Skip to main content
Log in

Investigation of structural, morphological and dielectric properties of yttrium magnesium silicate oxyapatite doped with Gd3+ ions

  • Original Article
  • Published:
Emergent Materials Aims and scope Submit manuscript

Abstract

The present paper reports the structural, morphological, impedance, conductivity, and dielectric properties of Y8-xMg2(SiO4)6O2: xGd (YMSO: Gd) oxyapatite compounds. The co-precipitation method was employed to prepare the compounds. The structural analysis was done by XRD and the obtained pattern confirmed the hexagonal structure with space group p63/m (176). The average crystallite size calculated using Scherrer’s equation was found to be 31.08 nm. The crystallite size (D) ranges from 39.65 nm to 14.96 nm and volume (V) from 761.12 Å3 to 760.92 Å3. Both the values of D and V decreased with the increase in content of Gd3+ ions (x mol%). The SEM micrographs at different magnifications showed the morphological pattern of the compound and the mean grain size was observed to be ~ 250 nm. The EDX spectrum confirmed the presence of all the initial raw materials which were taken for the preparation of the compound. The theoretical and experimental values of the atomic and weight percentages of the compounds are found within close range of each other. The FTIR spectroscopy was employed under optimized conditions to obtain transmittance spectra which determined the peaks at 651 ± 2 cm−1 and 715 ± 2 cm−1, corresponding to O-Si–O and Mg-O bonds respectively. A broad peak at 1230 ± 2 cm−1 may be attributed to the characteristic peak of Si–O bonds. The peaks at 1628.75 ± 2 cm−1 and 3443 ± 2 cm−1 is of water and hydroxyl groups, respectively, present in the compounds. These peaks confirmed the presence of functional groups in the series of the synthesized compounds. With increasing frequency and temperature, the dielectric parameters were found to follow a decreasing trend, owing to a decrease in polarization. The lowest value of dielectric loss (= 5) was found for x = 0.20 mol% of Gd3+ ions. The complex impedance, conductivity and electric modulus analysis were carried out to investigate the dielectric relaxation, electrical conduction and charge transport mechanism of the prepared compounds in the frequency range of 102 Hz – 102 kHz and the temperature range of 50 °C – 500 °C. The a.c. conductivity was found to disperse in high frequency region and the average activation energy was estimated to be 0.17 eV using the Arrhenius equation.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16

Similar content being viewed by others

Data availability

All relevant data generated or analysed are included in this article.

References

  1. R. Kumar, D. Lee, Ü. Ağbulut, S. Kumar, S. Thapa, A. Thakur, R.D. Jilte, C.A. Saleel, S. Shaik, Different energy storage techniques: recent advancements, applications, limitations, and efficient utilization of sustainable energy, Springer International Publishing (2024)https://doi.org/10.1007/s10973-023-12831-9

  2. N.S. Bajaj, R.A. Joshi, Energy materials: Synthesis and characterization techniques, Elsevier Ltd, pp 61–82 (2021). https://doi.org/10.1016/B978-0-12-823710-6.00019-4

  3. B. Fan, F. Liu, G. Yang, H. Li, G. Zhang, S. Jiang, Q. Wang, Dielectric materials for high-temperature capacitors. IET Nanodielectrics. 1, 32–40 (2018). https://doi.org/10.1049/iet-nde.2018.0002

    Article  Google Scholar 

  4. R.W. Johnson, J.L. Evans, P. Jacobsen, J.R. Thompson, M. Christopher, The changing automotive environment: High-temperature electronics. IEEE Trans. Electron. Packag. Manuf. 27, 164–176 (2004). https://doi.org/10.1109/TEPM.2004.843109

    Article  Google Scholar 

  5. X. Lin, M. Salari, L.M.R. Arava, P.M. Ajayan, M.W. Grinstaff, High temperature electrical energy storage: Advances, challenges, and frontiers. Chem. Soc. Rev. 45, 5848–5887 (2016). https://doi.org/10.1039/c6cs00012f

    Article  CAS  PubMed  Google Scholar 

  6. C.A. Randall, H. Ogihara, J.R. Kim, G.Y. Yang, C.S. Stringer, S. Trolier-McKinstry, M. Lanagan, High temperature and high energy density dielectric materials, PPC2009 - 17th IEEE Int. Pulsed Power Conf, pp 346–351 (2009). https://doi.org/10.1109/PPC.2009.5386292

  7. J. Ho, T.R. Jow, High field conduction in heat resistant polymers at elevated temperature for metallized film capacitors, Proc. 2012 IEEE Int. Power Modul. High Volt. Conf. IPMHVC 2012, pp 399–402 (2012). https://doi.org/10.1109/IPMHVC.2012.6518764

  8. D.H. Wang, B.A. Kurish, I. Treufeld, L. Zhu, L.S. Tan, Synthesis and characterization of high nitrile content polyimides as dielectric films for electrical energy storage. J. Polym. Sci. Part A Polym. Chem. 53, 422–436 (2015). https://doi.org/10.1002/pola.27445

    Article  ADS  CAS  Google Scholar 

  9. L. Zhou, Z. Peng, J. Zhu, Q. Shi, P. Liang, L. Wei, D. Wu, X. Chao, Z. Yang, High temperature stability and low dielectric loss in colossal permittivity TiO2 based ceramics co-doped with Ag+ and Mo6+. Mater. Chem. Phys. 295, 127072 (2023). https://doi.org/10.1016/j.matchemphys.2022.127072

    Article  CAS  Google Scholar 

  10. M. Pasero, A.R. Kampf, C. Ferraris, I.V. Pekov, J. Rakovan, T.J. White, Nomenclature of the apatite supergroup minerals. Eur. J. Mineral. 22, 163–179 (2010). https://doi.org/10.1127/0935-1221/2010/0022-2022

    Article  ADS  CAS  Google Scholar 

  11. Z.-W. Zhang, L. Han, Y. Zhao, L.-J. Wang, S.-S. Yang, X.-J. Chu, Synthesis and photoluminescence properties of ALa9(SiO4)6O2: Eu3+ (A = Li, Na) red phosphor. Mater. Res. Bull. 94, 147–153 (2017). https://doi.org/10.1016/j.materresbull.2017.05.060

    Article  CAS  Google Scholar 

  12. J. Xiang, J.H. Ouyang, Z.G. Liu, G.C. Qi, Influence of pentavalent niobium doping on microstructure and electrical conductivity of oxy-apatite La10Si6O27 electrolytes. Electrochim. Acta 153, 287–294 (2015). https://doi.org/10.1016/j.electacta.2014.12.017

    Article  CAS  Google Scholar 

  13. L. Zhang, H.Q. He, H. Wu, C.Z. Li, S.P. Jiang, Synthesis and characterization of doped La9ASi6O 26.5 (A = Ca, Sr, Ba) oxyapatite electrolyte by a water-based gel-casting route. Int. J. Hydrogen Energy. 36, 6862–6874 (2011). https://doi.org/10.1016/j.ijhydene.2011.02.123

    Article  CAS  Google Scholar 

  14. S.N.H. MohdYunus, K. ShingFhan, B. Johar, N.M.S. Adzali, N.H. Jakfar, C. EeMeng, E.Z. MohdTarmizi, Z.A. Talib, Effect of sintering temperature on dielectric and electrical properties of bio-waste derived beta-dicalcium silicate. Mater. Chem. Phys. 309, 128339 (2023). https://doi.org/10.1016/j.matchemphys.2023.128339

    Article  CAS  Google Scholar 

  15. R. Ulrich, L. Schaper, D. Nelms, M. Leftwich, Comparison of paraelectric and ferroelectric materials for applications as dielectrics in thin film integrated capacitors. Int. J. Microcircuits Electron. Packag. 23, 172–181 (2000)

    CAS  Google Scholar 

  16. N. Abid, A.M. Khan, S. Shujait, K. Chaudhary, M. Ikram, M. Imran, J. Haider, M. Khan, Q. Khan, M. Maqbool, Synthesis of nanomaterials using various top-down and bottom-up approaches, influencing factors, advantages, and disadvantages: A review. Adv. Colloid Interface Sci. 300, 102597 (2022). https://doi.org/10.1016/j.cis.2021.102597

    Article  CAS  PubMed  Google Scholar 

  17. A. Srivastava, A. Katiyar, Zinc oxide nanostructures, Elsevier Ltd, pp 235–262 (2022). https://doi.org/10.1016/B978-0-323-89956-7.00012-7.

  18. I. Ahemen, F.B. Dejene, The role of traps in the blue–green emission of ZrO2:Ce3+, Tb3+ co-doped phosphors. J. Mater. Sci. Mater. Electron. 29, 2140–2150 (2018). https://doi.org/10.1007/s10854-017-8126-5

    Article  CAS  Google Scholar 

  19. J.S. Revathy, N.S.C. Priya, K. Sandhya, D.N. Rajendran, Structural and optical studies of cerium doped gadolinium oxide phosphor. Bull. Mater. Sci. 44, 1–8 (2021). https://doi.org/10.1007/s12034-020-02299-w

    Article  CAS  Google Scholar 

  20. G. Vasugi, A. Thamizhavel, E.K. Girija, Surface modification of hydroxyapatite by yttrium ion substitution for adsorption of reactive red dye. J. Mater. Environ. Sci. 8, 714–723 (2017)

    CAS  Google Scholar 

  21. I.A. Auwal, B. Ünal, A. Baykal, U. Kurtan, M.D. Amir, A. Yıldız, M. Sertkol, Electrical and Dielectric Properties of Y3+-Substituted Barium Hexaferrites. J. Supercond. Nov. Magn. 30, 1813–1826 (2017). https://doi.org/10.1007/s10948-017-3978-8

    Article  CAS  Google Scholar 

  22. J. Mahapatro, S. Agrawal, Effect of Eu3+ ions on electrical and dielectric properties of barium hexaferrites prepared by solution combustion method. Ceram. Int. 47, 20529–20543 (2021). https://doi.org/10.1016/j.ceramint.2021.04.062

    Article  CAS  Google Scholar 

  23. P. Scherrer, Bestimmung der Grösse und der Inneren Struktur von Kolloidteilchen Mittels Röntgenstrahlen, Nachrichten von der Gesellschaft der Wissenschaften, Göttingen. Mathematisch-Physikalische Klasse. 2, 98–100 (1918)

  24. A. Rout, S. Agrawal, Electronic and spectroscopic studies of rare earth doped yttrium strontium silicate fluorapatite compound. Opt. Laser Technol. 152, 108108 (2022). https://doi.org/10.1016/j.optlastec.2022.108108

    Article  CAS  Google Scholar 

  25. R. Choudhary, S. Koppala, S. Swamiappan, Bioactivity studies of calcium magnesium silicate prepared from eggshell waste by sol-gel combustion synthesis. J. Asian Ceram. Soc. 3, 173–177 (2015). https://doi.org/10.1016/j.jascer.2015.01.002

    Article  Google Scholar 

  26. N. Jamil, M. Mehmood, A. Lateef, R. Nazir, N. Ahsan, MgO nanoparticles for the removal of reactive dyes from wastewater. NSTI Adv. Mater. - TechConnect Briefs 2015(1), 353–356 (2015)

    Google Scholar 

  27. F.H. Aidoudi, A. Sinopoli, M. Arunachalam, B. Merzougui, B. Aïssa, Synthesis and characterization of a novel hydroquinone sulfonate-based redox active ionic liquid. Materials (Basel). 14, 3259 (2021). https://doi.org/10.3390/ma14123259

    Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

  28. M.N. Chai, M.I.N. Isa, The oleic acid composition effect on the carboxymethyl cellulose based biopolymer electrolyte. J. Cryst. Process Technol. 03, 1–4 (2013). https://doi.org/10.4236/jcpt.2013.31001

    Article  CAS  Google Scholar 

  29. X. Wang, X. He, X. Wang, FTIR analysis of the functional group composition of coal tar residue extracts and extractive residues. Appl. Sci. 13, 5162 (2023). https://doi.org/10.3390/app13085162

    Article  CAS  Google Scholar 

  30. C.R. Cena, A.K. Behera, B. Behera, Structural, dielectric, and electrical properties of lithium niobate microfibers. J. Adv. Ceram. 5, 84–92 (2016). https://doi.org/10.1007/s40145-015-0176-7

    Article  CAS  Google Scholar 

  31. C.C. Chauhan, A.R. Kagdi, R.B. Jotania, A. Upadhyay, C.S. Sandhu, S.E. Shirsath, S.S. Meena, Structural, magnetic and dielectric properties of Co-Zr substituted M-type calcium hexagonal ferrite nanoparticles in the presence of α-Fe2O3 phase. Ceram. Int. 44, 17812–17823 (2018). https://doi.org/10.1016/j.ceramint.2018.06.249

    Article  CAS  Google Scholar 

  32. G. Torğut, N. Gürler, Enhanced impedance, electrical conductivity, dielectric properties for colloidal starch-g-poly (methyl methacrylate) supported with semiconductor cadmium sulfide. Polym. Bull. (2024). https://doi.org/10.1007/s00289-023-05125-5

    Article  Google Scholar 

  33. S.K. Ghosh, H. Singh, K. Mallick, Low-dimensional lead chromate-based hybrid system for capacitance and polarization performances: a flexible device for pressure-induced voltage generator. Emergent Mater. 7, 235–245 (2023). https://doi.org/10.1007/s42247-023-00586-w

    Article  CAS  Google Scholar 

  34. J. Mahapatro, S. S. Meena, S. Agrawal, Effect of ­ Dy 3 + ions substitution on structural , electrical , and dielectric properties of ­ SrDy x Fe 12 ‑ x O 19 hexaferrite prepared by sol ‑ gel combustion method. 51, 104–121 (2023). https://doi.org/10.1007/s10832-023-00320-2

  35. A. Rout, S. Agrawal, Structural, morphological and photoluminescence behavior of Sr10-xBax(PO4)6(OH)2 hydroxyapatite. IOP Conf. Ser. Mater. Sci. Eng. 798, 2–7 (2020). https://doi.org/10.1088/1757-899X/798/1/012012

    Article  Google Scholar 

  36. I.H. Afify, E.S.M. Farag, M.S. Abo-Ghazala, M.M. El-Zaidia, AC conductivity and dielectric properties of InxTe20−xSe80 chalcogenides. Indian J. Phys. 98, 967–973 (2023). https://doi.org/10.1007/s12648-023-02891-w

    Article  ADS  CAS  Google Scholar 

  37. D.R. Patil, S.A. Lokare, R.S. Devan, S.S. Chougule, C.M. Kanamadi, Y.D. Kolekar, B.K. Chougule, Studies on electrical and dielectric properties of Ba1-xSrxTiO3. Mater. Chem. Phys. 104, 254–257 (2007). https://doi.org/10.1016/j.matchemphys.2007.02.027

    Article  CAS  Google Scholar 

  38. A. Rout, S. Agrawal, Investigation of electrical conduction in Ca6-xNa2Y2(SiO4)6F2:xEu3+ ceramic by complex impedance and electric modulus spectroscopy. Ceram. Int. 47, 7032–7044 (2021). https://doi.org/10.1016/j.ceramint.2020.11.053

    Article  CAS  Google Scholar 

  39. B.N. Parida, P.R. Das, Synthesis and characterization of a new ferroelectric oxide Li 2Pb2Pr2W2Ti4Ta 4O30. J. Alloys Compd. 585, 234–239 (2014). https://doi.org/10.1016/j.jallcom.2013.09.170

    Article  CAS  Google Scholar 

  40. B.N. Parida, D. Piyush R, R. Padhee, R.N.P. Choudhary, A new ferroelectric oxide Li 2Pb 2Pr 2W 2Ti 4Nb 4O 30: Synthesis and characterization. J. Phys. Chem. Solids. 73, 713–719 (2012). https://doi.org/10.1016/j.jpcs.2012.01.013

    Article  ADS  CAS  Google Scholar 

  41. A. Kumar, B.P. Singh, R.N.P. Choudhary, A.K. Thakur, Characterization of electrical properties of Pb-modified BaSnO 3 using impedance spectroscopy, 99, 150–159 (2006). https://doi.org/10.1016/j.matchemphys.2005.09.086

  42. J. Mahapatro, S. Agrawal, Optical, dielectric and electrical properties of Gd3+ ions doped barium hexaferrite ceramic compounds for microwave device applications. J. Alloys Compd. 907, 164405 (2022). https://doi.org/10.1016/j.jallcom.2022.164405

    Article  CAS  Google Scholar 

  43. R. Padhee, P.R. Das, B.N. Parida, R.N.P. Choudhary, Electrical and pyroelectric properties of lanthanum based niobate. J. Phys. Chem. Solids 74, 377–385 (2013). https://doi.org/10.1016/j.jpcs.2012.10.017

    Article  ADS  CAS  Google Scholar 

  44. S. Thakur, R. Rai, I. Bdikin, M.A. Valente, Impedance and modulus spectroscopy characterization of Tb modified Bi0.8A0.1Pb0.1Fe0.9Ti0.1O3 ceramics. Mater. Res. 19, 1–8 (2016). https://doi.org/10.1590/1980-5373-MR-2015-0504

    Article  CAS  Google Scholar 

  45. B.A. Mei, J. Lau, T. Lin, S.H. Tolbert, B.S. Dunn, L. Pilon, Physical interpretations of electrochemical impedance spectroscopy of redox active electrodes for electrical energy storage. J. Phys. Chem. C 122, 24499–24511 (2018). https://doi.org/10.1021/acs.jpcc.8b05241

    Article  CAS  Google Scholar 

  46. Y. Mateyshina, A. Slobodyuk, V. Kavun, N. Uvarov, Conductivity and NMR study of composite solid electrolytes CsNO2-A (A = SiO2, Al2O3, MgO). Solid State Ionics 324, 196–201 (2018). https://doi.org/10.1016/j.ssi.2018.04.026

    Article  CAS  Google Scholar 

  47. P. Bhatt, M.D. Mukadam, S.S. Meena, S.K. Mishra, R. Mittal, P.U. Sastry, B.P. Mandal, S.M. Yusuf, Room temperature ferroelectricity in one-dimensional single chain molecular magnets [{M(Δ)M(Λ)}(ox)2(phen)2]n (M = Fe and Mn). Appl. Phys. Lett. 110, 102901 (2017). https://doi.org/10.1063/1.4977939

    Article  ADS  CAS  Google Scholar 

  48. S. Ojha, M.S. Ali, M. Roy, S. Bhattacharya, Hopping frequency and conductivity relaxation of promising chalcogenides: AC conductivity and dielectric relaxation approaches. Mater. Res. Express. 8, 085203 (2021). https://doi.org/10.1088/2053-1591/ac1d17

    Article  ADS  CAS  Google Scholar 

  49. A.M. Fayad, M.A. Ouis, R.M.M. Morsi, R.L. Elwan, Enhancement of electrical conductivity associated with non-bridged oxygen defects in molybdenum phosphate oxide glass via doping of SrO. Sci. Rep. 13, 1–14 (2023). https://doi.org/10.1038/s41598-023-45333-7

    Article  CAS  Google Scholar 

  50. A.K. Abdul Gafoor, J. Thomas, M.M. Musthafa, P.P. Pradyumnan, Effects of Sm 3+ doping on dielectric properties of anatase TiO 2. J. Electron. Mater. 40, 2152–2158 (2011). https://doi.org/10.1007/s11664-011-1707-9

    Article  ADS  CAS  Google Scholar 

  51. A. Malik, S. Hameed, M.J. Siddiqui, M.M. Haque, M. Muneer, Influence of ce doping on the electrical and optical properties of TiO 2 and its photocatalytic activity for the degradation of remazol brilliant blue R. Int. J. Photoenergy. 2013, 768348 (2013). https://doi.org/10.1155/2013/768348

    Article  CAS  Google Scholar 

  52. B. Behera, P. Nayak, R.N.P. Choudhary, Studies of dielectric and impedance properties of KCa2V5O15 ceramics. J. Phys. Chem. Solids 69, 1990–1995 (2008). https://doi.org/10.1016/j.jpcs.2008.02.013

    Article  ADS  CAS  Google Scholar 

Download references

Funding

The authors declare that no funds, grants, or other support were received during the preparation of this manuscript.

Author information

Authors and Affiliations

Authors

Contributions

R Gupta—Methodology, Software, Formal analysis, Investigation, Data Curation and Writing—Original Draft.

S Agrawal—Conceptualization, Writing—Review & Editing, Visualization and Supervision.

Corresponding author

Correspondence to Sadhana Agrawal.

Ethics declarations

Ethics statements

• The manuscript is not currently being considered for publication in another journal.

• This material has not been published in whole or in part elsewhere.

• AI technologies are not used for data analysis and writing processes. The author has played an active and personal role in creating the manuscript and will take joint and individual responsibility for its contents.

• I have ensured that this work is original and fulfils all the requirements specified by the journal. Moreover, I have familiarized myself with your publication policy while preparing this paper.

Competing interests

The authors declare that they have no known competing financial interests to disclose.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Gupta, R., Agrawal, S. Investigation of structural, morphological and dielectric properties of yttrium magnesium silicate oxyapatite doped with Gd3+ ions. emergent mater. (2024). https://doi.org/10.1007/s42247-024-00682-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s42247-024-00682-5

Keywords

Navigation