem Phys Lett 157:200–206

    Article  CAS  Google Scholar 

  38. Becke AD (1993) J Chem Phys 98:5648–5652

    Article  CAS  Google Scholar 

  39. Binkley JS, Pople JA, Hehre WJ (1980) J Am Chem Soc 102:939–947

    Article  CAS  Google Scholar 

  40. Gordon MS, Binkley JS, Pople JA, Pietro WJ, Hehre WJ (1982) J Am Chem Soc 104:2797–2803

    Article  CAS  Google Scholar 

  41. Pietro WJ, Francl MM, Hehre WJ, Defrees DJ, Pople JA, Binkley JS (1982) J Am Chem Soc 104:5039–5048

    Article  CAS  Google Scholar 

  42. Dobbs KD, Hehre WJ (1986) J Comput Chem 7:359–378

    Article  CAS  Google Scholar 

  43. Dobbs KD, Hehre WJ (1987) J Comput Chem 8:861–879

    Article  CAS  Google Scholar 

  44. Dobbs KD, Hehre WJ (1987) J Comput Chem 8:880–893

    Article  CAS  Google Scholar 

  45. O’Boyle NM, Tenderholt AL, Langner KM (2008) J Comp Chem 29:839–845

    Article  CAS  Google Scholar 

  46. Bruker AXS (2008) APEX2, V2008. 6, SADABS V2008/1, SAINT V7. 60A, SHELXTL V6. 14. Bruker AXS Inc., Madison

  47. Harvey PD, Knorr M (2016) J Inorg Organomet Polym Mater 26:1174–1197

    Article  CAS  Google Scholar 

  48. Harvey PD, Knorr M (2015) J Clust Sci 26:411–459

    Article  CAS  Google Scholar 

  49. Harvey PD, Knorr M (2010) Macromol Rapid Commun 31:808–826

    Article  CAS  PubMed  Google Scholar 

  50. Marineau-Plante G, Juvenal F, Langlois A, Fortin D, Soldera A, Harvey PD (2018) Chem Commun 54:976–979

    Article  CAS  Google Scholar 

  51. Chan YH, Lin JT, Chen IW, Chen CH (2005) J Phys Chem B 109:19161–19168

    Article  CAS  PubMed  Google Scholar 

  52. Kovacs A, Frenking G (1999) Organometallics 18:887–894

    Article  CAS  Google Scholar 

  53. Hill JO, Murray JP (1993) Rev Inorg Chem 13:183–197

    CAS  Google Scholar 

  54. Cavel KJ, Hill JO, Magee RJ (1980) J Chem Soc Dalton Trans 1638:1640

    Google Scholar 

  55. Thomas TM, Grimm FA, Carlson TA (1982) Agron PA 25:159–169

    CAS  Google Scholar 

Download references

Acknowledgements

This work was supported by the Natural Sciences and Engineering Research Council of Canada, the Fonds de recherche du Québec-Nature et technologies, Compute Canada and Calcul Québec, and the Centre Quebecois sur les Matériaux Fonctionnels.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Pierre D. Harvey.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (DOCX 2472 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Bonnot, A., Juvenal, F., Schlachter, A. et al. Completely Unexpected Coordination Selectivity of Copper Iodide for Thioether Over Ethynyl. Chemistry Africa 1, 67–77 (2018). https://doi.org/10.1007/s42250-018-0004-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s42250-018-0004-x

Keywords

Navigation