Skip to main content

Advertisement

Log in

Interactions of human β-defensin 28 with solid supports mimicking bacterial and mammalian cell membranes

  • Original Article
  • Published:
Emergent Materials Aims and scope Submit manuscript

Abstract

Development of resistance to conventional antibiotics by several bacterial strains is on the rise. To address this issue, antimicrobial peptides (AMPs) have recently proposed as alternatives to conventional antibiotics. Beside their excellent antimicrobial performance, these new antibiotics have less susceptibility to bacterial resistance development, making them safe and effective alternatives. Thus, this work presents a quantitative study on the interactions of human β-defensin 28 (an antimicrobial peptide) with bacterial-like (POPG-terminated) and mammalian-like (POPC-terminated) bilayer membranes. The first leaflet of both membranes was created through the self-assembly of thiolipid (TL) on the gold surface of a surface plasmon resonance (SPR) sensor chip. The second membrane leaflet was created by the fusion of either 1-palmitoyl-2-oleoyl-sn-glycero-3-phospho-(1-rac-glycerol) (abbreviated as POPG) or 1-palmitoyl-2-oleoyl-sn-glycero-3-phosphocholine (abbreviated as POPC) phospholipid on the TL layer. The binding kinetics of human β-defensin 28 (hBD28) onto POPG and POPC surfaces were investigated. The surface saturation (Γmax) and affinity (Ka) of hBD28 for the POPG surface were estimated to be 4.51 ± 0.12 mg m−2 and 0.12 ± 0.01 mL μg−1, respectively. However, Γmax and Ka of the peptide (i.e., hBD28) for POPC surface were much lower: 1.65 mg m−2 and 0.03 mL μg−1, respectively. These findings suggest that hBD28 is reasonably selective towards pathogen-like membranes (i.e., POPG). hBD28 was also found to form an acceptably stable coating (via adsorption) on hydrophobic (TL) and negatively charged hydrophilic (11-mercaptoundecanoic acid, abbreviated as MUA) surfaces. The surface concentrations of the peptide on the TL and MUA surfaces at saturation were estimated to be 3.82 ± 0.32 and 4.47 ± 0.25 mg m−2, while its affinities for those surfaces were estimated to be 0.14 ± 0.05 and 0.13 ± 0.03 mL μg−1, respectively.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

Data availability

Data will be made available upon reasonable requests.

References

  1. Z.U. Arif, M.Y. Khalid, R. Noroozi, M. Hossain, H.T.H. Shi, A. Tariq, S. Ramakrishna, R. Umer, Additive manufacturing of sustainable biomaterials for biomedical applications. Asian J. Pharm. Sci. 18, 100812 (2023). https://doi.org/10.1016/J.AJPS.2023.100812

    Article  PubMed  PubMed Central  Google Scholar 

  2. E.H.P. de León, A.U. Valle-Pérez, Z.N. Khan, C.A.E. Hauser, Intelligent and smart biomaterials for sustainable 3D printing applications. Curr. Opin. Biomed. Eng. 26, 100450 (2023). https://doi.org/10.1016/J.COBME.2023.100450

    Article  Google Scholar 

  3. M.K. Al-Sakkaf, S.A. Onaizi, Crude oil/water nanoemulsions stabilized by rhamnolipid biosurfactant: effects of acidity/basicity and salinity on emulsion characteristics, stability, and demulsification. Fuel. 344, 128052 (2023). https://doi.org/10.1016/J.FUEL.2023.128052

    Article  CAS  Google Scholar 

  4. M. Iddrisu, S.A. Bahadi, M.K. Al-Sakkaf, U. Ahmed, U. Zahid, Q.A. Drmosh, S.A. Onaizi, Harnessing zeolitic imidazolate framework-8 (ZIF-8) nanoparticles for enhancing H2S scavenging capacity of waste vegetable oil-based drilling fluids. Emergent Mater. 1–12 (2023). https://doi.org/10.1007/S42247-023-00535-7/METRICS

  5. M. Iddrisu, M.K. Al-Sakkaf, S.A. Bahadi, U. Zahid, Q.A. Drmosh, U. Ahmed, S.A. Onaizi, Waste to a commodity: the utilization of waste cooking oil for the formulation of oil-based drilling mud with H2S scavenging capability bestowed by the incorporation of ZIF-67. Emergent Mater. 1–10 (2023). https://doi.org/10.1007/S42247-023-00531-X/METRICS

  6. M.K. Al-Sakkaf, S.A. Onaizi, Rheology, characteristics, stability, and pH-responsiveness of biosurfactant-stabilized crude oil/water nanoemulsions. Fuel. 307, 121845 (2022). https://doi.org/10.1016/J.FUEL.2021.121845

    Article  CAS  Google Scholar 

  7. M. Alshabib, S.A. Onaizi, Effects of surface active additives on the enzymatic treatment of phenol and its derivatives: a mini review. Curr. Pollut. Rep. 5, 52–65 (2019). https://doi.org/10.1007/S40726-019-00105-8/TABLES/3

    Article  CAS  Google Scholar 

  8. S.A. Lateef, O.O. Ajumobi, S.A. Onaizi, Enzymatic desulfurization of crude oil and its fractions: a mini review on the recent progresses and challenges. Arab. J. Sci. Eng. 44, 5181–5193 (2019). https://doi.org/10.1007/S13369-019-03800-2/METRICS

    Article  CAS  Google Scholar 

  9. S.A. Onaizi, Statistical analyses of the effect of rhamnolipid biosurfactant addition on the enzymatic removal of bisphenol A from wastewater. Biocatal. Agric. Biotechnol. 32, 101929 (2021). https://doi.org/10.1016/J.BCAB.2021.101929

    Article  CAS  Google Scholar 

  10. S.A. Onaizi, Waste cooking oil invert emulsion drilling mud formulation with an effective H2S scavenging performance. Geoenergy Sci. Eng. 228, 212017 (2023). https://doi.org/10.1016/J.GEOEN.2023.212017

    Article  CAS  Google Scholar 

  11. N. Chen, C. Jiang, Antimicrobial peptides: structure, mechanism, and modification. Eur. J. Med. Chem. 255, 115377 (2023). https://doi.org/10.1016/J.EJMECH.2023.115377

    Article  CAS  PubMed  Google Scholar 

  12. J. Xuan, W. Feng, J. Wang, R. Wang, B. Zhang, L. Bo, Z.S. Chen, H. Yang, L. Sun, Antimicrobial peptides for combating drug-resistant bacterial infections. Drug Resist. Updat. 68, 100954 (2023). https://doi.org/10.1016/J.DRUP.2023.100954

    Article  CAS  PubMed  Google Scholar 

  13. D. Andreu, L. Rivas, Animal antimicrobial peptides: an overview. Biopoly. 47, 415–433 (1998). https://doi.org/10.1002/(SICI)1097-0282(1998)47:6

    Article  CAS  Google Scholar 

  14. P. Bulet, R. Stöcklin, L. Menin, Anti-microbial peptides: from invertebrates to vertebrates. Immunol. Rev. 198, 169–184 (2004). https://doi.org/10.1111/j.0105-2896.2004.0124.x

    Article  CAS  PubMed  Google Scholar 

  15. A.J. De Lucca, T.J. Walsh, Antifungal peptides: novel therapeutic compounds against emerging pathogens. Antimicrob. Agents Chemother. 43, 1–11 (1999). https://doi.org/10.1128/AAC.43.1.1

    Article  PubMed  PubMed Central  Google Scholar 

  16. M.R. Yeaman, N.Y. Yount, Mechanisms of antimicrobial peptide action and resistance. Pharmacol. Rev. 55, 27–55 (2003). https://doi.org/10.1124/pr.55.1.2

    Article  CAS  PubMed  Google Scholar 

  17. K. Hamamoto, Y. Kida, Y. Zhang, T. Shimizu, K. Kuwano, Antimicrobial activity and stability to proteolysis of small linear cationic peptides with D-amino acid substitutions. Microbiol. Immunol. 46, 741–749 (2002). https://doi.org/10.1111/j.1348-0421.2002.tb02759.x

    Article  CAS  PubMed  Google Scholar 

  18. H. Haidari, L. Melguizo-Rodríguez, A.J. Cowin, Z. Kopecki, Therapeutic potential of antimicrobial peptides for treatment of wound infection. Am. J. Phys. Cell Phys. 324, C29–C38 (2023). https://doi.org/10.1152/AJPCELL.00080.2022/ASSET/IMAGES/MEDIUM/C-00080-2022R01.PNG

    Article  CAS  Google Scholar 

  19. R.E.W. Hancock, H.-G. Sahl, Antimicrobial and host-defense peptides as new anti-infective therapeutic strategies. Nat. Biotechnol. 24, 1551–1557 (2006). https://doi.org/10.1038/nbt1267

    Article  CAS  PubMed  Google Scholar 

  20. V.C. Albiol Matanic, V. Castilla, Antiviral activity of antimicrobial cationic peptides against Junin virus and herpes simplex virus. Int. J. Antimicrob. Agents 23, 382–389 (2004). https://doi.org/10.1016/j.ijantimicag.2003.07.022

    Article  CAS  PubMed  Google Scholar 

  21. W.E. Robinson, B. McDougall, D. Tran, M.E. Selsted, Anti-HIV-1 activity of indolicidin, an antimicrobial peptide from neutrophils. J. Leukoc. Biol. 63, 94–100 (1998). https://doi.org/10.1002/jlb.63.1.94

    Article  CAS  PubMed  Google Scholar 

  22. P. Tzou, J.-M. Reichhart, B. Lemaitre, Constitutive expression of a single antimicrobial peptide can restore wild-type resistance to infection in immunodeficient Drosophila mutants. Proc. Natl. Acad. Sci. 99, 2152–2157 (2002). https://doi.org/10.1073/pnas.042411999

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. C. Piper, L.A. Draper, P.D. Cotter, R.P. Ross, C. Hill, A comparison of the activities of lacticin 3147 and nisin against drug-resistant Staphylococcus aureus and Enterococcus species. J. Antimicrob. Chemother. 64, 546–551 (2009). https://doi.org/10.1093/jac/dkp221

    Article  CAS  PubMed  Google Scholar 

  24. Y.-M. Lin, S.-J. Wu, T.-W. Chang, C.-F. Wang, C.-S. Suen, M.-J. Hwang, M.D.-T. Chang, Y.-T. Chen, Y.-D. Liao, Outer membrane protein I of Pseudomonas aeruginosa is a target of cationic antimicrobial peptide/protein. J. Biol. Chem. 285, 8985–8994 (2010). https://doi.org/10.1074/jbc.M109.078725

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. R. Hussain, C.L. Joannou, G. Siligardi, Identification and characterization of novel lipophilic antimicrobial peptides derived from naturally occurring proteins. Int. J. Pept. Res. Ther. 12, 269–273 (2006). https://doi.org/10.1007/S10989-006-9033-4/METRICS

    Article  CAS  Google Scholar 

  26. A. Cherkasov, K. Hilpert, H. Jenssen, C.D. Fjell, M. Waldbrook, S.C. Mullaly, R. Volkmer, R.E.W. Hancock, Use of artificial intelligence in the design of small peptide antibiotics effective against a broad spectrum of highly antibiotic-resistant superbugs. ACS Chem. Biol. 4, 65–74 (2009). https://doi.org/10.1021/CB800240J/ASSET/IMAGES/LARGE/CB-2008-00240J_0004.JPEG

    Article  CAS  PubMed  Google Scholar 

  27. M.N. Melo, R. Ferre, M.A.R.B. Castanho, Antimicrobial peptides: linking partition, activity and high membrane-bound concentrations. Nat. Rev. Microbiol. 7, 245–250 (2009). https://doi.org/10.1038/nrmicro2095

    Article  CAS  PubMed  Google Scholar 

  28. Y. Ishitsuka, D.S. Pham, A.J. Waring, R.I. Lehrer, K.Y.C. Lee, Insertion selectivity of antimicrobial peptide protegrin-1 into lipid monolayers: effect of head group electrostatics and tail group packing. Biochim. Biophys. Acta - Biomembr. 1758, 1450–1460 (2006). https://doi.org/10.1016/j.bbamem.2006.08.001

    Article  CAS  Google Scholar 

  29. K.A. Brogden, Antimicrobial peptides: pore formers or metabolic inhibitors in bacteria? Nat. Rev. Microbiol. 3(3), 238–250 (2005). https://doi.org/10.1038/nrmicro1098

    Article  CAS  PubMed  Google Scholar 

  30. Y. Pouny, D. Rapaport, A. Mor, P. Nicolas, Y. Shai, Interaction of antimicrobial dermaseptin and its fluorescently labeled analogues with phospholipid membranes. Biochemistry. 31, 12416–12423 (1992). https://doi.org/10.1021/bi00164a017

    Article  CAS  PubMed  Google Scholar 

  31. Y. Shai, Mechanism of the binding, insertion and destabilization of phospholipid bilayer membranes by α-helical antimicrobial and cell non-selective membrane-lytic peptides. Biochim. Biophys. Acta - Biomembr. 1462, 55–70 (1999). https://doi.org/10.1016/S0005-2736(99)00200-X

    Article  CAS  Google Scholar 

  32. E.F. Haney, S. Nathoo, H.J. Vogel, E.J. Prenner, Induction of non-lamellar lipid phases by antimicrobial peptides: a potential link to mode of action. Chem. Phys. Lipids 163, 82–93 (2010). https://doi.org/10.1016/j.chemphyslip.2009.09.002

    Article  CAS  PubMed  Google Scholar 

  33. Y. Imura, M. Nishida, Y. Ogawa, Y. Takakura, K. Matsuzaki, Action mechanism of tachyplesin I and effects of PEGylation. Biochim. Biophys. Acta - Biomembr. 1768, 1160–1169 (2007). https://doi.org/10.1016/j.bbamem.2007.01.005

    Article  CAS  Google Scholar 

  34. H. Jenssen, P. Hamill, R.E.W. Hancock, Peptide antimicrobial agents. Clin. Microbiol. Rev. 19, 491–511 (2006). https://doi.org/10.1128/CMR.00056-05

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. J. Strauss, A. Kadilak, C. Cronin, C.M. Mello, T.A. Camesano, Binding, inactivation, and adhesion forces between antimicrobial peptide cecropin P1 and pathogenic E. coli. Colloids Surf. B: Biointerfaces. 75, 156–164 (2010). https://doi.org/10.1016/j.colsurfb.2009.08.026

    Article  CAS  PubMed  Google Scholar 

  36. M. Wu, E. Maier, R. Benz, R.E.W. Hancock, Mechanism of interaction of different classes of cationic antimicrobial peptides with planar bilayers and with the cytoplasmic membrane of Escherichia coli. Biochemistry. 38, 7235–7242 (1999). https://doi.org/10.1021/BI9826299/ASSET/IMAGES/LARGE/BI9826299F00008.JPEG

    Article  CAS  PubMed  Google Scholar 

  37. S.A. Onaizi, S.S.J. Leong, Tethering antimicrobial peptides: current status and potential challenges. Biotechnol. Adv. 29, 67–74 (2011). https://doi.org/10.1016/j.biotechadv.2010.08.012

    Article  CAS  PubMed  Google Scholar 

  38. V. Bender, M. Ali, M. Amon, E. Diefenbach, N. Manolios, T cell antigen receptor peptide-lipid membrane interactions using surface plasmon resonance. J. Biol. Chem. 279, 54002–54007 (2004). https://doi.org/10.1074/jbc.M403909200

    Article  CAS  PubMed  Google Scholar 

  39. M.A. Cooper, A. Hansson, S. Löfås, D.H. Williams, A vesicle capture sensor chip for kinetic analysis of interactions with membrane-bound receptors. Anal. Biochem. 277, 196–205 (2000). https://doi.org/10.1006/abio.1999.4389

    Article  CAS  PubMed  Google Scholar 

  40. M. Gheorghiu, A. Olaru, A. Tar, C. Polonschii, E. Gheorghiu, Sensing based on assessment of non-monotonous effect determined by target analyte: case study on pore-forming compounds. Biosens. Bioelectron. 24, 3517–3523 (2009). https://doi.org/10.1016/J.BIOS.2009.05.007

    Article  CAS  PubMed  Google Scholar 

  41. H. Mozsolits, H.-J. Wirth, J. Werkmeister, M.-I. Aguilar, Analysis of antimicrobial peptide interactions with hybrid bilayer membrane systems using surface plasmon resonance. Biochim. Biophys. Acta - Biomembr. 1512, 64–76 (2001). https://doi.org/10.1016/S0005-2736(01)00303-0

    Article  CAS  Google Scholar 

  42. A.L. Plant, Self-assembled phospholipid/alkanethiol biomimetic bilayers on gold. Langmuir. 9, 2764–2767 (1993). https://doi.org/10.1021/LA00035A004/ASSET/LA00035A004.FP.PNG_V03

    Article  CAS  Google Scholar 

  43. C.S.B. Chia, J. Torres, M.A. Cooper, I.T. Arkin, J.H. Bowie, The orientation of the antibiotic peptide maculatin 1.1 in DMPG and DMPC lipid bilayers. Support for a pore-forming mechanism. FEBS Lett. 512, 47–51 (2002). https://doi.org/10.1016/S0014-5793(01)03313-0

    Article  CAS  PubMed  Google Scholar 

  44. K. Matsuzaki, K. Sugishita, N. Fujii, K. Miyajima, Molecular basis for membrane selectivity of an antimicrobial peptide, magainin 2. Biochemistry. 34, 3423–3429 (1995). https://doi.org/10.1021/bi00010a034

    Article  CAS  PubMed  Google Scholar 

  45. Z. OREN, J.C. LERMAN, G.H. GUDMUNDSSON, B. AGERBERTH, Y. SHAI, Structure and organization of the human antimicrobial peptide LL-37 in phospholipid membranes: relevance to the molecular basis for its non-cell-selective activity, Biochem. J. 341 (1999) 501–513. https://doi.org/10.1042/bj3410501.

  46. H. Lang, C. Duschl, H. Vogel, A new class of thiolipids for the attachment of lipid bilayers on gold surfaces. Langmuir. 10, 197–210 (1994). https://doi.org/10.1021/LA00013A029/ASSET/LA00013A029.FP.PNG_V03

    Article  CAS  Google Scholar 

  47. N. Papo, Y. Shai, Exploring peptide membrane interaction using surface plasmon resonance: differentiation between pore formation versus membrane disruption by lytic peptides. Biochemistry. 42, 458–466 (2003). https://doi.org/10.1021/bi0267846

    Article  CAS  PubMed  Google Scholar 

  48. S. Terrettaz, T. Stora, C. Duschl, H. Vogel, Protein binding to supported lipid membranes: investigation of the cholera toxin-ganglioside interaction by simultaneous impedance spectroscopy and surface plasmon resonance. Langmuir. 9, 1361–1369 (1993). https://doi.org/10.1021/LA00029A033/ASSET/LA00029A033.FP.PNG_V03

    Article  CAS  Google Scholar 

  49. S.A. Onaizi, M.S. Nasser, F. Twaiq, Lysozyme binding to tethered bilayer lipid membranes prepared by rapid solvent exchange and vesicle fusion methods. Eur. Biophys. J. 43, 191–198 (2014). https://doi.org/10.1007/S00249-014-0955-Z/FIGURES/6

    Article  CAS  PubMed  Google Scholar 

  50. J. Andrä, A. Böhling, T.M.A. Gronewold, U. Schlecht, M. Perpeet, T. Gutsmann, Surface acoustic wave biosensor as a tool to study the interaction of antimicrobial peptides with phospholipid and lipopolysaccharide model membranes. Langmuir. 24, 9148–9153 (2008). https://doi.org/10.1021/LA801252T/ASSET/IMAGES/LARGE/LA-2008-01252T_0006.JPEG

    Article  PubMed  Google Scholar 

  51. M. Beseničar, P. Maček, J.H. Lakey, G. Anderluh, Surface plasmon resonance in protein–membrane interactions. Chem. Phys. Lipids. 141, 169–178 (2006). https://doi.org/10.1016/j.chemphyslip.2006.02.010

    Article  CAS  PubMed  Google Scholar 

  52. A.L. Plant, Supported hybrid bilayer membranes as rugged cell membrane mimics. Langmuir. 15, 5128–5135 (1999). https://doi.org/10.1021/LA981662T/ASSET/IMAGES/LARGE/LA981662TF00009.JPEG

    Article  CAS  Google Scholar 

  53. S.A. Onaizi, M.S. Nasser, N.M.A. Al-Lagtah, Adsorption of an anionic surfactant at air-liquid and different solid-liquid interfaces from solutions containing high counter-ion concentration. Colloid Polym. Sci. 293, 2891–2899 (2015). https://doi.org/10.1007/S00396-015-3694-5/FIGURES/6

    Article  CAS  Google Scholar 

  54. S.A. Onaizi, Dynamic surface tension and adsorption mechanism of surfactin biosurfactant at the air–water interface. Eur. Biophys. J. 47, 631–640 (2018). https://doi.org/10.1007/S00249-018-1289-Z/FIGURES/8

    Article  CAS  PubMed  Google Scholar 

  55. A.M. Alkadhem, M.A.A. Elgzoly, A. Alshami, S.A. Onaizi, Kinetics of CO2 capture by novel amine-functionalized magnesium oxide adsorbents. Colloids Surf. A Physicochem. Eng. Asp. 616, 126258 (2021). https://doi.org/10.1016/J.COLSURFA.2021.126258

    Article  CAS  Google Scholar 

  56. S.A. Onaizi, Effect of salinity on the characteristics, pH-triggered demulsification and rheology of crude oil/water nanoemulsions. Sep. Purif. Technol. 281, 119956 (2022). https://doi.org/10.1016/J.SEPPUR.2021.119956

    Article  CAS  Google Scholar 

  57. S.A. Onaizi, Effect of oil/water ratio on rheological behavior, droplet size, zeta potential, long-term stability, and acid-induced demulsification of crude oil/water nanoemulsions. J. Pet. Sci. Eng. 209, 109857 (2022). https://doi.org/10.1016/J.PETROL.2021.109857

    Article  CAS  Google Scholar 

  58. S.A. Onaizi, L. He, A.P.J. Middelberg, The construction, fouling and enzymatic cleaning of a textile dye surface. J. Colloid Interface Sci. 351, 203–209 (2010). https://doi.org/10.1016/j.jcis.2010.07.030

    Article  CAS  PubMed  Google Scholar 

  59. S.A. Onaizi, L. He, A.P.J. Middelberg, Proteolytic cleaning of a surface-bound rubisco protein stain. Chem. Eng. Sci. 64, 3868–3878 (2009). https://doi.org/10.1016/j.ces.2009.05.027

    Article  CAS  Google Scholar 

  60. S.A. Onaizi, L. He, A.P.J. Middelberg, Rapid screening of surfactant and biosurfactant surface cleaning performance. Colloids Surf. B: Biointerfaces. 72, 68–74 (2009). https://doi.org/10.1016/j.colsurfb.2009.03.015

    Article  CAS  PubMed  Google Scholar 

  61. M. Iddrisu, W.A. Al-Amrani, A.A. Merghani, Q.A. Drmosh, S.A. Onaizi, Effects of detergent on enzyme adsorption onto solid surfaces. Emergent Mater. 1–8 (2023). https://doi.org/10.1007/S42247-023-00578-W/METRICS

  62. D.K.S. Tay, G. Rajagopalan, X. Li, Y. Chen, L.H.L. Lua, S.S.J. Leong, A new bioproduction route for a novel antimicrobial peptide. Biotechnol. Bioeng. 108, 572–581 (2011). https://doi.org/10.1002/bit.22970

    Article  CAS  PubMed  Google Scholar 

  63. R. Pethig, Dielectric and electrical properties of biological materials. J Bioelectricity. 4, vii–ix (1985). https://doi.org/10.3109/15368378509033258

    Article  Google Scholar 

  64. S.A. Ganiyu, M.A. Suleiman, W.A. Al-Amrani, A.K. Usman, S.A. Onaizi, Adsorptive removal of organic pollutants from contaminated waters using zeolitic imidazolate framework composites: a comprehensive and up-to-date review. Sep. Purif. Technol. 318, 123765 (2023). https://doi.org/10.1016/J.SEPPUR.2023.123765

    Article  CAS  Google Scholar 

  65. A.A.Q. Al-Qadri, Q.A. Drmosh, S.A. Onaizi, Enhancement of bisphenol a removal from wastewater via the covalent functionalization of graphene oxide with short amine molecules. Case Stud. Chem. Environ. Eng. 6, 100233 (2022). https://doi.org/10.1016/J.CSCEE.2022.100233

    Article  CAS  Google Scholar 

  66. U.M. Ismail, S.A. Onaizi, M.S. Vohra, Aqueous Pb(II) removal using ZIF-60: adsorption studies, response surface methodology and machine learning predictions. Nanomaterials. 13, 1402 (2023). https://doi.org/10.3390/NANO13081402

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  67. S.A. Onaizi, M.S. Nasser, F. Twaiq, Adsorption and thermodynamics of biosurfactant, surfactin, monolayers at the air-buffered liquid interface. Colloid Polym. Sci. 292, 1649–1656 (2014). https://doi.org/10.1007/S00396-014-3223-Y/FIGURES/6

    Article  CAS  Google Scholar 

  68. S.A. Onaizi, M.S. Nasser, N.M.A. Al-Lagtah, Self-assembly of a surfactin nanolayer at solid–liquid and air–liquid interfaces. Eur. Biophys. J. 45, 331–339 (2016). https://doi.org/10.1007/S00249-015-1099-5/FIGURES/5

    Article  CAS  PubMed  Google Scholar 

  69. S.A. Onaizi, M.S. Nasser, N.M.A. Al-Lagtah, Benchmarking the self-assembly of surfactin biosurfactant at the liquid–air interface to those of synthetic surfactants. J. Surfactant Deterg. 19, 645–652 (2016). https://doi.org/10.1007/S11743-016-1796-9/FIGURES/3

    Article  CAS  Google Scholar 

  70. L. He, J.W.F. Robertson, J. Li, I. Kärcher, S.M. Schiller, W. Knoll, R. Naumann, Tethered bilayer lipid membranes based on monolayers of thiolipids mixed with a complementary dilution molecule. 1. Incorporation of channel peptides. Langmuir. 21, 11666–11672 (2005). https://doi.org/10.1021/la051771p

    Article  CAS  PubMed  Google Scholar 

  71. J. Leitch, J. Kunze, J.D. Goddard, A.L. Schwan, R.J. Faragher, R. Naumann, W. Knoll, J.R. Dutcher, J. Lipkowski, In situ PM-IRRAS studies of an archaea analogue thiolipid assembled on a Au(111) electrode surface. Langmuir. 25, 10354–10363 (2009). https://doi.org/10.1021/LA900907D/SUPPL_FILE/LA900907D_SI_004.AVI

    Article  CAS  PubMed  Google Scholar 

  72. S. Lingler, I. Rubinstein, W. Knoll, A. Offenhäusser, Fusion of small unilamellar lipid vesicles to alkanethiol and thiolipid self-assembled monolayers on gold. Langmuir. 13, 7085–7091 (1997). https://doi.org/10.1021/LA970600K/ASSET/IMAGES/LARGE/LA970600KF00010.JPEG

    Article  CAS  Google Scholar 

  73. S. Noinville, F. Bruston, C. El Amri, D. Baron, P. Nicolas, Conformation, orientation, and adsorption kinetics of dermaseptin B2 onto synthetic supports at aqueous/solid interface. Biophys. J. 85, 1196–1206 (2003). https://doi.org/10.1016/S0006-3495(03)74555-X

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  74. A. Marr, W. Gooderham, R. Hancock, Antibacterial peptides for therapeutic use: obstacles and realistic outlook. Curr. Opin. Pharmacol. 6, 468–472 (2006). https://doi.org/10.1016/j.coph.2006.04.006

    Article  CAS  PubMed  Google Scholar 

  75. M. Zasloff, Antimicrobial peptides of multicellular organisms. Nature. 415, 389–395 (2002). https://doi.org/10.1038/415389a

    Article  CAS  PubMed  Google Scholar 

  76. L. Zhang, T.J. Falla, Cationic antimicrobial peptides – an update. Expert Opin. Investig. Drugs. 13, 97–106 (2004). https://doi.org/10.1517/13543784.13.2.97

    Article  PubMed  Google Scholar 

  77. J.E. Cummings, T.K. Vanderlick, Binding orientation and activity determinants of the antimicrobial peptide cryptdin-4 revealed by potency of mutants. Colloids Surf. B: Biointerfaces. 60, 236–242 (2007). https://doi.org/10.1016/j.colsurfb.2007.06.023

    Article  CAS  PubMed  Google Scholar 

  78. L. Yu, L. Guo, J.L. Ding, B. Ho, S. Feng, J. Popplewell, M. Swann, T. Wohland, Interaction of an artificial antimicrobial peptide with lipid membranes. Biochim. Biophys. Acta - Biomembr. 1788, 333–344 (2009). https://doi.org/10.1016/j.bbamem.2008.10.005

    Article  CAS  Google Scholar 

  79. A. Mechler, S. Praporski, K. Atmuri, M. Boland, F. Separovic, L.L. Martin, Specific and selective peptide-membrane interactions revealed using quartz crystal microbalance. Biophys. J. 93, 3907–3916 (2007). https://doi.org/10.1529/biophysj.107.116525

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  80. S. Terrettaz, W.-P. Ulrich, H. Vogel, Q. Hong, L.G. Dover, J.H. Lakey, Stable self-assembly of a protein engineering scaffold on gold surfaces. Protein Sci. 11, 1917–1925 (2002). https://doi.org/10.1110/ps.0206102

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  81. T. Stora, J.H. Lakey, H. Vogel, Ion-channel gating in transmembrane receptor proteins: functional activity in tethered lipid membranes. Angew. Chem. Int. Ed. 38 (1999). https://doi.org/10.1002/(SICI)1521-3773(19990201)38:3

  82. R. Naumann, S.M. Schiller, F. Giess, B. Grohe, K.B. Hartman, I. Kärcher, I. Köper, J. Lübben, K. Vasilev, W. Knoll, Tethered lipid bilayers on ultraflat gold surfaces. Langmuir. 19, 5435–5443 (2003). https://doi.org/10.1021/LA0342060/ASSET/IMAGES/LARGE/LA0342060F00008.JPEG

    Article  CAS  Google Scholar 

  83. Q. Hong, I. Gutiérrez-Aguirre, A. Barlič, P. Malovrh, K. Kristan, Z. Podlesek, P. Maček, D. Turk, J.M. González-Mañas, J.H. Lakey, G. Anderluh, Two-step membrane binding by Equinatoxin II, a pore-forming toxin from the sea anemone, involves an exposed aromatic cluster and a flexible helix. J. Biol. Chem. 277, 41916–41924 (2002). https://doi.org/10.1074/jbc.M204625200

    Article  CAS  PubMed  Google Scholar 

  84. K. Hall, M.-I. Aguilar, Membrane interactions of antimicrobial β-peptides: the role of amphipathicity versus secondary structure induction. Biopolymers. 92, 554–564 (2009). https://doi.org/10.1002/bip.21311

    Article  CAS  PubMed  Google Scholar 

Download references

Funding

This work was supported by the Deanship of Research Oversight and Coordination (DROC) at King Fahd University of Petroleum and Minerals (KFUPM) in the terms of Research Grant #DF191022.

Author information

Authors and Affiliations

Authors

Contributions

Both authors contributed to the study conception and design. Material preparation, data collection, and analysis were performed by both authors. The first draft of the manuscript was written by both authors. Both authors read and approved the final manuscript.

Corresponding author

Correspondence to Sagheer A. Onaizi.

Ethics declarations

Conflict of interest

The authors declare no competing interests.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Onaizi, S.A., Leong, S.S. Interactions of human β-defensin 28 with solid supports mimicking bacterial and mammalian cell membranes. emergent mater. 7, 263–273 (2024). https://doi.org/10.1007/s42247-023-00601-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s42247-023-00601-0

Keywords

Navigation