Skip to main content
Log in

Development of high strength, thermal resistant and electrical properties of polyindole/carboxymethyl chitosan/alumina blend nanocomposites for flexible energy storage applications

  • Original Article
  • Published:
Emergent Materials Aims and scope Submit manuscript

Abstract

In order to rectify and overcome environmental perturbations and crises, researchers have recently been developing environmentally friendly materials in various sectors. The present work aims at the synthesis, characterization and properties of conductive polymer blend nanocomposites based on polyindole (PIN) and carboxymethyl chitosan (CMCS) with various concentrations of alumina (Al2O3) nanoparticles. The FTIR measurement reveals the distinct absorption peaks of Al2O3 in the PIN/CMCS blend. The minimum optical bandgap energy was observed for 10 wt% Al2O3 nanoparticle loaded blend nanocomposite. The presence of Al2O3 nanoparticles in the blend was confirmed by the change in intensity and transformation in XRD of the pure blend. SEM unveiled the improved dispersion of Al2O3 nanofillers within the polymer blend matrix. TEM structural evaluations of the compounds revealed the uniform dispersion of alumina at lower concentrations, transitioning into an increased degree of particle clustering at higher loadings. Thermogravimetric studies show that the addition of Al2O3 improved the thermal stability of the conductive polymer blend nanocomposite. The AC electric conductivity was improved considerably with increasing temperature and the inclusion of Al2O3. The mobilization energy of AC conductivity reduces with a rise in temperature. The mechanical strength and surface hardness of the PIN/CMCS/Al2O3 composites were greatly boosted by the bonding of Al2O3 with the conductive blend. This conductive polymer blend nanocomposite material is excellent for electronic components and bendable dielectric circuits due to improvements in optical qualities, thermal stability and electrical performance.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Scheme 1
Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11

Similar content being viewed by others

Data availability

All the data presented in the manuscript are original and would be provided on request.

References

  1. M. Lo, N. Ktari, D.G. Sall, A. Madani, S.E. Aaron, J.J. Aaron, Z. Mekhalif, J. Delhalle, M.M. Chehimi, Emergent Mater. 3, 815–839 (2020)

    Article  CAS  Google Scholar 

  2. B. Shao, Y. He, T. Wang, D. Yan, Y. Yuan, T. Du, C. Chi, Y. Deng, Y. Geng, J. Macromol. Chem. Phys. (2023)

  3. J. Bhadra, N. Al-Thani, Emergent Mater. 2, 67–77 (2019)

    Article  CAS  Google Scholar 

  4. O.C. Francis, A.V. Sunday, Emergent Mater. 2, 89–99 (2023)

    Article  Google Scholar 

  5. K. Amruth, K.M. Abhirami, S. Sankar, M.T. Ramesan, Inorg. Chem. Commun. 136, 109184 (2022)

    Article  CAS  Google Scholar 

  6. M.M. Mahat, A.S.M. Sabere, J. Azizi, N.A.N. Amdan, Emergent Mater. 4, 279–292 (2021)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. U. Bubniene, V. Samukaite, A. Ratautaite, V. Ramanavicius, Bucinskas. Polymers 14, 2984 (2022)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. M. Shanmugam, A. Augustin, S. Mohan, B. Honnappa, C. Chuaicham, S. Rajendran, T.K. Hoang, K. Sasaki, K. Sekar, Fuel 325, 124899 (2022)

    Article  CAS  Google Scholar 

  9. D.J. Bhagat, G.R. Dhokane, J. Mater. Sci. Mater. Electron. 27, 11790–11797 (2016)

    Article  CAS  Google Scholar 

  10. M.T. Ramesan, Int. J. Polym. Mater. Polym. Biomater. 62, 277–283 (2013)

    Article  CAS  Google Scholar 

  11. S. Ravulapalli, K.T.B. Padal, B.R. Kumar, Emergent Mater. 6, 1923–1933 (2023)

    Article  CAS  Google Scholar 

  12. M. Swati, A. Saini, J. Inorg. Organomet. Polym. 33, 1955–1968 (2023)

    Article  CAS  Google Scholar 

  13. J.S. Jeyaprakash, P. Murugan, S.K. Balu, G. Annadurai, Emergent Mater. 6, 1577–1587 (2023)

    Article  CAS  Google Scholar 

  14. G. Magesh, G. Bhoopathi, N. Nithya, J. Inorg. Organomet. Polym. 28, 1528–1539 (2018)

    Article  CAS  Google Scholar 

  15. J. Zeng, X. Ren, S. Zhu, Y. Gao, J. Mater. Sci. 57, 11062–11076 (2022)

    Article  CAS  Google Scholar 

  16. N.S. Rejinold, G. Choi, J.H. Choy, Emergent Mater. 4, 1125–1142 (2021)

    Article  CAS  Google Scholar 

  17. P. Saharan, V. Kumar, A.K. Sharma, H.N.M.E. Mahmud, N.B. Mohamad, J.H. Santos, S.N.A. Zakaria, Emergent Mater. 3, 871–879 (2020)

    Article  CAS  Google Scholar 

  18. K. Meera, M.T. Ramesan, Polym Compos. 44, 1135–1148 (2023)

    Article  CAS  Google Scholar 

  19. Y. Geng, H. Xue, Z. Zhang, A.C. Panayi, S. Knoedler, W. Zhou, B. Mi, G. Liu, Carbohydr. Polym., 120555 (2023)

  20. J. Chen, L. Luo, C. Cen, Y. Liu, H. Li, Y. Wang, Int. J. Biol. Macromol. 220, 462–471 (2022)

    Article  CAS  PubMed  Google Scholar 

  21. Z. Xu, L. Zou, F. Xie, X. Zhang, X. Ou, G. Gao, ACS App. Mater. Inter. 14, 44799–44808 (2022)

    Article  CAS  Google Scholar 

  22. S. Britto, V. Ramasamy, P. Murugesan, J. Senthilselvan, Emergent Mater. 6, 1935–1949 (2023)

    Article  CAS  Google Scholar 

  23. A. Salimi, S. Maghsoudian, M. Mirzataheri, Polym. Bull. 74, 1283–1298 (2017)

    Article  CAS  Google Scholar 

  24. K. Parvathi, M.T. Ramesan, J. Thermoplast. Compos. Mater. 36, 1918–1937 (2023)

    Article  CAS  Google Scholar 

  25. R. Gunasekaran, J. Charles, J. Polym. Res. 29, 381 (2023)

    Article  Google Scholar 

  26. K. Meera, M.T. Ramesan, J. Polym. Environ. 31, 447–460 (2023)

    Article  CAS  Google Scholar 

  27. R. Utane, U.B. Mahatme, G.D. Tidke, A. Rangari, Mater., Today: Proc. 49, 2161–2167 (2022)

    CAS  Google Scholar 

  28. S. Mozaffari, J. Behdani, S.M.B. Ghorashi, Polym. Bull. 79, 6777–6796 (2022)

    Article  CAS  Google Scholar 

  29. G. Rajasudha, A.P. Nancy, T. Paramasivam, N. Boukos, V. Narayanan, A. Stephen, Int. J. Polymer. Mater. 60, 877–892 (2011)

    Article  CAS  Google Scholar 

  30. R. Nakazato, Y. Kou, D. Yamamoto, Res. Chem. Intermed. 47, 269–285 (2021)

    Article  CAS  Google Scholar 

  31. S. Sankar, A.A. Naik, T. Anilkumar, M.T. Ramesan, J Appl Polym Sci. 137, 49145 (2020)

    Article  CAS  Google Scholar 

  32. M.T. Ramesan, T. Anjitha, K. Parvathi, T. Anilkumar, G. Mathew, Adv. Polym. Technol. 37, 3639–3649 (2018)

    Article  CAS  Google Scholar 

  33. K. Mistry, P. Kaladiya, B. Tripathi, P. Chandra, Int. J. Hydrogen Energy. 52, 1446–1457 (2024)

    Article  CAS  Google Scholar 

  34. A. Nihmath, M.T. Ramesan, J. Inorg. Organomet. Polym. 27, 481–489 (2017)

    Article  CAS  Google Scholar 

  35. Q.A. Alsulami, A. Rajeh, Results Phys. 28, 104675 (2021)

    Article  Google Scholar 

  36. E.M. Alharbi, A. Rajeh, J. Mater. Sci. Mater. Electron. 33, 22196–22207 (2022)

    Article  CAS  Google Scholar 

  37. M.T. Ramesan, K.P. Greeshma, K. Parvathi, T. Anilkumar, J. Vinyl Addit. Technol. 26, 187–195 (2020)

    Article  CAS  Google Scholar 

  38. H. Hammami, S. Fakhfakh, M. Lagache, A. Kallel, Polym. Compos. 41, 4043–4053 (2020)

    Article  CAS  Google Scholar 

  39. P. Mannu, M. Palanisamy, G. Bangaru, S. Ramakrishnan, A. Kandasami, P. Kumar, Appl. Phys. A 125, 1–3 (2019)

    Article  Google Scholar 

  40. M.T. Ramesan, R. Alex, Polym. Int. 50, 1298–1308 (2001)

    Article  CAS  Google Scholar 

  41. S. Sheik, G.K. Nagaraja, K. Prashantha, Polym. Eng. Sci. 58, 1923–1930 (2018)

    Article  CAS  Google Scholar 

  42. V. Kumar, M.N. Alam, S.S. Park, J. Polym. Res. 29, 251 (2022)

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Contributions

M.S.B contributed to experimental design, carrying out measurements and writing, and manuscript composition; S contributed formal analysis and visualization. AJK contributed to formal analysis and editing; B.K.B contributed to formal analysis, visualization, conceptualization and resources; MTR contributed to data curation, investigation, methodology, visualization and supervision.

Corresponding author

Correspondence to Manammel Thankappan Ramesan.

Ethics declarations

Ethical approval

There are no ethical issues involved in this study.

Conflict of interest

The authors declare no competing interests.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Baskar, M.S., Sooryajayan, Kalladi, A.J. et al. Development of high strength, thermal resistant and electrical properties of polyindole/carboxymethyl chitosan/alumina blend nanocomposites for flexible energy storage applications. emergent mater. 7, 887–898 (2024). https://doi.org/10.1007/s42247-024-00629-w

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s42247-024-00629-w

Keywords

Navigation