Skip to main content

Advertisement

Log in

Reducing gasoline engine emissions using novel bio-based oxygenates: a review

  • Review
  • Published:
Emergent Materials Aims and scope Submit manuscript

Abstract

The rate of increase in greenhouse gas concentrations in the atmosphere has already reached a critical point. Day by day, the number of vehicles on the road is increasing in a geometric progression, which has led to an increase in carbon monoxide and hydrocarbon emissions from spark-ignition engines. In this review, the formation of engine emissions and their effects on environmental and human aspects are discussed in detail. This review clearly discusses how fuel properties affect engine performance and reduce emissions. This paper is a review of the use of various types of oxygenates with gasoline on engine emissions and the improvement of the performance of engine combustion by oxygen enhancement. The various oxygenates (methanol, ethanol, ethyl tert butyl ether, methyl tert butyl ether, butanol, dimethyl carbonate, dimethyl ether, and diisopropyl ether) are reviewd in this paper based on their production and the feasibility of adding them to fossil fuels. The study found that fuel volatility, oxygen percentage, and octane number are the desired properties to use as oxygenates in gasoline. Among different oxygenates, DIPE would be a suitable oxygenate additive to gasoline based on its blending properties, and performance, emission, and combustion behaviour of gasoline-DIPE blends.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

Data Availability

The datasets analysed during the current study are available from the corresponding author on reasonable request.

Abbreviations

CR:

Compression ratio

BSFC:

Brake specific fuel consumption

BTE:

Brake thermal efficiency

CO:

Carbon monoxide

CO2 :

Carbon dioxide

CR:

Compression ratio

EPA:

Environmental protection agency

GHG:

Greenhouse gas

VOC:

Volatile organic compound

H2O:

Water molecule

RVP:

Reid vapour pressure

SO2 :

Sulphur dioxide

HC:

Hydrocarbon

PAN:

Peroxyacyl nitrates

BMEP:

Brake mean effective pressure

MPFI:

Multi-point fuel injection

NO:

Nitric oxide

NOx:

Oxides of nitrogen

PAH:

Polycyclic aromatic hydrocarbon

PM:

Particulate mass

SI:

Spark ignition

UG:

Unleaded gasoline

References

  1. M. Eyidogan, A.N. Ozsezen, M. Canakci, A. Turkcan, Impact of alcohol-gasoline fuel blends on the performance and combustion characteristics of an SI engine. Fuel 89(10), 2713–2720 (2010). https://doi.org/10.1016/j.fuel.2010.01.032

    Article  CAS  Google Scholar 

  2. D. Bradley, Combustion and the design of future engine fuels. Proc. Inst. Mech. Eng. C J. Mech. Eng. Sci. 223(12), 2751–2765 (2009). https://doi.org/10.1243/09544062JMES1519

    Article  Google Scholar 

  3. X.P. Nguyen, A.T. Hoang, A.I. Ölçer, & T.T. Huynh, Record decline in global CO2 emissions prompted by COVID-19 pandemic and its implications on future climate change policies. Energy Sources, Part A: Recover. Utilization Environ. Eff. (2021). .https://doi.org/10.1080/15567036.2021.1879969

  4. V.V. Le, T.T. Huynh, A. Ölçer, A.T. Hoang, A.T. Le, S.K. Nayak, & V.V. Pham, A remarkable review of the effect of lockdowns during COVID-19 pandemic on global PM emissions. In Energy Sources, Part A: Recover. Utilization Environ. Eff. (2020). https://doi.org/10.1080/15567036.2020.1853854

  5. H. Bakır, Ü. Ağbulut, A.E. Gürel, G. Yıldız, U. Güvenç, M.E.M. Soudagar, A.T. Hoang, B. Deepanraj, G. Saini, A. Afzal, Forecasting of future greenhouse gas emission trajectory for India using energy and economic indexes with various metaheuristic algorithms. J. Clean. Prod. 360, 131946 (2022). https://doi.org/10.1016/j.jclepro.2022.131946

    Article  CAS  Google Scholar 

  6. G. Broustail, F. Halter, P. Seers, G. Moréac, C. Mounaim-Rousselle, Comparison of regulated and non-regulated pollutants with iso-octane/butanol and iso-octane/ethanol blends in a port-fuel injection Spark-ignition engine. Fuel 94, 251–261 (2012). https://doi.org/10.1016/j.fuel.2011.10.068

    Article  CAS  Google Scholar 

  7. N. Rahmat, A.Z. Abdullah, A.R. Mohamed, Recent progress on innovative and potential technologies for glycerol transformation into fuel additives: a critical review. Renew. Sustain. Energy Rev. 14(3), 987–1000 (2010). https://doi.org/10.1016/j.rser.2009.11.010

    Article  CAS  Google Scholar 

  8. G. Dhamodaran, G.S. Esakkimuthu, Y.K. Pochareddy, H. Sivasubramanian, Investigation of n-butanol as fuel in a four-cylinder MPFI SI engine. Energy 125, 726–735 (2017). https://doi.org/10.1016/j.energy.2017.02.134

    Article  CAS  Google Scholar 

  9. T.M.M. Abdellatief, M.A. Ershov, V.M. Kapustin, E.A. Chernysheva, V.D. Savelenko, T. Salameh, M.A. Abdelkareem, A.G. Olabi, Uniqueness technique for introducing high octane environmental gasoline using renewable oxygenates and its formulation on Fuzzy modeling. Sci. Total Environ. 802, 149863 (2022). https://doi.org/10.1016/j.scitotenv.2021.149863

    Article  CAS  Google Scholar 

  10. Sangeeta, S. Moka, M. Pande, M. Rani, R. Gakhar, M. Sharma, J. Rani, A.N. Bhaskarwar, Alternative fuels: an overview of current trends and scope for future. Renew. Sustain. Energy Rev. 32, 697–712 (2014). https://doi.org/10.1016/j.rser.2014.01.023

    Article  CAS  Google Scholar 

  11. M.A. Ershov, V.D. Savelenko, N.S. Shvedova, V.M. Kapustin, T.M.M. Abdellatief, N.V. Karpov, E.V. Dutlov, D.V. Borisanov, An evolving research agenda of merit function calculations for new gasoline compositions. Fuel 322, 124209 (2022). https://doi.org/10.1016/j.fuel.2022.124209

    Article  CAS  Google Scholar 

  12. U. Latif, B. Najafi, G. Glanznig, F.L. Dickert, Quality assessment of automotive fuel and oil-improving environmental sustainability Dedicated to Prof. Georg Winckler on the occasion of his 70th birthday. Sensors Actuators, B Chem. 188, 584–589 (2013). https://doi.org/10.1016/j.snb.2013.07.065

    Article  CAS  Google Scholar 

  13. R. Magnusson, C. Nilsson, The influence of oxygenated fuels on emissions of aldehydes and ketones from a two-stroke spark ignition engine. Fuel 90(3), 1145–1154 (2011). https://doi.org/10.1016/j.fuel.2010.10.026

    Article  CAS  Google Scholar 

  14. H. Kazemi Shariat Panahi, M. Dehhaghi, M. Aghbashlo, K. Karimi, M. Tabatabaei, Conversion of residues from agro-food industry into bioethanol in Iran: an under-valued biofuel additive to phase out MTBE in gasoline. Renew. Energy 145, 699–710 (2020). https://doi.org/10.1016/j.renene.2019.06.081

    Article  CAS  Google Scholar 

  15. A.T. Hoang, S. Nižetić, A.I. Ölçer, H. Chyuan Ong, Synthesis pathway and combustion mechanism of a sustainable biofuel 2,5-dimethylfuran: progress and prospective. Fuel 286, 119337 (2021). https://doi.org/10.1016/j.fuel.2020.119337

    Article  CAS  Google Scholar 

  16. G. Dhamodaran, G. Sundaram Esakkimuthu, T. Palani, & R. Krishnan, Feasibility of adding fusel oil as an oxygenate to gasoline on reducing mpfi engine emissions. Environ. Eng. Manag. J. 21(7), 1255–1264 (2022). https://doi.org/10.30638/eemj.2022.112

  17. Z. Guo, X. Yu, Y. Du, T. Wang, Comparative study on combustion and emissions of SI engine with gasoline port injection plus acetone-butanol-ethanol (ABE), isopropanol-butanol-ethanol (IBE) or butanol direct injection. Fuel 316, 123363 (2022). https://doi.org/10.1016/j.fuel.2022.123363

    Article  CAS  Google Scholar 

  18. Z. Şahin, O. Nazım Aksu, C. Bayram, The effects of n-butanol/gasoline blends and 2.5% n-butanol/gasoline blend with 9% water injection into the intake air on the SIE engine performance and exhaust emissions. Fuel 303, 121210 (2021). https://doi.org/10.1016/j.fuel.2021.121210

    Article  CAS  Google Scholar 

  19. I. Cesur, Effects of water injection strategies on performance and exhaust emissions in an ethanol fueled gasoline engine. Therm. Sci. Eng. Prog. 101397 (2022). https://doi.org/10.1016/j.tsep.2022.101397

  20. G. Kaya, Experimental comparative study on combustion, performance and emissions characteristics of ethanol-gasoline blends in a two stroke uniflow gasoline engine. Fuel 317, 120917 (2022). https://doi.org/10.1016/j.fuel.2021.120917

    Article  CAS  Google Scholar 

  21. M.H. Dinesh, & G.N. Kumar, Effects of Compression and mixing ratio on nh3/h2 fueled si engine performance, combustion stability, and emission. Energy Convers. Manag.: X; 100269 (2022). https://doi.org/10.1016/j.ecmx.2022.100269

  22. Z. Zhao, Y. Huang, X. Yu, Z. Guo, L. Yu, S. Meng, D. Li, Experimental study on combustion and emission of an SI engine with natural gas/ethanol combined injection. Fuel 318, 123476 (2022). https://doi.org/10.1016/j.fuel.2022.123476

    Article  CAS  Google Scholar 

  23. X. Li, D. Li, J. Liu, T. Ajmal, A. Aitouche, R. Mobasheri, O. Rybdylova, Y. Pei, Z. Peng, Exploring the potential benefits of ethanol direct injection (EDI) timing and pressure on particulate emission characteristics in a dual-fuel spark ignition (DFSI) engine. J. Clean. Prod. 357, 131938 (2022). https://doi.org/10.1016/j.jclepro.2022.131938

    Article  CAS  Google Scholar 

  24. S. Sathyanarayanan, S. Suresh, C.G. Saravanan, M. Vikneswaran, G. Dhamodaran, A. Sonthalia, J.S.F. Josephin, E.G. Varuvel, Experimental investigation and performance prediction of gasoline engine operating parameters fueled with diisopropyl ether-gasoline blends: response surface methodology based optimization. J. Clean. Prod. 375, 133941 (2022). https://doi.org/10.1016/j.jclepro.2022.133941

    Article  CAS  Google Scholar 

  25. D. Gopinath, G.S. Esakkimuthu, Experimental studies on performance and emission characteristics of diesel engine fuelled with neem oil methyl ester blends. Int. Energy J. 15(1), 33–42 (2016)

    Google Scholar 

  26. C.H. Halios, C. Landeg-Cox, S.D. Lowther, A. Middleton, T. Marczylo, S. Dimitroulopoulou, Chemicals in European residences – part I: a review of emissions, concentrations and health effects of volatile organic compounds (VOCs). Sci. Total Environ. 839, 156201 (2022). https://doi.org/10.1016/j.scitotenv.2022.156201

    Article  CAS  Google Scholar 

  27. H. Sivasubramanian, Y.K. Pochareddy, G. Dhamodaran, G.S. Esakkimuthu, Performance, emission and combustion characteristics of a branched higher mass, C3 alcohol (isopropanol) blends fuelled medium duty MPFI SI engine. Eng. Sci. Technol. Int. J. 20(2), 528–535 (2017). https://doi.org/10.1016/j.jestch.2016.11.013

    Article  Google Scholar 

  28. M. Tao, P. Zhao, B. VanDerWege, C. Iyer, H. Ge, Further study on wall film effects and flame quenching under engine thermodynamic conditions. Combust. Flame 216, 100–110 (2020). https://doi.org/10.1016/j.combustflame.2020.02.022

    Article  CAS  Google Scholar 

  29. M. Koike, T. Suzuoki, T. Takeuchi, T. Homma, S. Hariu, Y. Takeuchi, Cold-start performance of an ammonia-fueled spark ignition engine with an on-board fuel reformer. Int. J. Hydrogen Energy 46(50), 25689–25698 (2021). https://doi.org/10.1016/j.ijhydene.2021.05.052

    Article  CAS  Google Scholar 

  30. S. Tavakoli, M.V. Jensen, E. Pedersen, J. Schramm, Unburned hydrocarbon formation in a natural gas engine under sea wave load conditions. J. Mar. Sci. Technol. 26(1), 128–140 (2021). https://doi.org/10.1007/s00773-020-00726-5

    Article  Google Scholar 

  31. L. Lu, Y. Pei, J. Qin, Z. Peng, Y. Wang, K. Zhong, Experimental study on spatial distribution characteristics of cylinder-wall oil films under fuel spray impinging condition of GDI engine. Energy 254, 124381 (2022). https://doi.org/10.1016/j.energy.2022.124381

    Article  Google Scholar 

  32. D. Gopinath, K.V.N. Girishkumar, P. Yashwanth Kutti, Study on combustion, emission and performance behaviour of diesel engine using Cme blends. Int. J. Appl. Eng. Res. 10(4), 9017–9031 (2015)

  33. Z. Meng, B. Zeng, J. Tan, Z. Chen, J. Ou, Study of gas and particulate emission characteristics during the fast regeneration period of DPF. Fuel 317, 123353 (2022). https://doi.org/10.1016/j.fuel.2022.123353

    Article  CAS  Google Scholar 

  34. G. Dhamodaran, R. Krishnan, Y.K. Pochareddy, H.M. Pyarelal, H. Sivasubramanian, A.K. Ganeshram, A comparative study of combustion, emission, and performance characteristics of rice-bran-, neem-, and cottonseed-oil biodiesels with varying degree of unsaturation. Fuel 187, 296–305 (2017). https://doi.org/10.1016/j.fuel.2016.09.062

    Article  CAS  Google Scholar 

  35. A. Jacob, B. Ashok, K.M. Usman, D.M. Kulla, Influence of post-injection parameters on the performance of continuous regeneration trap to mitigate greenhouse gas and particulate emissions from CI engine. Energy 248, 123669 (2022). https://doi.org/10.1016/j.energy.2022.123669

  36. C.P. Hopper, P.N. Zambrana, U. Goebel, J. Wollborn, A brief history of carbon monoxide and its therapeutic origins. Nitric Oxide – Biol. Chem. 111–112, 45–63 (2021). https://doi.org/10.1016/j.niox.2021.04.001

    Article  CAS  Google Scholar 

  37. X. Sun, H. Liu, X. Duan, H. Guo, Y. Li, J. Qiao, Q. Liu, J. Liu, Effect of hydrogen enrichment on the flame propagation, emissions formation and energy balance of the natural gas spark ignition engine. Fuel 307(2), 121843 (2022). https://doi.org/10.1016/j.fuel.2021.121843

    Article  CAS  Google Scholar 

  38. J. Sun, J.A. Caton, T.J. Jacobs, Oxides of nitrogen emissions from biodiesel-fuelled diesel engines. Prog. Energy Combust. Sci. 36(6), 677–695 (2010). https://doi.org/10.1016/j.pecs.2010.02.004. (Elsevier Ltd.)

    Article  CAS  Google Scholar 

  39. P. Glarborg, J.A. Miller, B. Ruscic, S.J. Klippenstein, Modeling nitrogen chemistry in combustion. Prog. Energy Combust. Sci. 67, 31–68 (2018). https://doi.org/10.1016/j.pecs.2018.01.002

    Article  Google Scholar 

  40. R. Hu, F. Zhang, Z. Peng, Y. Pei, The NOx emission characteristics of gasoline vehicles during transient driving cycles. Transp. Res. Part D: Transp. Environ. 109, 103386 (2022). https://doi.org/10.1016/j.trd.2022.103386

    Article  Google Scholar 

  41. Y. Zhao, Y. Li, A. Kumar, Q. Ying, F. Vandenberghe, M.J. Kleeman, Separately resolving NOx and VOC contributions to ozone formation. Atmos. Environ. 285, 119224 (2022). https://doi.org/10.1016/j.atmosenv.2022.119224

    Article  CAS  Google Scholar 

  42. Z. Rahman, X. Wang, J. Zhang, Z. Yang, G. Dai, P. Verma, H. Mikulcic, M. Vujanovic, H. Tan, R.L. Axelbaum, Nitrogen evolution, NOX formation and reduction in pressurized oxy coal combustion. Renew. Sustain. Energy Rev. 157(X), 112020 (2022). https://doi.org/10.1016/j.rser.2021.112020

    Article  CAS  Google Scholar 

  43. M. Lubrano Lavadera, C. Brackmann, A.A. Konnov, Experimental and modeling study of laminar burning velocities and nitric oxide formation in premixed ethylene/air flames. Proc. Combust. Inst. 38(1), 395–404 (2021). https://doi.org/10.1016/j.proci.2020.06.062

    Article  CAS  Google Scholar 

  44. C. Lou, Z. Li, Y. Zhang, B.M. Kumfer, Soot formation characteristics in laminar coflow flames with application to oxy-combustion. Combust. Flame 227, 371–383 (2021). https://doi.org/10.1016/j.combustflame.2021.01.018

    Article  CAS  Google Scholar 

  45. M. Si, Q. Cheng, L. Yuan, Z. Luo, W. Yan, H. Zhou, Study on the combustion behavior and soot formation of single coal particle using hyperspectral imaging technique. Combust. Flame 233, 111568 (2021). https://doi.org/10.1016/j.combustflame.2021.111568

    Article  CAS  Google Scholar 

  46. R. Zhu, Y. Fu, L. Wang, J. Hu, L. He, M. Wang, Y. Lai, S. Su, Effects of a start-stop system for gasoline direct injection vehicles on fuel consumption and particulate emissions in hot and cold environments. Environ. Pollut. 308, 119689 (2022). https://doi.org/10.1016/j.envpol.2022.119689

    Article  CAS  Google Scholar 

  47. M. Dehhaghi, H. Kazemi Shariat Panahi, M. Aghbashlo, S.S. Lam, M. Tabatabaei, The effects of nanoadditives on the performance and emission characteristics of spark-ignition gasoline engines: a critical review with a focus on health impacts. Energy 225, 120259 (2021). https://doi.org/10.1016/j.energy.2021.120259

    Article  CAS  Google Scholar 

  48. S. Dasappa, J. Camacho, Fuel molecular structure effect on soot mobility size in premixed C6 hydrocarbon flames. Fuel 300, 120973 (2021). https://doi.org/10.1016/j.fuel.2021.120973

    Article  CAS  Google Scholar 

  49. Q. Liu, Y. Gao, W. Huang, Z. Ling, Z. Wang, X. Wang, Carbonyl compounds in the atmosphere: a review of abundance, source and their contributions to O3 and SOA formation. Atmos. Res. 274, 106184 (2022). https://doi.org/10.1016/j.atmosres.2022.106184

    Article  CAS  Google Scholar 

  50. Z. Yang, H.R. Cheng, Z.W. Wang, J. Peng, J.X. Zhu, X.P. Lyu, H. Guo, Chemical characteristics of atmospheric carbonyl compounds and source identification of formaldehyde in Wuhan. Central China. Atmos. Res. 228, 95–106 (2019). https://doi.org/10.1016/j.atmosres.2019.05.020

    Article  CAS  Google Scholar 

  51. E. Fumoto, S. Sato, Y. Kawamata, Y. Koyama, T. Yoshikawa, Y. Nakasaka, T. Tago, T. Masuda, Determination of carbonyl functional groups in lignin-derived fraction using infrared spectroscopy. Fuel 318, 123530 (2022). https://doi.org/10.1016/j.fuel.2022.123530

    Article  CAS  Google Scholar 

  52. P.V. Elumalai, S. Kumar Dash, M. Parthasarathy, N.R. Dhineshbabu, D. Balasubramanian, D. Nam Cao, T. Hai Truong, A. Le Tuan, A.T. Hoang, Combustion and emission behaviors of dual-fuel premixed charge compression ignition engine powered with n-pentanol and blend of diesel/waste tire oil included nanoparticles. Fuel 324, 124603 (2022). https://doi.org/10.1016/j.fuel.2022.124603

    Article  CAS  Google Scholar 

  53. A.T. Hoang, A.I. Ölçer, S. Nižetić, Prospective review on the application of biofuel 2,5-dimethylfuran to diesel engine. J. Energy Inst. 2021(94), 360–386 (2021). https://doi.org/10.1016/j.joei.2020.10.004

    Article  CAS  Google Scholar 

  54. K. Radhakrishnan Lawrence, Z. Huang, X.P. Nguyen, D. Balasubramanian, V.R. Gangula, R.R. Doddipalli, V.V. Le, S. Bharathy, A.T. Hoang, Exploration over combined impacts of modified piston bowl geometry and tert-butyl hydroquinone additive-included biodiesel/diesel blend on diesel engine behaviors. Fuel 2022(322), 124206 (2022). https://doi.org/10.1016/j.fuel.2022.124206

    Article  CAS  Google Scholar 

  55. N. Jeyakumar, Z. Huang, D. Balasubramanian, A.T. Le, X.P. Nguyen, P.L. Pandian, A.T. Hoang, Experimental evaluation over the effects of natural antioxidants on oxidation stability of binary biodiesel blend. Int. J. Energy Res. 46(14), 20437–20461 (2022). https://doi.org/10.1002/er.7956

    Article  CAS  Google Scholar 

  56. E. Khalife, M. Tabatabaei, A. Demirbas, M. Aghbashlo, Impacts of additives on performance and emission characteristics of diesel engines during steady state operation. Prog. Energy. Combust. Sci. 59, 32–78 (2017). https://doi.org/10.1016/j.pecs.2016.10.001

    Article  Google Scholar 

  57. M. Tabatabaei, M. Aghbashlo, B. Najafi, H. Hosseinzadeh-Bandbafha, S. FaizollahzadehArdabili, E. Akbarian, E. Khalife, P. Mohammadi, H. Rastegari, H.S. Ghaziaskar, Environmental impact assessment of the mechanical shaft work produced in a diesel engine running on diesel/biodiesel blends containing glycerol-derived triacetin. J. Clean. Prod. 223, 466–486 (2019). https://doi.org/10.1016/j.jclepro.2019.03.106

    Article  CAS  Google Scholar 

  58. S. Rajamohan, A. Hari Gopal, K.R. Muralidharan, Z. Huang, B. Paramasivam, T. Ayyasamy, X.P. Nguyen, A.T. Le, A.T. Hoang, Evaluation of oxidation stability and engine behaviors operated by Prosopis juliflora biodiesel/diesel fuel blends with presence of synthetic antioxidant. Sustain. Energy Technol. Assess. 52, 102086 (2022). https://doi.org/10.1016/j.seta.2022.102086

    Article  Google Scholar 

  59. G. Dhamodaran, G.S. Esakkimuthu, Experimental measurement of physico-chemical properties of oxygenate (DIPE) blended gasoline. Measurement 134, 280–285 (2019). https://doi.org/10.1016/j.measurement.2018.10.077

    Article  Google Scholar 

  60. G. Dhamodaran, G.S. Esakkimuthu, T. Palani, Feasibility of adding N-Butanol and di isopropyl ether with gasoline on its physico-chemical properties. Pet. Sci. Technol. 40(4), 486–503 (2022). https://doi.org/10.1080/10916466.2021.2003383

    Article  CAS  Google Scholar 

  61. C. Lkili, H. Aydin, The harmful effects of diesel engine exhaust emissions. Energy Sources, Part A: Recover. Utilization Environ. Eff. 34(10), 899–905 (2012). https://doi.org/10.1080/15567031003716709

    Article  CAS  Google Scholar 

  62. R. da Silva, R. Cataluña, E.W. de Menezes, D. Samios, C.M.S. Piatnicki, Effect of additives on the antiknock properties and Reid vapor pressure of gasoline. Fuel 84(7–8), 951–959 (2005). https://doi.org/10.1016/j.fuel.2005.01.008

    Article  CAS  Google Scholar 

  63. S. Babazadeh Shayan, S.M. Seyedpour, F. Ommi, Effect of oxygenates blending with gasoline to improve fuel properties. Chin. J. Mech. Eng. 25(4), 792–797 (2012). https://doi.org/10.3901/CJME.2012.04.792

    Article  CAS  Google Scholar 

  64. H. Yurismono, D.A. Sumarsono, I.M.I. Brunner, Y.S. Nugroho, Development of lower flammability limits testing apparatus for gasoline vapor – air mixture using an internal vaporizer at ambient conditions. Transp. Res. Interdisc. Perspect. 14, 100613 (2022). https://doi.org/10.1016/j.trip.2022.100613

    Article  Google Scholar 

  65. E. Christensen, J. Yanowitz, M. Ratcliff, R.L. McCormick, Renewable oxygenate blending effects on gasoline properties. Energy Fuels 25(10), 4723–4733 (2011). https://doi.org/10.1021/ef2010089

    Article  CAS  Google Scholar 

  66. Z. Mužíková, M. Pospíšil, G. Šebor, Volatility and phase stability of petrol blends with ethanol. Fuel 88(8), 1351–1356 (2009). https://doi.org/10.1016/j.fuel.2009.02.003

    Article  CAS  Google Scholar 

  67. V.F. Andersen, J.E. Anderson, T.J. Wallington, S.A. Mueller, O.J. Nielsen, Vapor pressures of alcohol-gasoline blends. Energy Fuels 24(6), 3647–3654 (2010). https://doi.org/10.1021/ef100254w

    Article  CAS  Google Scholar 

  68. L.M. Rodríguez-Antón, M. Legrand, F. Gutiérrez-Martín, Á. Serrano-Corroto, Theoretical determination of distillation curves of gasoline, ethanol and ethyl tert-butyl ether ternary blends from the experimental distillation curve of gasoline. Fuel 308, 122030 (2022). https://doi.org/10.1016/j.fuel.2021.122030

    Article  CAS  Google Scholar 

  69. R. Niculescu, M. Năstase, A. Clenci, On the determination of the distillation curve of fatty acid methyl esters by gas chromatography. Fuel 314, 123143 (2022). https://doi.org/10.1016/j.fuel.2022.123143

    Article  CAS  Google Scholar 

  70. F.S. De Oliveira, L.S.G. Teixeira, M.C.U. Araujo, M. Korn, Screening analysis to detect adulterations in Brazilian gasoline samples using distillation curves. Fuel 83(7–8), 917–923 (2004). https://doi.org/10.1016/j.fuel.2003.09.018

    Article  CAS  Google Scholar 

  71. M.L. Huber, B.L. Smith, L.S. Ott, T.J. Bruno, Surrogate mixture model for the thermophysical properties of synthetic aviation fuel S-8: explicit application of the advanced distillation curve. Energy Fuels 22(2), 1104–1114 (2008). https://doi.org/10.1021/ef700562c

    Article  CAS  Google Scholar 

  72. M. Santikunaporn, W.E. Alvarez, D.E. Resasco, Ring contraction and selective ring opening of naphthenic molecules for octane number improvement. Appl. Catal. A 325(1), 175–187 (2007). https://doi.org/10.1016/j.apcata.2007.03.029

    Article  CAS  Google Scholar 

  73. Y. Wu, Y. Liu, X. Li, Z. Huang, D. Han, Gasoline octane number prediction from near-infrared spectroscopy with an ANN-based model. Fuel 318, 123543 (2022). https://doi.org/10.1016/j.fuel.2022.123543

    Article  CAS  Google Scholar 

  74. T.J. Wallington, J.E. Anderson, R.H. Dolan, S.L. Winkler, Vehicle emissions and urban air quality: 60 years of progress. Atmosphere 13(5), 650 (2022). https://doi.org/10.3390/atmos13050650. (MDPI)

    Article  CAS  Google Scholar 

  75. D.G. Badman, E.R. Jaffe, N. York, Blood and air pollution: state of knowledge and research needs. Otolaryngol. Head. Neck Surg. 114(2), 205–208 (1996)

    CAS  Google Scholar 

  76. A.G. Alsultan, N. AsikinMijan, N. Mansir, S.Z. Razali, R. Yunus, Y.H. Taufiq-Yap, combustion and emission performance of CO/NOx/Soxfor green diesel blends in a swirl burner. ACS Omega 6(1), 408–415 (2021). https://doi.org/10.1021/acsomega.0c04800

    Article  CAS  Google Scholar 

  77. Y. Kwon, High-resolution spatial distribution of marine vessel emission and its significance in sustainable port air quality management: a case study of Port of Incheon. Ocean Eng. 258, 111799 (2022). https://doi.org/10.1016/j.oceaneng.2022.111799

    Article  Google Scholar 

  78. F.M. Adebiyi, Air quality and management in petroleum refining industry: a review. Environ. Chem. Ecotoxicol. 4, 89–96 (2022). https://doi.org/10.1016/j.enceco.2022.02.001

    Article  CAS  Google Scholar 

  79. S.Y. Liao, D.M. Jiang, Q. Cheng, Z.H. Huang, K. Zeng, Effect of methanol addition into gasoline on the combustion characteristics at relatively low temperatures. Energy Fuels 20(1), 84–90 (2006). https://doi.org/10.1021/ef0502352

    Article  CAS  Google Scholar 

  80. P. Danaiah, P.R. Kumar, D.V. Kumar, Effect of methanol gasoline blended fuels on the performance and emissions of SI engine. Int. J. Ambient Energy 34(4), 175–180 (2013). https://doi.org/10.1080/01430750.2012.755609

    Article  CAS  Google Scholar 

  81. R. Rogóż, ŁJ. Kapusta, N. Miganakallu, Z. Yang, J.D. Naber, Investigation on the knock characteristics in a gasoline direct-injection engine port-injected with water-methanol blends. Energy Convers. Manag. 258, 115415 (2022). https://doi.org/10.1016/j.enconman.2022.115415

    Article  CAS  Google Scholar 

  82. M. Abu-Zaid, O. Badran, J. Yamin, Effect of methanol addition on the performance of spark ignition engines. Energy Fuels 18(2), 312–315 (2004). https://doi.org/10.1021/ef030103d

    Article  CAS  Google Scholar 

  83. T. Hu, Y. Wei, S. Liu, L. Zhou, Improvement of spark-ignition (SI) engine combustion and emission during cold start, fueled with methanol/gasoline blends. Energy Fuels 21(1), 171–175 (2007). https://doi.org/10.1021/ef0603479

    Article  CAS  Google Scholar 

  84. S. Liu, E.R. Cuty Clemente, T. Hu, Y. Wei, Study of spark ignition engine fueled with methanol/gasoline fuel blends. Appl. Therm. Eng. 27(11–12), 1904–1910 (2007). https://doi.org/10.1016/j.applthermaleng.2006.12.024

    Article  CAS  Google Scholar 

  85. W. Yanju, L. Shenghua, L. Hongsong, Y. Rui, L. Jie, W. Ying, Effects of methanol/gasoline blends on a spark ignition engine performance and emissions. Energy Fuels 22(2), 1254–1259 (2008). https://doi.org/10.1021/ef7003706

    Article  CAS  Google Scholar 

  86. R. Song, T. Hu, S. Liu, X. Liang, Combustion characteristics of SI engine fueled with methanol-gasoline blends during cold start. Front. Energy Power Eng. Chin. 2(4), 395–400 (2008). https://doi.org/10.1007/s11708-008-0081-7

    Article  Google Scholar 

  87. A.K. Agarwal, H. Karare, A. Dhar, Combustion, performance, emissions and particulate characterization of a methanol-gasoline blend (gasohol) fuelled medium duty spark ignition transportation engine. Fuel Process. Technol. 121, 16–24 (2014). https://doi.org/10.1016/j.fuproc.2013.12.014

    Article  CAS  Google Scholar 

  88. M.B. Çelik, B. Özdalyan, F. Alkan, The use of pure methanol as fuel at high compression ratio in a single cylinder gasoline engine. Fuel 90(4), 1591–1598 (2011). https://doi.org/10.1016/j.fuel.2010.10.035

    Article  CAS  Google Scholar 

  89. Z. Zhang, W. Che, Y. Liang, M. Wu, N. Li, Y. Shu, F. Liu, D. Wu, Comparison of cytotoxicity and genotoxicity induced by the extracts of methanol and gasoline engine exhausts. Toxicol. In Vitro 21(6), 1058–1065 (2007). https://doi.org/10.1016/j.tiv.2007.04.001

    Article  CAS  Google Scholar 

  90. M. Koç, Y. Sekmen, T. Topgül, H.S. Yücesu, The effects of ethanol-unleaded gasoline blends on engine performance and exhaust emissions in a spark-ignition engine. Renew. Energy 34(10), 2101–2106 (2009). https://doi.org/10.1016/j.renene.2009.01.018

    Article  CAS  Google Scholar 

  91. S.H. Yoon, C.S. Lee, Effect of undiluted bioethanol on combustion and emissions reduction in a SI engine at various charge air conditions. Fuel 97, 887–890 (2012). https://doi.org/10.1016/j.fuel.2012.02.001

    Article  CAS  Google Scholar 

  92. M. Al-Hasan, Effect of ethanol-unleaded gasoline blends on engine performance and exhaust emission. Energy Convers. Manag. 44, 1547–1561 (2003)

    Article  CAS  Google Scholar 

  93. B.Q. He, J.X. Wang, J.M. Hao, X.G. Yan, J.H. Xiao, A study on emission characteristics of an EFI engine with ethanol blended gasoline fuels. Atmos. Environ. 37(7), 949–957 (2003). https://doi.org/10.1016/S1352-2310(02)00973-1

    Article  CAS  Google Scholar 

  94. L.A. Graham, S.L. Belisle, C.L. Baas, Emissions from light duty gasoline vehicles operating on low blend ethanol gasoline and E85. Atmos. Environ. 42(19), 4498–4516 (2008). https://doi.org/10.1016/j.atmosenv.2008.01.061

    Article  CAS  Google Scholar 

  95. Y. Kim, W. Kim, B. Min, J. Seo, K. Lee, Experimental investigation of combustion characteristics of ethanol–gasoline blended fuel in a T-GDI engine. Appl. Therm. Eng. 208, 118168 (2022). https://doi.org/10.1016/j.applthermaleng.2022.118168

    Article  CAS  Google Scholar 

  96. D.C. Nguyen, A.T. Hoang, Q.V. Tran, H. Hadiyanto, K. Wattanavichien, V.V. Pham, A review on the performance, combustion, and emission characteristics of spark-ignition engine fueled with 2,5-dimethylfuran compared to ethanol and gasoline. Journal of Energy Resources Technology, Transactions of the ASME, 143(4) (2021). https://doi.org/10.1115/1.4048228

  97. I. Veza, A.D. Karaoglan, E. Ileri, S.A. Kaulani, N. Tamaldin, Z.A. Latiff, M.F. Muhamad Said, A.T. Hoang, K. Yatish, M. Idris, Grasshopper optimization algorithm for diesel engine fuelled with ethanol-biodiesel-diesel blends. Case Stud. Therm. Eng. 31, 101817 (2022). https://doi.org/10.1016/j.csite.2022.101817

    Article  Google Scholar 

  98. I. Veza, Irianto, A. Tuan Hoang, A.A. Yusuf, S.G. Herawan, M.E.M. Soudagar, O.D. Samuel, M.F.M. Said, A.S. Silitonga, Effects of acetone-butanol-ethanol (ABE) addition on HCCI-DI engine performance, combustion and emission. Fuel 333, 126377 (2023). https://doi.org/10.1016/j.fuel.2022.126377

    Article  CAS  Google Scholar 

  99. J. Badra, F. Alowaid, A. Alhussaini, A. Alnakhli, A.S. AlRamadan, Understanding of the octane response of gasoline/MTBE blends. Fuel 318, 123647 (2022). https://doi.org/10.1016/j.fuel.2022.123647

    Article  CAS  Google Scholar 

  100. J.S. Duffy, J.A. del Pup, J.J. Kneiss, Toxicological evaluation of methyl tertiary butyl ether (MTBE): testing performed under TSCA consent agreement. J. Soil Contam. 1(1), 29–37 (1992). https://doi.org/10.1080/15320389209383401

    Article  CAS  Google Scholar 

  101. Q. Yang, S. Shao, Y. Zhang, H. Hou, C. Qin, D. Sun, Y. Liu, Comparative study on life cycle assessment of gasoline with methyl tertiary-butyl ether and ethanol as additives. Sci. Total Environ. 724, 138130 (2020). https://doi.org/10.1016/j.scitotenv.2020.138130

    Article  CAS  Google Scholar 

  102. A.G. Antony, K. Rajaguru, S. Dinesh, K. Radhakrishnan, P. Parameswaran, K. Saravanan, Analysis of compression ignition engine characteristics with addition of MTBE with diesel. Mater. Today: Proc. 37(Part2), 1154–1157 (2020). https://doi.org/10.1016/j.matpr.2020.06.350

    Article  CAS  Google Scholar 

  103. S.H. Hamid, M.A. Ali, Effect of MTBE blending on the properties of gasoline. Fuel Sci. Technol. Int. 13(5), 509–544 (1995). https://doi.org/10.1080/08843759508947692

    Article  CAS  Google Scholar 

  104. V.D. Savelenko, M.A. Ershov, V.M. Kapustin, E.A. Chernysheva, T.M.M. Abdellatief, U.A. Makhova, A.E. Makhmudova, M.A. Abdelkareem, A.G. Olabi, Pathways resilient future for developing a sustainable E85 fuel and prospects towards its applications. Sci. Total Environ. 844, 157069 (2022). https://doi.org/10.1016/j.scitotenv.2022.157069

    Article  CAS  Google Scholar 

  105. L. Zeng, B. Yang, S. Xiao, M. Yan, Y. Cai, B. Liu, X. Zheng, Y. Wu, Species profiles, in-situ photochemistry and health risk of volatile organic compounds in the gasoline service station in China. Sci. Total Environ. 842, 156813 (2022). https://doi.org/10.1016/j.scitotenv.2022.156813

    Article  CAS  Google Scholar 

  106. I. Schifter, U. González, L. Díaz, C. González-Macías, I. Mejía-Centeno, Experimental and vehicle (on road) test investigations of spark-ignited engine performance and emissions using high concentration of MTBE as oxygenated additive. Fuel 187, 276–284 (2017). https://doi.org/10.1016/j.fuel.2016.09.044

    Article  CAS  Google Scholar 

  107. A. Landera, N. Mac Dowell, A. George, Development of robust models for the prediction of Reid vapor pressure (RVP) in fuel blends and their application to oxygenated biofuels using the SAFT-γ approach. Fuel 283, 118624 (2021). https://doi.org/10.1016/j.fuel.2020.118624

    Article  CAS  Google Scholar 

  108. P.M. Franklin, C.P. Koshland, D. Lucas, R.F. Sawyer, Evaluation of combustion by-products of MTBE as a component of reformulated gasoline. Chemosphere 42, 861–872 (2001)

    Article  CAS  Google Scholar 

  109. M.M. Osman, Effect of gasoline fuel type on SI engine nitrogen-oxides and carbon monoxide emissions under part-load operating conditions. Fuel Sci. Technol. Int. 14(8), 1065–1095 (1996). https://doi.org/10.1080/08843759608947629

    Article  CAS  Google Scholar 

  110. I. Sezer, A. Bilgin, Effects of methyl tert-butyl ether addition to base gasoline on the performance and CO emissions of a spark ignition engine. Energy Fuels 22(2), 1341–1348 (2008). https://doi.org/10.1021/ef700592n

    Article  CAS  Google Scholar 

  111. F. Ancillotti, V. Fattore, Oxygenate fuels: market expansion and catalytic aspect of synthesis. Fuel Process. Technol. 57, 163–194 (1998)

    Article  CAS  Google Scholar 

  112. C. GóMez, F. Cunill, M. Iborra, F. Izquierdo, J. Tejero, Experimental study of the simultaneous synthesis of methyl tert-butyl ether and ethyl tert-butyl ether in liquid phase. Ind. Eng. Chem. Res. 36, 4756–4762 (1997)

    Article  Google Scholar 

  113. D.B. Reddy Saragada, P. Danaiah, V.S. Dattu, Impact of ETBE proportions on RCCI engine to analyse performance and emission characteristics. Mater. Today Proc. 62, 6740–6748 (2022). https://doi.org/10.1016/j.matpr.2022.04.819

    Article  CAS  Google Scholar 

  114. K. Górski, A.K. Sen, W. Lotko, M. Swat, Effects of ethyl-tert-butyl ether (ETBE) addition on the physicochemical properties of diesel oil and particulate matter and smoke emissions from diesel engines. Fuel 103, 1138–1143 (2013). https://doi.org/10.1016/j.fuel.2012.09.004

    Article  CAS  Google Scholar 

  115. R. French, P. Malone, Phase equilibria of ethanol fuel blends. Fluid Phase Equilib. 228–229, 27–40 (2005). https://doi.org/10.1016/j.fluid.2004.09.012

    Article  CAS  Google Scholar 

  116. P. Danaiah, P. Ravi Kumar, Y. Hanumantha Rao, Performance and emission prediction of a tert butyl alcohol gasoline blended spark-ignition engine using artificial neural networks. Int. J. Ambient Energy 36(1), 31–39 (2015). https://doi.org/10.1080/01430750.2013.820147

    Article  CAS  Google Scholar 

  117. D.C. Rakopoulos, C.D. Rakopoulos, R.G. Papagiannakis, D.C. Kyritsis, Combustion heat release analysis of ethanol or n-butanol diesel fuel blends in heavy-duty di diesel engine. Fuel 90(5), 1855–1867 (2011). https://doi.org/10.1016/j.fuel.2010.12.003

    Article  CAS  Google Scholar 

  118. D.C. Rakopoulos, C.D. Rakopoulos, E.G. Giakoumis, A.M. Dimaratos, D.C. Kyritsis, Effects of butanol-diesel fuel blends on the performance and emissions of a high-speed di diesel engine. Energy Convers. Manage. 51(10), 1989–1997 (2010). https://doi.org/10.1016/j.enconman.2010.02.032

    Article  CAS  Google Scholar 

  119. C. Jin, M. Yao, H. Liu, C.F.F. Lee, J. Ji, Progress in the production and application of n-butanol as a biofuel. Renew. Sustain. Energy Rev. 15(8), 4080–4106 (2011). https://doi.org/10.1016/j.rser.2011.06.001

    Article  CAS  Google Scholar 

  120. C.S. Cheung, R. Zhu, Z. Huang, Investigation on the gaseous and particulate emissions of a compression ignition engine fueled with diesel-dimethyl carbonate blends. Sci. Total Environ. 409(3), 523–529 (2011). https://doi.org/10.1016/j.scitotenv.2010.10.027

    Article  CAS  Google Scholar 

  121. Y. Katrib, G. Deiber, P. Mirabel, S. le Calvé, C. George, A. Mellouki, G. le Bras, Atmospheric loss processes of dimethyl and diethyl carbonate. J. Atmos. Chem. 43, 151–174 (2002)

    Article  CAS  Google Scholar 

  122. B.C. Dunn, C. Guenneau, S.A. Hilton, J. Pahnke, E.M. Eyring, J. Dworzanski, H.L.C. Meuzelaar, J.Z. Hu, M.S. Solum, R.J. Pugmire, Production of diethyl carbonate from ethanol and carbon monoxide over a heterogeneous catalyst. Energy Fuels 16(1), 177–181 (2002). https://doi.org/10.1021/ef0101816

    Article  CAS  Google Scholar 

  123. D. Li, W. Fang, Y. Xing, Y. Guo, R. Lin, Effects of dimethyl or diethyl carbonate as an additive on volatility and flash point of an aviation fuel. J. Hazard. Mater. 161(2–3), 1193–1201 (2009). https://doi.org/10.1016/j.jhazmat.2008.04.070

    Article  CAS  Google Scholar 

  124. Q. Wang, J. Ni, R. Huang, The potential of oxygenated fuels (n-octanol, methylal, and dimethyl carbonate) as an alternative fuel for compression ignition engines with different load conditions. Fuel 309, 122129 (2022). https://doi.org/10.1016/j.fuel.2021.122129

    Article  CAS  Google Scholar 

  125. L. Razzaq, M.A. Mujtaba, M.A. Shahbaz, S. Nawaz, H. Mahmood Khan, A. Hussain, U. Ishtiaq, M.A. Kalam, M.E. Manzoore, K.A. Ismail, A. Elfasakhany, H.M. Rizwan, Effect of biodiesel-dimethyl carbonate blends on engine performance, combustion and emission characteristics. Alex. Eng. J. 61(7), 5111–5121 (2022). https://doi.org/10.1016/j.aej.2021.10.015

    Article  Google Scholar 

  126. D. Gopinath, & E.G. Sundaram, Experimental investigation on the effect of adding di methyl carbonate to gasoline in a SI engine performance. International Journal of Scientific & Engineering Research. 3(6) (2012). http://www.ijser.org

  127. S.H. Park, C.S. Lee, Combustion performance and emission reduction characteristics of automotive DME engine system. Prog. Energy Combust. Sci. 39(1), 147–168 (2013). https://doi.org/10.1016/j.pecs.2012.10.002

    Article  CAS  Google Scholar 

  128. S.H. Park, C.S. Lee, Applicability of dimethyl ether (DME) in a compression ignition engine as an alternative fuel. Energy Convers. Manag. 86, 848–863 (2014). https://doi.org/10.1016/j.enconman.2014.06.051

    Article  CAS  Google Scholar 

  129. T.A. Semelsberger, R.L. Borup, H.L. Greene, Dimethyl ether (DME) as an alternative fuel. J. Power Sources 156(2), 497–511 (2006). https://doi.org/10.1016/j.jpowsour.2005.05.082

    Article  CAS  Google Scholar 

  130. T. Shudo, H. Yamada, Hydrogen as an ignition-controlling agent for HCCI combustion engine by suppressing the low-temperature oxidation. Int. J. Hydrogen Energy 32(14), 3066–3072 (2007). https://doi.org/10.1016/j.ijhydene.2006.12.002

    Article  CAS  Google Scholar 

  131. H.F. Zhang, K. Seo, H. Zhao, Combustion and emission analysis of the direct DME injection enabled and controlled auto-ignition gasoline combustion engine operation. Fuel 107, 800–814 (2013). https://doi.org/10.1016/j.fuel.2013.01.067

    Article  CAS  Google Scholar 

  132. Z. Huang, X. Qiao, W. Zhang, J. Wu, J. Zhang, Dimethyl ether as alternative fuel for CI engine and vehicle. Front. Energy Power Eng. Chin. 3(1), 99–108 (2009). https://doi.org/10.1007/s11708-009-0013-1

    Article  Google Scholar 

  133. C. Ji, C. Liang, B. Gao, B. Wei, X. Liu, Y. Zhu, The cold start performance of a spark-ignited dimethyl ether engine. Energy 50(1), 187–193 (2013). https://doi.org/10.1016/j.energy.2012.10.028

    Article  CAS  Google Scholar 

  134. A. Stagni, S. Schmitt, M. Pelucchi, A. Frassoldati, K. Kohse-Höinghaus, T. Faravelli, Dimethyl ether oxidation analyzed in a given flow reactor: experimental and modeling uncertainties. Combust. Flame 240, 111998 (2022). https://doi.org/10.1016/j.combustflame.2022.111998

    Article  CAS  Google Scholar 

  135. R. Anggarani, Maymuchar, C.S. Wibowo, R. Sukaraharja, Performance and emission characteristics of dimethyl ether (DME) mixed liquefied gas for vehicle (LGV) as alternative fuel for spark ignition engine. Energy Procedia 65, 274–281 (2015). https://doi.org/10.1016/j.egypro.2015.01.048

    Article  CAS  Google Scholar 

  136. C. Liang, C. Ji, B. Gao, X. Liu, Y. Zhu, Investigation on the performance of a spark-ignited ethanol engine with DME enrichment. Energy Convers. Manage. 58, 19–25 (2012). https://doi.org/10.1016/j.enconman.2012.01.004

    Article  CAS  Google Scholar 

  137. G. Dhamodaran, G.S. Esakkimuthu, Y.K. Pochareddy, Experimental study on performance, combustion, and emission behaviour of diisopropyl ether blends in MPFI SI engine. Fuel 173, 37–44 (2016). https://doi.org/10.1016/j.fuel.2016.01.014

    Article  CAS  Google Scholar 

  138. G. Dhamodaran, G. S. Esakkimuthu, A comparison study on emission characteristics of using higher alcohol oxygenates with gasoline in a multipoint fuel injection spark-ignition engine. Journal of Testing and Evaluation 48(1):20180716 (2019). https://doi.org/10.1520/jte20180716

  139. T. Shih, Y. Rong, T. Harmon, M. Suffet, Evaluation of the impact of fuel hydrocarbons and oxygenates on groundwater resources. Environ. Sci. Technol. 38(1), 42–48 (2004). https://doi.org/10.1021/es0304650

    Article  CAS  Google Scholar 

  140. N.K. Vinayagam, A.T. Hoang, J.M. Solomon, M. Subramaniam, D. Balasubramanian, A.I. EL-Seesy, X.P. Nguyen, Smart control strategy for effective hydrocarbon and carbon monoxide emission reduction on a conventional diesel engine using the pooled impact of pre-and post-combustion techniques. J Clean Prod 306, 127310 (2021). https://doi.org/10.1016/j.jclepro.2021.127310

    Article  CAS  Google Scholar 

  141. A. Tuan Hoang, V. Viet Pham, 2-Methylfuran (MF) as a potential biofuel: a thorough review on the production pathway from biomass, combustion progress, and application in engines. Renew. Sustain. Energy Rev. 148, 111265 (2021). https://doi.org/10.1016/j.rser.2021.111265. (Elsevier Ltd.)

    Article  CAS  Google Scholar 

  142. A.T. Hoang, S. Nižetić, V.V. Pham, A state-of-the-art review on emission characteristics of SI and CI engines fueled with 2,5-dimethylfuran biofuel. Environ. Sci. Pollut. Res. 28, 4918–4950 (2021). https://doi.org/10.1007/s11356-020-11629-8/Published

    Article  CAS  Google Scholar 

  143. H. Hosseinzadeh-Bandbafha, M. Tabatabaei, M. Aghbashlo, M. Khanali, A. Demirbas, A comprehensive review on the environmental impacts of diesel/biodiesel additives. Energy Convers. Manage. 174, 579–614 (2018). https://doi.org/10.1016/j.enconman.2018.08.050

    Article  CAS  Google Scholar 

  144. R. Sedghi, H. Shahbeik, H. Rastegari, S. Rafiee, W. Peng, A.S. Nizami, V.K. Gupta, W.H. Chen, S.S. Lam, J. Pan, M. Tabatabaei, M. Aghbashlo, Turning biodiesel glycerol into oxygenated fuel additives and their effects on the behavior of internal combustion engines: a comprehensive systematic review. Renew. Sustain. Energy Rev. 167, 112805 (2022). https://doi.org/10.1016/j.rser.2022.112805

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Gopinath Dhamodaran.

Ethics declarations

Conflict of interest

The authors declare no competing interests.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Dhamodaran, G., Esakkimuthu, G.S., Palani, T. et al. Reducing gasoline engine emissions using novel bio-based oxygenates: a review. emergent mater. 6, 1393–1413 (2023). https://doi.org/10.1007/s42247-023-00470-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s42247-023-00470-7

Keywords

Navigation