Skip to main content

Advertisement

Log in

Nitrogen defect engineering in porous g-C3N4 via one-step thermal approach

  • Original Article
  • Published:
Emergent Materials Aims and scope Submit manuscript

Abstract

Graphitic carbon nitride (g-C3N4), a smart material with fascinating properties, finds extensive use in applications such as visible-light-driven photocatalysis and lithium-ion batteries. Recently, much research has been focused on increasing the surface area of g-C3N4 by creating nitrogen defects in its structure. Here, we report a controlled one-step thermal approach for creating nitrogen defects without adding any external reducing/oxidizing agent to engineer its overall structure. Unique ion beam analysis techniques such as Rutherford backscattering spectroscopy (RBS) and elastic recoil detection analysis (ERDA) were used to investigate elemental composition and quantify hydrogen concentrations, respectively. The defect-modified g-C3N4 demonstrated an increased surface area and bandgap compared to raw g-C3N4. A maximum surface area of almost 2.35 times of the raw g-C3N4 was achieved for the sameple heated at 650 °C for 2 h. With the proposed one-step thermal approach, we have achieved an increase in C/N ratio, bandgap, and surface area for all defect-modified g-C3N4 samples. This study provides a simple defect engineering strategy for g-C3N4 which was verified with ion beam analysis technologies.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. S.F. Duan, C.L. Tao, Y.Y. Geng, X.Q. Yao, X.W. Kang, J.Z. Su, I. Rodríguez-Gutiérrez, M. Kan, M. Romero, Y. Sun, Y.X. Zhao, D.D. Qin, Y. Yan, Phosphorus-doped isotype g-C3N4/g-C3N4: an efficient charge transfer system for photoelectrochemical water oxidation. ChemCatChem 11(2), 729–736 (2019). https://doi.org/10.1002/cctc.201801581

    Article  CAS  Google Scholar 

  2. S. Panimalar, R. Uthrakumar, E. Tamil Selvi, P. Gomathy, C. Inmozhi, K. Kviyarasu, J. Kennedy, Studies of MnO2/g-C3N4 hetrostructure efficient of visible light photocatalyst for pollutants degradation by sol-gel technique. Surface and Interfaces 20, 100512 (2020). https://doi.org/10.1016/j.surfin.2020.100512

    Article  CAS  Google Scholar 

  3. Q. Hao, G. Jia, W. Wei, A. Vinu, Y. Wang, H. Arandiyan, B.J. Ni, Graphitic carbon nitride with different dimensionalities for energy and environmental applications. Nano Res. 13(1), 18–37 (2020). https://doi.org/10.1007/s12274-019-2589-z

    Article  CAS  Google Scholar 

  4. J.W. Fu, Q.L. Xu, J.X. Low, C.J. Jiang, J.G. Yu, Ultrathin 2D/2D WO3/g-C3N4 step-scheme H2-production photocatalyst. Appl. Catal. B 243, 556–565 (2019). https://doi.org/10.1016/j.apcatb.2018.11.011

    Article  CAS  Google Scholar 

  5. G. Liao, Y. Gong, L. Zhang, H. Gao, G.J. Yang, B. Fang, Semiconductor polymeric graphitic carbon nitride photocatalysts: the “holy grail” for the photocatalytic hydrogen evolution reaction under visible light. Energy Environ. Sci. 12(7), 2080–2147 (2019). https://doi.org/10.1039/c9ee00717b

    Article  CAS  Google Scholar 

  6. W.J. Ong, L.L. Tan, Y.H. Ng, S.T. Yong, S.P. Chai, Graphitic carbon nitride (g-C3N4)-based photocatalysts for artificial photosynthesis and environmental remediation: are we a step closer to achieving sustainability? Chem. Rev. 116(12), 7159–7329 (2016). https://doi.org/10.1021/acs.chemrev.6b00075

    Article  CAS  Google Scholar 

  7. K.S. Lakhi, D.H. Park, G. Singh, S.N. Talapaneni, U. Ravon, K. Al-Bahily, A. Vinu, Energy efficient synthesis of highly ordered mesoporous carbon nitrides with uniform rods and their superior CO2 adsorption capacity. J. Mater Chem A 5(31), 16220–16230 (2017). https://doi.org/10.1039/C6TA10716H

    Article  CAS  Google Scholar 

  8. D.H. Park, K.S. Lakhi, K. Ramadass, M.-K. Kim, S.N. Talapaneni, S. Joseph, U. Ravon, K. Al-Bahily, A. Vinu, Energy efficient synthesis of ordered mesoporous carbon nitrides with a high nitrogen content and enhanced CO2 capture capacity. Chem. Eur. J. 23(45), 10753–10757 (2017). https://doi.org/10.1002/chem.201702566

    Article  CAS  Google Scholar 

  9. X. Su, A. Vinu, S.S. Aldeyab, L. Zhong, Highly uniform Pd nanoparticles supported on g-C3N4 for efficiently catalytic suzuki–miyaura reactions. Catal. Lett. 145(7), 1388–1395 (2015). https://doi.org/10.1007/s10562-015-1537-0

    Article  CAS  Google Scholar 

  10. S.P. Sun, S. Gu, J.H. Sun, F.F. Xia, G.H. Chen, First principles investigation of the electronic properties of graphitic carbon nitride with different building block and sheet staggered arrangement. J. Alloy. Compd. 735, 131–139 (2018). https://doi.org/10.1016/j.jallcom.2017.11.061

    Article  CAS  Google Scholar 

  11. M.M. Dong, C. He, W.X. Zhang, A tunable and sizable bandgap of a g-C3N4/graphene/g-C3N4 sandwich heterostructure: a van der Waals density functional study. J. Mater. Chem. C 5(15), 3830–3837 (2017). https://doi.org/10.1039/c7tc00386b

    Article  CAS  Google Scholar 

  12. R. Dutta, B. Dey, D.J. Kalita, Narrowing the band gap of graphitic carbon nitride sheet by coupling organic moieties: a DFT approach. Chem. Phys. Lett. 707, 101–107 (2018). https://doi.org/10.1016/j.cplett.2018.07.038

    Article  CAS  Google Scholar 

  13. S. Cao, J. Low, J. Yu, M. Jaroniec, Polymeric photocatalysts based on graphitic carbon nitride. Adv. Mater. 27(13), 2150–2176 (2015). https://doi.org/10.1002/adma.201500033

    Article  CAS  Google Scholar 

  14. H.R. Sun, L.J. Wang, F. Guo, Y.X. Shi, L.L. Li, Zh. Xu, X. Yan, W.L. Shi, Fe-doped g-C3N4 derived from biowaste material with Fe-N bonds for enhanced synergistic effect between photocatalysis and fenton degradation activity in a broad pH range. J. Alloy. Compd. 15, 163410 (2022). https://doi.org/10.1016/j.jallcom.2021.163410

    Article  CAS  Google Scholar 

  15. E.L. Liu, X. Lin, Y.Z. Hong, L. Yang, B.F. Luo, W.L. Shi, J.Y. Shi, Rational copolymerization strategy engineered C self-doped g-C3N4 for efficient and robust solar photocatalytic H2 evolution. Renew. Energy 178, 757–765 (2021). https://doi.org/10.1016/j.renene.2021.06.066

    Article  CAS  Google Scholar 

  16. J.J. Yang, H. Wang, L.B. Jiang, H.B. Yu, Y.L. Zhao, H.Y. Chen, X.Z. Yuan, J. Liang, H. Li, Z.B. Wu, Defective polymeric carbon nitride: fabrications, photocatalytic applications and perspectives. Chem. Eng. J. 427, 130991 (2022). https://doi.org/10.1016/j.cej.2021.130991

    Article  CAS  Google Scholar 

  17. P. Niu, L.C. Yin, Y.Q. Yang, G. Liu, H.M. Cheng, Increasing the visible light absorption of graphitic carbon nitride (Melon) photocatalysts by homogeneous self-modification with nitrogen vacancies. Adv. Mater. 26, 8046–8052 (2014). https://doi.org/10.1002/adma.201404057

    Article  CAS  Google Scholar 

  18. L. Liang, L. Shi, F.X. Wang, H.H. Wang, P.Q. Yan, Y.F. Cong, L.Z. Yao, Z.X. Yang, W. Qi, g-C3N4 nano-fragments as highly efficient hydrogen evolution photocatalysts: boosting effect of nitrogen vacancy. Appl. Catal. A 599, 117618 (2020). https://doi.org/10.1016/j.apcata.2020.117618

    Article  CAS  Google Scholar 

  19. Q.X. Cheng, W.D. Zhang, Facile synthesis of nitrogen deficient g-C3N4 by copolymerization of urea and formamide for efficient photocatalytic hydrogen evolution. Mol. Catal. 453, 85–92 (2018). https://doi.org/10.1016/j.mcat.2018.04.029

    Article  CAS  Google Scholar 

  20. H.J. Ren, D. Yang, F. Ding, K. An, Z.F. Zhao, Y. Chen, Z.Y. Zhou, W.J. Wang, Z.J. Jiang, One-pot fabrication of porous nitrogen-deficient g-C3N4 with superior photocatalytic performance. Chemistry 400(1), 112729 (2020). https://doi.org/10.1016/j.jphotochem.2020.112729

    Article  CAS  Google Scholar 

  21. G.F. Ge, X.W. Guo, C.S. Song, Z.K. Zhao, Reconstructing supramolecular aggregates to nitrogen-deficient g-C3N4 bunchy tubes with enhanced photocatalysis for H2 production. ACS Appl. Mater. Interfaces 10(22), 18746–18753 (2018). https://doi.org/10.1021/acsami.8b04227

    Article  CAS  Google Scholar 

  22. J.J. Chen, Z.Y. Mao, L. Zhang, D.J. Wang, R. Xu, L.J. Bie, B. Fahlman, Nitrogen-deficient graphitic carbon nitride with enhanced performance for lithium ion battery anodes. ACS Nano 11(12), 12650–12657 (2017). https://doi.org/10.1021/acsnano.7b07116

    Article  CAS  Google Scholar 

  23. H. Cai, D.Y. Han, X.N. Wang, X.X. Cheng, J. Liu, L. Jia, Y. Ding, S.X. Liu, X.X. Fan, High specific surface area defective g-C3N4 nanosheets with enhanced photocatalytic activity prepared by using glyoxylic acid mediated melamine. Mater. Chem. Phys. 256, 123755 (2020). https://doi.org/10.1016/j.matchemphys.2020.123755

    Article  CAS  Google Scholar 

  24. I.Y. Kim, S. Kim, X. Jin, S. Premkumar, G. Chandra, N.S. Lee, G.P. Mane, S.J. Hwang, S. Umapathy, A. Vinu, Ordered mesoporous C3N5 with a combined triazole and triazine framework and its graphene hybrids for the oxygen reduction reaction (ORR). Angew. Chem. Int. Ed. 57(52), 17135–17140 (2018). https://doi.org/10.1002/anie.201811061

    Article  CAS  Google Scholar 

  25. S.N. Talapaneni, G. Pl Mane, D.H. Park, K.S. Lakhi, K. Ramadass, S. Joseph, W.M. Skinner, U. Ravon, K. Al-Bahily, A. Vinu, Diaminotetrazine based mesoporous C3N6 with a well-ordered 3D cubic structure and its excellent photocatalytic performance for hydrogen evolution. J. Mater. Chem. A 5(34), 18183–18192 (2017). https://doi.org/10.1039/C7TA04041E

    Article  CAS  Google Scholar 

  26. I.Y. Kim, S. Kim, S. Premkumar, J.H. Yang, S. Umapathy, A. Vinu, Thermodynamically stable mesoporous C3N7 and C3N6 with ordered structure and their excellent performance for oxygen reduction reaction. Small 16(12), 1903572 (2020). https://doi.org/10.1002/smll.201903572

    Article  CAS  Google Scholar 

  27. X.S. Ma, Z.M. Zhang, C.L. Yu, Q.Z. Fan, L.F. Wei, A novel nitrogen-deficient g-C3N4 photocatalyst fabricated via liquid phase reduction route and its high photocatalytic performance for hydrogen production and Cr(VI) reduction. Mater. Res. Bull. 129, 110909 (2020). https://doi.org/10.1016/j.materresbull.2020.110909

    Article  CAS  Google Scholar 

  28. X.X. Li, K.L. Zhang, M. Zhou, K. Yang, S. Yang, X.S. Ma, C.L. Yu, Y. Xie, W.Y. Huang, Q.Z. Fan, A novel approach to synthesize nitrogen-deficient g-C3N4 for the enhanced photocatalytic contaminant degradation and electrocatalytic hydrogen evolution. NANO 15(01), 2050006 (2020). https://doi.org/10.1142/S179329202050006X

    Article  CAS  Google Scholar 

  29. M. Wu, Y.S. Gong, T. Nie, J. Zhang, R. Wang, H.W. Wang, B.B. He, Template-free synthesis of nanocage-like g-C3N4 with high surface area and nitrogen defects for enhanced photocatalytic H2 activity. J. Mater. Chem. A 7, 5324–5332 (2019). https://doi.org/10.1039/C8TA12076E

    Article  CAS  Google Scholar 

  30. Z.Y. Wang, Y. Huang, M.J. Chen, X.J. Shi, Y.F. Zhang, J.J. Cao, W.K. Ho, S.C. Lee, Roles of N-vacancies over porous g-C3N4 microtubes during photocatalytic NOx removal. ACS Appl. Mater. Interfaces. 11(11), 10651–10662 (2019). https://doi.org/10.1021/acsami.8b21987

    Article  CAS  Google Scholar 

  31. J. Liu, T. Zhang, Z. Wang, G. Dawson, W. Chan, Simple pyrolysis of urea into graphitic carbon nitride with recyclable adsorption and photocatalytic activity. J. Mater. Chem. 21, 14398–14401 (2011). https://doi.org/10.1039/C1JM12620B

    Article  CAS  Google Scholar 

  32. J. Kennedy, P. Murmu, E. Manikandan, Investigation of structural and photoluminescence properties of gas and metal ions doped zinc oxide single crystals. J. Alloys Compd. 616, 614–617 (2014). https://doi.org/10.1016/j.jallcom.2014.07.179

    Article  CAS  Google Scholar 

  33. A. Markwitz, J. Kennedy, Group-IV and V ion implantation into nanomaterials and elemental analysis on the nanometre scale. Int. J. Nanotechnol. 6(3–4), 369–383 (2009). https://doi.org/10.1504/IJNT.2009.022926

    Article  CAS  Google Scholar 

  34. J.M. Chem, J. Hong, X. Xia, R. Xu, Y. Wang, R. Xu, Mesoporous carbon nitride with in situ sulfur doping for enhanced photocatalytic hydrogen evolution from water under visible light. J. Mater. Chem. 22(30), 15006 (2012). https://doi.org/10.1039/C2JM32053C

    Article  Google Scholar 

  35. J.G. Yu, J.C. Yu, M.K.P. Leung, W.K. Ho, B. Cheng, X.J. Zhao, J.C. Zhao, Effects of acidic and basic hydrolysis catalysts on the photocatalytic activity and microstructures of bimodal mesoporous titania. J. Catal. 217, 69–78 (2003). https://doi.org/10.1016/S0021-9517(03)00034-4

    Article  CAS  Google Scholar 

  36. M. Elshafie, S.A. Younis, P. Serp, E.A.M. Gad, Preparation characterization and non-isothermal decomposition kinetics of different carbon nitride sheets. Egypt. J. Pet. 29(1), 21–29 (2020). https://doi.org/10.1016/j.ejpe.2019.09.003

    Article  Google Scholar 

  37. A. Amirhossein, K. Ghandi, A comprehensive review of graphitic carbon nitride (g-C3N4)–metal oxide-based nanocomposites: potential for photocatalysis and sensing. Nanomaterials 12(2), 294 (2022). https://doi.org/10.3390/nano12020294

    Article  CAS  Google Scholar 

  38. M. Mayer, SIMNRA User’s Guide, Report IPP 9/113, Max-Planck-Institut für Plasmaphysik, Garching, Germany, (1997), www.simnra.com. Accessed 21 July 2021

  39. J. Kennedy, A. Markwitz, H.J. Trodahl, B.J. Ruck, S.M. Durbin, W. Gao, Ion beam analysis of amorphous and nanocrystalline group III-V nitride and ZnO thin films. J. Electron. Mater. 36, 472–482 (2007). https://doi.org/10.1007/s11664-006-0051-y

    Article  CAS  Google Scholar 

  40. G. Xin, Y.L. Meng, Pyrolysis synthesized g-C3N4 for photocatalytic degradation of methylene blue. J. Chem. 2013, 187912 (2013). https://doi.org/10.1155/2013/187912

  41. X.L. Wang, W.Q. Fang, Y.H. Li, P.F. Liu, H.M. Zhang, Y. Wang, P.R. Liu, Y.F. Yao, H.J. Zhao, H.G. Yang, Bottom-up enhancement of g-C3N4 photocatalytic H2 evolution utilising disordering intermolecular interactions of precursor. Int. J. Photoenergy 2014, 149520 (2014). https://doi.org/10.1155/2014/149520

    Article  CAS  Google Scholar 

  42. G.Z. Dong, Y. Wen, C. Wang, Z.X. Cheng, Graphtic carbon nitride with thermally-induced nitrogen defects: an efficient process to enhance photocatalytic H2 production performance. RSC Adv. 10, 18632 (2020). https://doi.org/10.1039/D0RA01425G

    Article  CAS  Google Scholar 

  43. X.B. Li, G. Hartley, A.J. Ward, P.A. Young, A.F. Masters, T. Maschmeyer, Hydrogenated defects in graphitic carbon nitride nanosheets for improved photocatalytic hydrogen evolution. J. Phys. Chem. C 119, 14938–14946 (2015). https://doi.org/10.1021/acs.jpcc.5b03538

    Article  CAS  Google Scholar 

  44. H.Y. Wang, M.X. Li, H. Li, Q.J. Lu, Y.Y. Zhang, S.Z. Yao, Porous graphitic carbon nitride with controllable nitrogen vacancies: As promising catalyst for enhanced degradation of pollutant under visible light. Mater. Des. 162, 210–218 (2019). https://doi.org/10.1016/j.matdes.2018.11.049

    Article  CAS  Google Scholar 

  45. H.Y. Wang, Zh.L. Jin, RZh. Gan, Sh.X. Min, J. Xu, Novel strategy of defect-induced graphite nitride carbon preparation and photocatalytic performance. Catal. Lett. 148, 1296–1308 (2018). https://doi.org/10.1007/s10562-018-2339-y

    Article  CAS  Google Scholar 

  46. R.G. Pearson, Absolute electronegativity and hardness: application to inorganic chemistry. Inorg. Chem. 27(4), 734–740 (1988). https://doi.org/10.1021/ic00277a030

    Article  CAS  Google Scholar 

  47. Y. Xu, M.A.A. Schoonen, The absolute energy positions of conduction and valence bands of selected semiconducting minerals. Am. Mineral. 85(3–4), 543–556 (2000). https://doi.org/10.2138/am-2000-0416

    Article  CAS  Google Scholar 

  48. L. Zhu, X.G. Ma, N. Liu, G.W. Xu, C.Y. Huang, Band structure modulation and carrier transport process of g-C3N4 doped with alkali metals. Acta Phys. Chim. Sin. 32(10), 2488–2494 (2016). https://doi.org/10.3866/PKU.WHXB201606222

    Article  CAS  Google Scholar 

  49. S.N. Talapaneni, S. Anandan, G.P. Mane, C. Anand, D.S. Dhawale, S. Varghese, A. Mano, T. Mori, A. Vinu, Facile synthesis and basic catalytic application of 3D mesoporous carbon nitride with a controllable bimodal distribution. J. Mater. Chem. 22(19), 9831–9840 (2012). https://doi.org/10.1039/C2JM30229B

    Article  CAS  Google Scholar 

Download references

Acknowledgements

Mr. Chris Purcell is acknowledged for his assistance during IBA characterization. The research was financed by the New Zealand Ministry for Business, Innovation and Employment (C05X2007).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to J. Kennedy.

Ethics declarations

Competing interests

The authors declare no competing interests.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Sharath, R.A., Fang, F., Futter, J. et al. Nitrogen defect engineering in porous g-C3N4 via one-step thermal approach. emergent mater. 6, 1117–1125 (2023). https://doi.org/10.1007/s42247-022-00421-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s42247-022-00421-8

Keywords

Navigation