Skip to main content
Log in

Physiochemical and biological evaluation of stirrer- and autoclaved-based syntheses of cerium oxide nanoparticles using ginger (Zingiber officinale) extract

  • Original Article
  • Published:
Emergent Materials Aims and scope Submit manuscript

Abstract

The purpose of this work was to examine the physiochemical and biological aspects of plant-mediated cerium oxide nanomaterials (CeO2 NMs) using Zingiber officinale extract using stirring-based and autoclaved-based syntheses. X-ray diffraction analysis confirmed that the synthesized CeO2 NMs exhibited the cubic fluorite crystal structure with the particle diameters of 3.73 nm (stirred) and 3.81 nm (autoclaved). Fourier transform infrared analysis confirmed the attachment of various functional groups that are covalently bonded to the CeO2 NMs. Scanning electron microscopy images confirmed the spherical-agglomerated morphology of CeO2 NMs. The assessment of the CeO2 NM antioxidant properties using the radical scavenging assays showed a higher scavenging capacity of 34% and 43% for stirred-CeO2 NMs, respectively. Similarly, stirred-CeO2 NMs exhibited significant total antioxidant capacity (61 µgAAE/mg) and total reduction potential (52 µgAAE/mg) than autoclaved-CeO2 NMs. Likewise, stirred-CeO2 NM potential was determined to be higher for enzyme inhibitory activities (α-amylase, urease, and lipase) as compared to autoclaved-CeO2 NMs. The significant peroxidase-like activity was depicted by stirred-CeO2 NMs. Antibacterial activity of CeO2 NMs and the ginger extract was found to be mild (7–7.5 mm zone of inhibition) against tested bacterial strains except for S. entertica, against which ginger extract showed a moderate zone of inhibition (9 mm). The study concludes that ginger extract can synthesize CeO2 NMs following different synthetic modes. The presence of enough oxygen vacancies in stirred-CeO2 NMs facilitates the enhanced shifting between Ce3+ and Ce4+ by interaction with hydrogen peroxide (H2O2), implying that nanomaterials hold promise for further exploration in biomedical applications.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

Data availability

The data is reported in the manuscript.

References

  1. K. Sakthiraj, B. Karthikeyan, Synthesis and characterization of cerium oxide nanoparticles using different solvents for electrochemical applications. Appl. Phys. A 126(1), 52 (2020)

    Article  ADS  CAS  Google Scholar 

  2. P.B. Chouke, T. Shrirame, A.K. Potbhare, A. Mondal, A.R. Chaudhary, S. Mondal et al., Bioinspired metal/metal oxide nanoparticles: a road map to potential applications. Mater. Today Adv. 16, 100314 (2022)

    Article  CAS  Google Scholar 

  3. R.G. Chaudhary, P.B. Chouke, R.D. Bagade, A.K. Potbhare, K.M. Dadure, Molecular docking and antioxidant activity of Cleome simplicifolia assisted synthesis of cerium oxide nanoparticles. Mater. Today: Proc. 29, 1085–1090 (2020)

    Google Scholar 

  4. S.M. Dizaj, F. Lotfipour, M. Barzegar-Jalali, M.H. Zarrintan, K. Adibkia, Antimicrobial activity of the metals and metal oxide nanoparticles. Mater. Sci. Eng. C 44, 278–284 (2014)

    Article  CAS  Google Scholar 

  5. H. Jan, M.A. Khan, H. Usman, M. Shah, R. Ansir, S. Faisal et al., The Aquilegia pubiflora (Himalayan columbine) mediated synthesis of nanoceria for diverse biomedical applications. RSC Adv. 10(33), 19219–19231 (2020)

    Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

  6. A.S. Karakoti, P. Munusamy, K. Hostetler, V. Kodali, S. Kuchibhatla, G. Orr et al., Preparation and characterization challenges to understanding environmental and biological impacts of ceria nanoparticles. Surf. Interface Anal. 44(8), 882–889 (2012)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. B. Elahi, M. Mirzaee, M. Darroudi, R.K. Oskuee, K. Sadri, M.S. Amiri, Preparation of cerium oxide nanoparticles in Salvia Macrosiphon Boiss seeds extract and investigation of their photo-catalytic activities. Ceram. Int. 45(4), 4790–4797 (2019)

    Article  CAS  Google Scholar 

  8. S.M. Mousavi-Kouhi, A. Beyk-Khormizi, M.S. Amiri, M. Mashreghi, A. Hashemzadeh, V. Mohammadzadeh et al., Plant gel-mediated synthesis of gold-coated nanoceria using ferula gummosa: characterization and estimation of its cellular toxicity toward breast cancer cell lines. J. Funct. Biomaterials. 14(7), 332 (2023)

    Article  CAS  Google Scholar 

  9. D. Dutta, R. Mukherjee, M. Patra, M. Banik, R. Dasgupta, M. Mukherjee et al., Green synthesized cerium oxide nanoparticle: A prospective drug against oxidative harm. Colloids Surf. B 147, 45–53 (2016)

    Article  CAS  Google Scholar 

  10. C. Korsvik, S. Patil, S. Seal, W.T. Self, Superoxide dismutase mimetic properties exhibited by vacancy engineered ceria nanoparticles. Chem. Commun. 10, 1056–1058 (2007)

    Article  Google Scholar 

  11. D. Zhou, T. Fang, L.-Q. Lu, L. Yi, Neuroprotective potential of cerium oxide nanoparticles for focal cerebral ischemic stroke. J. Huazhong Univ. Sci.Technol. Med. Sci. 36, 480–6 (2016)

    Article  CAS  Google Scholar 

  12. H. Ma, Z. Liu, P. Koshy, C.C. Sorrell, J.N. Hart, DFT investigation of biocatalytic mechanisms from pH-driven, multi-enzyme, biomimetic behavior in CeO2. arXiv preprint arXiv:2104. 10994. (2021)

  13. M.E. Taghavizadeh Yazdi, M. Darroudi, M.S. Amiri, H.A. Hosseini, F. Nourbakhsh, M. Mashreghi et al., Anticancer, antimicrobial, and dye degradation activity of biosynthesised silver nanoparticle using Artemisia kopetdaghensis. Micro Nano Lett. 15(14), 1046–1050 (2020)

    Article  Google Scholar 

  14. M. Nadeem, R. Khan, K. Afridi, A. Nadhman, S. Ullah, S. Faisal et al., Green synthesis of cerium oxide nanoparticles (CeO2 NPs) and their antimicrobial applications: a review. Int. J. Nanomedicine. 15, 5951–5961 (2020)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. I. Meydan, H. Seckin, H. Burhan, T. Gür, B. Tanhaei, F. Sen, Arum italicum mediated silver nanoparticles: synthesis and investigation of some biochemical parameters. Environ. Res. 204, 112347 (2022)

    Article  CAS  PubMed  Google Scholar 

  16. F. Javadi, M.E.T. Yazdi, M. Baghani, A. Es-haghi, Biosynthesis, characterization of cerium oxide nanoparticles using Ceratonia siliqua and evaluation of antioxidant and cytotoxicity activities. Mater. Res. Express. 6(6), 065408 (2019)

    Article  ADS  CAS  Google Scholar 

  17. S. Banerjee, H. Mullick, J. Banerjee, A. Ghosh, Zingiber officinale:‘a natural gold.’ Int. J. Pharm. Bio-Sci. 2, 283–294 (2011)

    Google Scholar 

  18. H.E.A. Mohamed, S. Afridi, A.T. Khalil, M. Ali, T. Zohra, R. Akhtar et al., Promising antiviral, antimicrobial and therapeutic properties of green nanoceria. Nanomedicine 15(05), 467–488 (2020)

    Article  CAS  PubMed  Google Scholar 

  19. N.S. Devi, D.M. Ganapathy, S. Rajeshkumar, S. Maiti, Characterization and antimicrobial activity of cerium oxide nanoparticles synthesized using neem and ginger. J. Adv. Pharm. Technol. Res. 13(Suppl 2), S491 (2022)

    PubMed  PubMed Central  Google Scholar 

  20. K. Saravanakumar, A. Sathiyaseelan, A.V.A. Mariadoss, M.-H. Wang, Antioxidant and antidiabetic properties of biocompatible ceria oxide (CeO2) nanoparticles in mouse fibroblast NIH3T3 and insulin resistant HepG2 cells. Ceram. Int. 47(6), 8618–8626 (2021)

    Article  CAS  Google Scholar 

  21. R. Re, N. Pellegrini, A. Proteggente, A. Pannala, M. Yang, C. Rice-Evans, Antioxidant activity applying an improved ABTS radical cation decolorization assay. Free Radic. Biol. Med. 26(9–10), 1231–1237 (1999)

    Article  CAS  PubMed  Google Scholar 

  22. A. Sajjad, S.H. Bhatti, Z. Ali, G.H. Jaffari, N.A. Khan, Z.F. Rizvi et al., Photoinduced fabrication of zinc oxide nanoparticles: transformation of morphological and biological response on light irradiance. ACS Omega 6(17), 11783–11793 (2021)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. A. Ali, S. Ambreen, R. Javed, S. Tabassum, I. Ul Haq, M. Zia, ZnO nanostructure fabrication in different solvents transforms physio-chemical, biological and photodegradable properties. Mater. Sci. Eng. C 74, 137–145 (2017)

    Article  CAS  Google Scholar 

  24. A. Hashim, M.S. Khan, M. Khan, M. Baig, S. Ahmad, Antioxidant and α-amylase inhibitory property of Phyllanthus virgatus L.: an in vitro and molecular interaction study. BioMed. Res. Int. 2013. Article ID 729393 (2013)

  25. M. Biglar, K. Soltani, F. Nabati, R. Bazl, F. Mojab, M. Amanlou, A preliminary investigation of the jack-bean urease inhibition by randomly selected traditionally used herbal medicine. Iran. J. Pharm. Res.: IJPR. 11(3), 831 (2012)

    PubMed  PubMed Central  Google Scholar 

  26. G.J. McDougall, N.N. Kulkarni, D. Stewart, Berry polyphenols inhibit pancreatic lipase activity in vitro. Food Chem. 115(1), 193–199 (2009)

    Article  CAS  Google Scholar 

  27. S. Sloan-Dennison, S. Laing, N.C. Shand, D. Graham, K. Faulds, Correction: a novel nanozyme assay utilising the catalytic activity of silver nanoparticles and SERRS. Analyst 142(20), 3993 (2017)

    Article  ADS  CAS  PubMed  Google Scholar 

  28. F. Göl, A. Aygün, A. Seyrankaya, T. Gür, C. Yenikaya, F. Şen, Green synthesis and characterization of Camellia sinensis mediated silver nanoparticles for antibacterial ceramic applications. Mater. Chem. Phys. 250, 123037 (2020)

    Article  Google Scholar 

  29. M.S Pujar, S.M. Hunagund, V.R. Desai, S. Patil, A.H. Sidarai, One-step synthesis and characterizations of cerium oxide nanoparticles in an ambient temperature via Co-precipitation method. AIP Conference Proceedings: AIP Publishing; 2018

  30. V. Pisal, P. Wakchaure, N. Patil, S. Bhagwat, Green synthesized CeO2 quantum dots: a study of its antimicrobial potential. Mater. Res. Express. 6(11), 115409 (2019)

    Article  ADS  Google Scholar 

  31. A. Butt, J.S. Ali, A. Sajjad, S. Naz, M. Zia, Biogenic synthesis of cerium oxide nanoparticles using petals of Cassia glauca and evaluation of antimicrobial, enzyme inhibition, antioxidant, and nanozyme activities. Biochem. Syst. Ecol. 104, 104462 (2022)

    Article  CAS  Google Scholar 

  32. P. Mahmoodi, A. Motavalizadehkakhky, M. Darroudi, J. Mehrzad, R. Zhiani, Green synthesis of cerium oxide nanoparticles using zucchini peel extract for cytotoxic and photocatalytic properties. Bioprocess Biosyst. Eng. 46, 1163–1173 (2023)

    Article  CAS  PubMed  Google Scholar 

  33. A. Miri, H. Beiki, A. Najafidoust, M. Khatami, M. Sarani, Cerium oxide nanoparticles: green synthesis using Banana peel, cytotoxic effect, UV protection and their photocatalytic activity. Bioprocess Biosyst. Eng. 44(9), 1891–1899 (2021)

    Article  CAS  PubMed  Google Scholar 

  34. M. Farahmandjou, M. Zarinkamar, T. Firoozabadi, Synthesis of cerium oxide (CeO2) nanoparticles using simple CO-precipitation method. Rev. Mex. Fís. 62(5), 496–499 (2016)

    CAS  Google Scholar 

  35. S. Aseyd Nezhad, A. Es‐haghi, M.H. Tabrizi, Green synthesis of cerium oxide nanoparticle using Origanum majorana L. leaf extract, its characterization and biological activities. Appl. Organomet. Chem. 34(2), 1–10 (2020)

  36. N. Sisubalan, V.S. Ramkumar, A. Pugazhendhi, C. Karthikeyan, K. Indira, K. Gopinath et al., ROS-mediated cytotoxic activity of ZnO and CeO 2 nanoparticles synthesized using the Rubia cordifolia L. leaf extract on MG-63 human osteosarcoma cell lines. Environ. Sci. Pollut. Res. 25, 10482–10492 (2018)

  37. N. Masood, M.A. Irshad, R. Nawaz, T. Abbas, M.A. Abdel-Maksoud, W.H. AlQahtani et al., Green synthesis, characterization and adsorption of chromium and cadmium from wastewater using cerium oxide nanoparticles; reaction kinetics study. J. Mol. Struct. 1294, 136563 (2023)

    Article  CAS  Google Scholar 

  38. S.Chandra, S. Khan, B. Avula, H. Lata, M.H. Yang, M.A. ElSohly et al., Assessment of total phenolic and flavonoid content, antioxidant properties, and yield of aeroponically and conventionally grown leafy vegetables and fruit crops: a comparative study. Evid.-Based Complement. Alternat. Med. 2014: Article ID 253875 (2014)

  39. N. Alizadeh, A. Salimi, T.-K. Sham, P. Bazylewski, G. Fanchini, Intrinsic enzyme-like activities of cerium oxide nanocomposite and its application for extracellular H2O2 detection using an electrochemical microfluidic device. ACS Omega 5(21), 11883–11894 (2020)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  40. R. Tian, J. Xu, Q. Luo, C. Hou, J. Liu, Rational design and biological application of antioxidant nanozymes. Front. Chem. 8, 831 (2021)

    Article  ADS  PubMed  PubMed Central  Google Scholar 

  41. A. Sajjad, S. Hussain, G.H. Jaffari, S. Hanif, M.N. Qureshi, M. Zia, Fabrication of Hematite (α-Fe2O3) nanoparticles under different spectral lights transforms physio chemical, biological, and nanozymatic properties. Nano Trends. 2, 100010 (2023)

    Article  Google Scholar 

  42. A. Arumugam, C. Karthikeyan, A.S.H. Hameed, K. Gopinath, S. Gowri, V. Karthika, Synthesis of cerium oxide nanoparticles using Gloriosa superba L. leaf extract and their structural, optical and antibacterial properties. Mater. Sci. Eng.: C 49, 408–15 (2015)

    Article  CAS  Google Scholar 

  43. N. Pandiyan, B. Murugesan, J. Sonamuthu, S. Samayanan, S. Mahalingam, [BMIM] PF6 ionic liquid mediated green synthesis of ceramic SrO/CeO2 nanostructure using Pedalium murex leaf extract and their antioxidant and antibacterial activities. Ceram. Int. 45(9), 12138–12148 (2019)

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Contributions

SA and AS performed the experiment. MZ did the analyses. MZ conceived the idea, supervised the work, and proofread the manuscript.

Corresponding author

Correspondence to Muhammad Zia.

Ethics declarations

Conflict of interest

The authors declare no competing interests.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Awan, S., Sajjad, A., Ali, Z. et al. Physiochemical and biological evaluation of stirrer- and autoclaved-based syntheses of cerium oxide nanoparticles using ginger (Zingiber officinale) extract. emergent mater. (2024). https://doi.org/10.1007/s42247-024-00651-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s42247-024-00651-y

Keywords

Navigation