Skip to main content
Log in

A review on cerium oxide–based catalysts for the removal of contaminants

  • Review
  • Published:
Emergent Materials Aims and scope Submit manuscript

Abstract

Cerium oxide–based catalytic materials are of interest due to their high catalytic performance. These oxides are widely used in the oxidation of contaminants emitted from automotive exhaust. The variable oxidation state of cerium between + 3 and + 4 is responsible for its high catalytic activity. The exhaust emitted from diesel engines contains various contaminants such as CO, NOx, CO2, carbon soot, and unburned hydrocarbons, which are the major cause of air pollution. The various health problems such as skin infections, asthma, eye irritation, cancer, and cardiovascular problems are evolved due to air pollution. To overcome the problems arising from diesel engines, diesel particulate filters (DPFs) are being used in diesel engines. To prevent the filter from deterioration at high temperature, the filters are coated with cerium oxide–based nanomaterials which stabilize it at high temperature. In this review article, the study of materials doped in ceria for the removal of contaminants has been done. The reactivity of catalysts on the basis of their particle size, surface area, and processes of synthesis is also discussed. The effect of doping and increasing amount of doping in ceria leads to the change in reactivity of material, creating oxygen vacancies and surface oxygen and changing its oxidation state at low temperature, which provide its high catalytic activity towards the removal of automotive exhaust. The various parameters, by which catalytic activity of the catalyst is affected, have been discussed here.

Graphical abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

adopted from Gong et al. [63]; (c, d, e, f) Nanorods of Ce O 2 , 5Cu/CeO2, 10Cu /CeO 2 an d 15Cu/CeO 2 respectively, adopted from [68]; g, h, i, j SEM images of CuCoOy and CuCe0.2Co0.8Oy, adopted from Wang et al. [69]

Fig. 4

adopted from Selvamani et al. [76]. b NOx-assisted soot oxidation by CuO-CeO2 catalyst, adopted from Wang et al. [77]. c The reaction mechanism of CO oxidation by 5CuO/CeO2 catalyst, adopted from Zhang et al. [78]

Fig. 5

adopted from Zhao et al. [104]; (c, d, e, f) images of monoliths, Mn-monoliths, Ce-monoliths, and Ce/Mn-monoliths, adopted from Colman-Lerner et al. [105]; (g, h) images of CeO2 and MnCuCe respectively, adopted from Zhu et al. [22]

Fig. 6

adopted from Gao et al. [124]. (c) This shows the migration of oxygen vacancy to surface of CeO2 crystal lattice, adopted from Mukherjee et al. [125]. (d) Interaction of Mn-Ce in Ce/Mn-Ni foam catalyst, adopted from Xing et al. [126]. (e) shows the oxygen vacancy evaluation during catalytic oxidation of soot, adopted from Xueting et al. [98]

Fig. 7

adopted from Cai et al. [152]

Fig. 8

adopted from Ai et al. [134]. c shows the mechanism for the migration of Zr during the process of heat treatment, adopted from Deng et al. [159]

Fig. 9

adopted from Grabchenko et al. [198]

Fig. 10

adopted from Shimizu et al. [208], Yamazaki et al. [207], and Yamazaki et al. [209] respectively

Similar content being viewed by others

Data availability

Not applicable.

Code availability

Not applicable.

References

  1. Mallik C (2019) Anthropogenic sources of air pollution. In: Air Pollution: Sources, Impacts And Controls. pp 6–25

  2. Kitagawa J, Data RUSA, Richman PES, Heaney AEP (1985) Ceramic honeycomb catalytic converters having high thermal shock resistance. United States Pat ( 19 ) U S Pat 4,556,543:

  3. J.Y. Luo, W.S. Epling, G. Qi, W. Li, Low temperature ceria-based lean NO x traps. Catal Letters 142, 946–958 (2012). https://doi.org/10.1007/s10562-012-0847-8

    Article  CAS  Google Scholar 

  4. Z.Z. Yang, Y. Yang, M. Zhao et al., Enhanced sulfur resistance of Pt-Pd/CeO2-ZrO2-Al2O3 commercial diesel oxidation catalyst by SiO2 surface cladding. Wuli Huaxue Xuebao/ Acta Phys - Chim Sin 30, 1187–1193 (2014). https://doi.org/10.3866/PKU.WHXB201404281

    Article  CAS  Google Scholar 

  5. M.S. Gross, M.A. Ulla, C.A. Querini, Diesel particulate matter combustion with CeO2 as catalyst. Part I: System characterization and reaction mechanism. J Mol Catal A Chem 352, 86–94 (2012). https://doi.org/10.1016/j.molcata.2011.10.018

    Article  CAS  Google Scholar 

  6. M. Issa, C. Petit, A. Brillard, J.F. Brilhac, Oxidation of carbon by CeO2: effect of the contact between carbon and catalyst particles. Fuel 87, 740–750 (2008). https://doi.org/10.1016/j.fuel.2007.05.053

    Article  CAS  Google Scholar 

  7. G. Kastrinaki, S. Lorentzou, A.G. Konstandopoulos, Soot oxidation kinetics of different ceria nanoparticle catalysts. Emiss Control Sci Technol 1, 247–253 (2015). https://doi.org/10.1007/s40825-015-0021-z

    Article  CAS  Google Scholar 

  8. P.A. Kumar, M.D. Tanwar, S. Bensaid et al., Soot combustion improvement in diesel particulate filters catalyzed with ceria nanofibers. Chem Eng J 207–208, 258–266 (2012). https://doi.org/10.1016/j.cej.2012.06.096

    Article  CAS  Google Scholar 

  9. P. Miceli, S. Bensaid, N. Russo, D. Fino, CeO2-based catalysts with engineered morphologies for soot oxidation to enhance soot-catalyst contact. Nanoscale Res Lett 9, 1–10 (2014). https://doi.org/10.1186/1556-276X-9-254

    Article  CAS  Google Scholar 

  10. Q. Liang, X. Wu, D. Weng, H. Xu, Oxygen activation on Cu/Mn-Ce mixed oxides and the role in diesel soot oxidation. Catal Today 139, 113–118 (2008). https://doi.org/10.1016/j.cattod.2008.08.013

    Article  CAS  Google Scholar 

  11. Feng G, Han W, Wang Z, et al (2018) Highly reducible nanostructured CeO2 for CO oxidation. Catalysts 8: https://doi.org/10.3390/catal8110535

  12. Y. Du, S. Shi, H. He, H. Dai, Fabrication and characterization of Ce0.7Zr0.3O 2 nanorods having high specific surface area and large oxygen storage capacity. Particuology 9, 63–68 (2011). https://doi.org/10.1016/j.partic.2010.07.002

    Article  CAS  Google Scholar 

  13. G. Zhang, Z. Zhao, J. Xu et al., Comparative study on the preparation, characterization and catalytic performances of 3DOM Ce-based materials for the combustion of diesel soot. Appl Catal B Environ 107, 302–315 (2011). https://doi.org/10.1016/j.apcatb.2011.07.029

    Article  CAS  Google Scholar 

  14. Z. Wang, F. Lin, S. Jiang et al., Ceria substrate-oxide composites as catalyst for highly efficient catalytic oxidation of NO by O2. Fuel 166, 352–360 (2016). https://doi.org/10.1016/j.fuel.2015.11.012

    Article  CAS  Google Scholar 

  15. L. Xiong, P. Yao, S. Liu et al., Soot oxidation over CeO2-ZrO2 based catalysts: the influence of external surface and low-temperature reducibility. Mol Catal 467, 16–23 (2019). https://doi.org/10.1016/j.mcat.2019.01.022

    Article  CAS  Google Scholar 

  16. S. Liu, Q. Lin, J. Liu et al., Enhancement of the hydrothermal stability of WO3/Ce0.68Zr0.32O2 catalyst by silica modification for NH3-SCR. ACS Appl Energy Mater 3, 1161–1170 (2020). https://doi.org/10.1021/acsaem.9b02227

    Article  CAS  Google Scholar 

  17. D. Mukherjee, B.G. Rao, B.M. Reddy, CO and soot oxidation activity of doped ceria: Influence of dopants. Appl Catal B Environ 197, 105–115 (2016). https://doi.org/10.1016/j.apcatb.2016.03.042

    Article  CAS  Google Scholar 

  18. K. Wang, B. Guan, K. Li et al., Study on oxidation activity of CuCeZrOx doped with K for diesel engine particles in NO/O2. J Shanghai Jiaotong Univ 23, 18–27 (2018). https://doi.org/10.1007/s12204-018-2018-6

    Article  Google Scholar 

  19. Z. Zhang, D. Han, S. Wei, Y. Zhang, Determination of active site densities and mechanisms for soot combustion with O2 on Fe-doped CeO2 mixed oxides. J Catal 276, 16–23 (2010). https://doi.org/10.1016/j.jcat.2010.08.017

    Article  CAS  Google Scholar 

  20. D. William, D.G.R. Callister, Materials Science and Engineering: An Introduction, 8th edn. (Wiley, 2009)

    Google Scholar 

  21. L. Urán, J. Gallego, W.Y. Li, A. Santamaría, Effect of catalyst preparation for the simultaneous removal of soot and NOx. Appl Catal A Gen 569, 157–169 (2019). https://doi.org/10.1016/j.apcata.2018.10.029

    Article  CAS  Google Scholar 

  22. H. Zhu, Y. Chen, Y. Gao et al., Catalytic oxidation of CO on mesoporous codoped ceria catalysts: insights into correlation of physicochemical property and catalytic activity. J Rare Earths 37, 961–969 (2019). https://doi.org/10.1016/j.jre.2018.11.018

    Article  CAS  Google Scholar 

  23. R. Brackmann, F.S. Toniolo, M. Schmal, Synthesis and characterization of Fe-doped CeO2 for application in the NO selective catalytic reduction by CO. Top Catal 59, 1772–1786 (2016). https://doi.org/10.1007/s11244-016-0698-4

    Article  CAS  Google Scholar 

  24. I.V. Zagaynov, A.V. Naumkin, Y.V. Grigoriev, Perspective intermediate temperature ceria based catalysts for CO oxidation. Appl Catal B Environ 236, 171–175 (2018). https://doi.org/10.1016/j.apcatb.2018.05.027

    Article  CAS  Google Scholar 

  25. H. Muroyama, H. Asajima, S. Hano et al., Effect of an additive in a CeO2-based oxide on catalytic soot combustion. Appl Catal A Gen 489, 235–240 (2015). https://doi.org/10.1016/j.apcata.2014.10.039

    Article  CAS  Google Scholar 

  26. H.J. Kim, D. Shin, H. Jeong et al., Design of an ultrastable and highly active ceria catalyst for CO oxidation by rare-earth- and transition-metal co-doping. ACS Catal 10, 14877–14886 (2020). https://doi.org/10.1021/acscatal.0c03386

    Article  CAS  Google Scholar 

  27. I.V. Desyatykh, A.A. Vedyagin, I.V. Mishakov, Y.V. Shubin, CO oxidation over fiberglasses with doped Cu-Ce-O catalytic layer prepared by surface combustion synthesis. Appl Surf Sci 349, 21–26 (2015). https://doi.org/10.1016/j.apsusc.2015.04.185

    Article  CAS  Google Scholar 

  28. Liu Y, Song C, Lv G, et al (2018) Promotional effect of cerium and/or zirconium doping on cu/zsm-5 catalysts for selective catalytic reduction of no by nh3. Catalysts 8:. https://doi.org/10.3390/catal8080306

  29. Stegmayer MÁ, Milt VG, Navascues N, et al (2020) Cobalt deposited on micro and nanometric structures of ceria and zirconia applied in diesel soot combustion. Mol Catal 481:. https://doi.org/10.1016/j.mcat.2018.07.011

  30. S.D. Neelapala, H. Dasari, Catalytic soot oxidation activity of Cr-doped ceria (Ce Cr O2-δ) synthesized by sol-gel method with organic additives. Mater Sci Energy Technol 1, 155–159 (2018). https://doi.org/10.1016/j.mset.2018.06.009

    Article  Google Scholar 

  31. W. Cai, Y. Zhao, M. Chen et al., The formation of 3D spherical Cr-Ce mixed oxides with roughness surface and their enhanced low-temperature NO oxidation. Chem Eng J 333, 414–422 (2018). https://doi.org/10.1016/j.cej.2017.10.002

    Article  CAS  Google Scholar 

  32. K.J. Lee, Y. Kim, J.H. Lee et al., Facile synthesis and characterization of nanostructured transition metal/ceria solid solutions (TMxCe1-xO2-δ, TM = Mn, Ni Co, or Fe) for CO oxidation. Chem Mater 29, 2874–2882 (2017). https://doi.org/10.1021/acs.chemmater.6b05098

    Article  CAS  Google Scholar 

  33. E. Aneggi, C. de Leitenburg, G. Dolcetti, A. Trovarelli, Promotional effect of rare earths and transition metals in the combustion of diesel soot over CeO2 and CeO2-ZrO2. Catal Today 114, 40–47 (2006). https://doi.org/10.1016/j.cattod.2006.02.008

    Article  CAS  Google Scholar 

  34. T. Kim, J.M. Vohs, R.J. Gorte, Thermodynamic investigation of the redox properties of ceria-zirconia solid solutions. Ind Eng Chem Res 45, 5561–5565 (2006). https://doi.org/10.1021/ie0511478

    Article  CAS  Google Scholar 

  35. Deng J, Li S, Xiong L, et al (2020) Preparation of nanostructured CeO2-ZrO2-based materials with stabilized surface area and their catalysis in soot oxidation. Appl Surf Sci 505:. https://doi.org/10.1016/j.apsusc.2019.144301

  36. Kurajica S, Mužina K, Dražić G, et al (2020) A comparative study of hydrothermally derived Mn, Fe, Co, Ni, Cu and Zn doped ceria nanocatalysts. Mater Chem Phys 244:. https://doi.org/10.1016/j.matchemphys.2020.122689

  37. Sajeevan AC, Sajith V (2013) A study on oxygen storage capacity of zirconium-cerium-oxide nanoparticles. Adv Mater Res 685:123–127. https://doi.org/10.4028/www.scientific.net/AMR.685.123

  38. J. Liu, X. Shi, Y. Shan et al., Hydrothermal stability of CeO2-WO3-ZrO2 mixed oxides for selective catalytic reduction of NOx by NH3. Environ Sci Technol 52, 11769–11777 (2018). https://doi.org/10.1021/acs.est.8b03732

  39. X. Wang, Y. Liu, W. Yao, Z. Wu, Boosting the low-temperature activity and sulfur tolerance of CeZr 2 O x catalysts by antimony addition for the selective catalytic reduction of NO with ammonia. J Colloid Interface Sci 546, 152–162 (2019). https://doi.org/10.1016/j.jcis.2019.03.031

    Article  CAS  Google Scholar 

  40. T. Boningari, A. Somogyvari, P.G. Smirniotis, Ce-based catalysts for the selective catalytic reduction of NOx in the presence of excess oxygen and simulated diesel engine exhaust conditions. Ind Eng Chem Res 56, 5483–5494 (2017). https://doi.org/10.1021/acs.iecr.7b00045

    Article  CAS  Google Scholar 

  41. D.W. Kwon, S.C. Hong, Promotional effect of tungsten-doped CeO 2 /TiO 2 for selective catalytic reduction of NOx with ammonia. Appl Surf Sci 356, 181–190 (2015). https://doi.org/10.1016/j.apsusc.2015.08.073

    Article  CAS  Google Scholar 

  42. S. Cai, D. Zhang, L. Zhang et al., Comparative study of 3D ordered macroporous Ce0.75Zr 0.2M0.05O2-δ (M = Fe, Cu, Mn, Co) for selective catalytic reduction of NO with NH3. Catal Sci Technol 4, 93–101 (2014). https://doi.org/10.1039/c3cy00398a

    Article  CAS  Google Scholar 

  43. B. Zhao, R. Ran, L. Yang et al., Comparative study of La1–xCexMnO3+δ perovskites and Mn–Ce mixed oxides for NO catalytic oxidation. J Rare Earths 38, 863–872 (2020). https://doi.org/10.1016/j.jre.2020.03.003

    Article  CAS  Google Scholar 

  44. M. Wang, Z. Si, L. Chen et al., Hydrothermal stability of MOx-Ce0.75Zr 0.25O2 catalysts for NOx reduction by ammonia. J Rare Earths 31, 1148–1156 (2013). https://doi.org/10.1016/S1002-0721(12)60419-0

    Article  CAS  Google Scholar 

  45. A. Davó-Quiñonero, M. Navlani-García, D. Lozano-Castelló et al., Role of hydroxyl groups in the preferential oxidation of CO over copper oxide-cerium oxide catalysts. ACS Catal 6, 1723–1731 (2016). https://doi.org/10.1021/acscatal.5b02741

    Article  CAS  Google Scholar 

  46. G. Yu, J. Wang, J. Liu et al., Paper-structured catalyst based on CeO2–ZrO2 fibers for soot combustion. Catal Letters 149, 3543–3555 (2019). https://doi.org/10.1007/s10562-019-02891-8

    Article  CAS  Google Scholar 

  47. H. Du, Y. Wang, H. Arandiyan et al., Design and synthesis of CeO2 nanowire/MnO2 nanosheet heterogeneous structure for enhanced catalytic properties. Mater Today Commun 11, 103–111 (2017). https://doi.org/10.1016/j.mtcomm.2017.03.002

    Article  CAS  Google Scholar 

  48. J.F. Lamonier, S.P. Kulyova, V.V. Lunin et al., Thermal analysis and epr studies of carbon black oxidation in the presence of copper loaded Y2O3-CeO2-ZrO2 catalyst. J Therm Anal Calorim 75, 857–865 (2004). https://doi.org/10.1023/B:JTAN.0000027181.40923.fd

    Article  CAS  Google Scholar 

  49. Wan J, Liu Y, Zhou Y, et al (2021) Controllable synthesis of argentum decorated CuO@CeO catalyst and its highly efficient performance for soot oxidation. J Rare Earths 2–4. https://doi.org/10.1016/j.jre.2021.08.006

  50. M. AlKetbi, K. Polychronopoulou, M. Abi Jaoude et al., Cu-Ce-La-Ox as efficient CO oxidation catalysts: effect of Cu content. Appl Surf Sci 505, 144474 (2020). https://doi.org/10.1016/j.apsusc.2019.144474

    Article  CAS  Google Scholar 

  51. Y. Chen, Y. Liu, D. Mao et al., Facile cyclodextrin-assisted synthesis of highly active CuO-CeO2/MCF catalyst for CO oxidation. J Taiwan Inst Chem Eng 113, 16–26 (2020). https://doi.org/10.1016/j.jtice.2020.07.015

    Article  CAS  Google Scholar 

  52. R.D. Kerkar, A.V. Salker, A route to develop the synergy between CeO2 and CuO for low temperature CO oxidation. Catal Letters 150, 2774–2783 (2020). https://doi.org/10.1007/s10562-020-03166-3

    Article  CAS  Google Scholar 

  53. J. Zhang, Y. Liu, X. Yao et al., Enhanced moisture resistance of Cu/Ce catalysts for CO oxidation via plasma−catalyst interactions. Chemosphere 261, 127739 (2020). https://doi.org/10.1016/j.chemosphere.2020.127739

    Article  CAS  Google Scholar 

  54. C. Wu, Z. Guo, X. Chen, H. Liu, Cu/CeO2 as efficient low-temperature CO oxidation catalysts: effects of morphological structure and Cu content. React Kinet Mech Catal 131, 691–706 (2020). https://doi.org/10.1007/s11144-020-01870-0

    Article  CAS  Google Scholar 

  55. P. Venkataswamy, D. Jampaiah, D. Mukherjee, B.M. Reddy, CuO/Zn-CeO2 nanocomposite as an efficient catalyst for enhanced diesel soot oxidation. Emiss Control Sci Technol 5, 328–341 (2019). https://doi.org/10.1007/s40825-019-00137-y

    Article  CAS  Google Scholar 

  56. S. Padikkaparambil, J. Perumbilavil Padi, V. Vadery et al., Facile preparation of noble metal–free Cu-doped CeO2 oxidation catalyst suitable for engine exhaust gas treatment. J Environ Eng 145, 04018131 (2019). https://doi.org/10.1061/(ASCE)EE.1943-7870.0001474

    Article  Google Scholar 

  57. B. Cui, S. Yan, Y. Xia et al., CuxCe1-xO2 nanoflakes with improved catalytic activity and thermal stability for diesel soot combustion. Appl Catal A Gen 578, 20–29 (2019). https://doi.org/10.1016/j.apcata.2019.03.025

    Article  CAS  Google Scholar 

  58. M. Dosa, M. Piumetti, S. Bensaid et al., Novel Mn–Cu-containing CeO 2 nanopolyhedra for the oxidation of CO and diesel soot (Part II): effect of oxygen concentration on the catalytic activity. Catal Letters 149, 107–118 (2019). https://doi.org/10.1007/s10562-018-2591-1

    Article  CAS  Google Scholar 

  59. Kappis K, Papadopoulos C, Papavasiliou J, et al (2019) Tuning the catalytic properties of copper-promoted nanoceria via a hydrothermal method. Catalysts 9:. https://doi.org/10.3390/catal9020138

  60. Sartoretti E, Novara C, Giorgis F, et al (2019) In situ raman analyses of the soot oxidation reaction over nanostructured ceria-based catalysts. Sci Rep 9:. https://doi.org/10.1038/s41598-019-39105-5

  61. A. Di Benedetto, G. Landi, L. Lisi, CO reactive adsorption at low temperature over CuO/CeO2 structured catalytic monolith. Int J Hydrogen Energy 42, 12262–12275 (2017). https://doi.org/10.1016/j.ijhydene.2017.03.077

    Article  CAS  Google Scholar 

  62. P. Sudarsanam, B. Hillary, M.H. Amin et al., Heterostructured copper-ceria and iron-ceria nanorods: role of morphology, redox, and acid properties in catalytic diesel soot combustion. Langmuir 34, 2663–2673 (2018). https://doi.org/10.1021/acs.langmuir.7b03998

    Article  CAS  Google Scholar 

  63. X. Gong, W.W. Wang, X.P. Fu et al., Metal-organic-framework derived controllable synthesis of mesoporous copper-cerium oxide composite catalysts for the preferential oxidation of carbon monoxide. Fuel 229, 217–226 (2018). https://doi.org/10.1016/j.fuel.2018.04.071

    Article  CAS  Google Scholar 

  64. M. Dosa, M. Piumetti, S. Bensaid et al., Novel Mn–Cu-containing CeO2 nanopolyhedra for the oxidation of CO and diesel soot: effect of dopants on the nanostructure and catalytic activity. Catal Letters 148, 298–311 (2018). https://doi.org/10.1007/s10562-017-2226-y

    Article  CAS  Google Scholar 

  65. S. Bahrami, A. Niaei, M.J. Illán-Gómez et al., Catalytic reduction of NO by CO over CeO2-MOx (0.25) (M = Mn, Fe and Cu) mixed oxides - modeling and optimization of catalyst preparation by hybrid ANN-GA. J Environ Chem Eng 5, 4937–4947 (2017). https://doi.org/10.1016/j.jece.2017.09.023

    Article  CAS  Google Scholar 

  66. Rico-Pérez V, Aneggi E, Trovarelli A (2017) The effect of sr addition in cu- and fe-modified CeO2 and ZrO2 soot combustion catalysts. Catalysts 7:. https://doi.org/10.3390/catal7010028

  67. M. Konsolakis, S.A.C. Carabineiro, G.E. Marnellos et al., Volatile organic compounds abatement over copper-based catalysts: effect of support. Inorganica Chim Acta 455, 473–482 (2017). https://doi.org/10.1016/j.ica.2016.07.059

    Article  CAS  Google Scholar 

  68. X. Zheng, Y. Li, S. Liang et al., Promoting effect of Cu-doping on catalytic activity and SO2 resistance of porous CeO2 nanorods for H2S selective oxidation. J Catal 389, 382–399 (2020). https://doi.org/10.1016/j.jcat.2020.06.010

    Article  CAS  Google Scholar 

  69. X. Wang, X. Li, J. Mu et al., Facile design of highly effective CuCexCo1-xOy Catalysts with diverse surface/interface structures toward NO Reduction by CO at Low Temperatures. Ind Eng Chem Res 58, 15459–15469 (2019). https://doi.org/10.1021/acs.iecr.9b01636

    Article  CAS  Google Scholar 

  70. Zhou L, Li X, Yao Z, et al (2016) Transition-metal doped ceria microspheres with nanoporous structures for CO oxidation. Sci Rep 6:. https://doi.org/10.1038/srep23900

  71. P. Sudarsanam, B. Hillary, B. Mallesham et al., Designing CuOx nanoparticle-decorated CeO2 nanocubes for catalytic soot oxidation: role of the nanointerface in the catalytic performance of heterostructured nanomaterials. Langmuir 32, 2208–2215 (2016). https://doi.org/10.1021/acs.langmuir.5b04590

    Article  CAS  Google Scholar 

  72. A. Bueno-López, D. Lozano-Castelló, A.J. McCue, J.A. Anderson, NOx storage and reduction over copper-based catalysts. part 3: Simultaneous NOx and soot removal. Appl Catal B Environ 198, 266–275 (2016). https://doi.org/10.1016/j.apcatb.2016.05.068

    Article  CAS  Google Scholar 

  73. L.F. Nascimento, O.A. Serra, Washcoating of cordierite honeycomb with ceria-copper mixed oxides for catalytic diesel soot combustion. Process Saf Environ Prot 101, 134–143 (2016). https://doi.org/10.1016/j.psep.2015.12.010

    Article  CAS  Google Scholar 

  74. X. Guo, J. Li, R. Zhou, Catalytic performance of manganese doped CuO-CeO2 catalysts for selective oxidation of CO in hydrogen-rich gas. Fuel 163, 56–64 (2016). https://doi.org/10.1016/j.fuel.2015.09.043

    Article  CAS  Google Scholar 

  75. B. Li, Z. Ren, Z. Ma et al., Selective catalytic reduction of NO by NH3 over CuO-CeO2 in the presence of SO2. Catal Sci Technol 6, 1719–1725 (2016). https://doi.org/10.1039/c5cy01430a

    Article  CAS  Google Scholar 

  76. A. Selvamani, K. Shanthi, D. Santhanaraj et al., Effective removal of automobile exhausts over flower-like Ce1−xCuxO2 nanocatalysts exposed active 100 plane. J Rare Earths 36, 603–612 (2018). https://doi.org/10.1016/j.jre.2017.12.006

    Article  CAS  Google Scholar 

  77. Y. Wang, J. Wang, H. Chen et al., Preparation and NOx-assisted soot oxidation activity of a CuO-CeO2 mixed oxide catalyst. Chem Eng Sci 135, 294–300 (2015). https://doi.org/10.1016/j.ces.2015.03.024

    Article  CAS  Google Scholar 

  78. X. Zhang, G. Li, R. Tian et al., Monolithic porous CuO/CeO2 nanorod composites prepared by dealloying for CO catalytic oxidation. J Alloys Compd 826, 154149 (2020). https://doi.org/10.1016/j.jallcom.2020.154149

    Article  CAS  Google Scholar 

  79. G. Chen, Q. Xu, Y. Yang et al., Facile and mild strategy to construct mesoporous CeO2-CuO nanorods with enhanced catalytic activity toward CO oxidation. ACS Appl Mater Interfaces 7, 23538–23544 (2015). https://doi.org/10.1021/acsami.5b06495

    Article  CAS  Google Scholar 

  80. S. Chen, L. Li, W. Hu et al., Anchoring high-concentration oxygen vacancies at interfaces of CeO2-x/Cu toward enhanced activity for preferential CO oxidation. ACS Appl Mater Interfaces 7, 22999–23007 (2015). https://doi.org/10.1021/acsami.5b06302

    Article  CAS  Google Scholar 

  81. B. Dou, G. Lv, C. Wang et al., Cerium doped copper/ZSM-5 catalysts used for the selective catalytic reduction of nitrogen oxide with ammonia. Chem Eng J 270, 549–556 (2015). https://doi.org/10.1016/j.cej.2015.02.004

    Article  CAS  Google Scholar 

  82. W.W. Wang, P.P. Du, S.H. Zou et al., Highly dispersed copper oxide clusters as active species in copper-ceria catalyst for preferential oxidation of carbon monoxide. ACS Catal 5, 2088–2099 (2015). https://doi.org/10.1021/cs5014909

    Article  CAS  Google Scholar 

  83. K. Nakagawa, T. Ohshima, Y. Tezuka et al., Morphological effects of CeO2 nanostructures for catalytic soot combustion of CuO/CeO2. Catal Today 246, 67–71 (2015). https://doi.org/10.1016/j.cattod.2014.08.005

    Article  CAS  Google Scholar 

  84. Z. Wang, L. Wang, F. He et al., Catalytic soot oxidation over Ce- And Cu-doped hydrotalcites-derived mesoporous mixed oxides. J Nanosci Nanotechnol 14, 7087–7096 (2014). https://doi.org/10.1166/jnn.2014.8944

    Article  CAS  Google Scholar 

  85. K.N. Rao, P. Venkataswamy, B.M. Reddy, Structural characterization and catalytic evaluation of supported copper-ceria catalysts for soot oxidation. Ind Eng Chem Res 50, 11960–11969 (2011). https://doi.org/10.1021/ie201474p

    Article  CAS  Google Scholar 

  86. M. Fu, X. Yue, D. Ye et al., Soot oxidation via CuO doped CeO2 catalysts prepared using coprecipitation and citrate acid complex-combustion synthesis. Catal Today 153, 125–132 (2010). https://doi.org/10.1016/j.cattod.2010.03.017

    Article  CAS  Google Scholar 

  87. A.P. Jia, S.Y. Jiang, J.Q. Lu, M.F. Luo, Study of catalytic activity at the CuO-CeO2 interface for CO oxidation. J Phys Chem C 114, 21605–21610 (2010). https://doi.org/10.1021/jp108556u

    Article  CAS  Google Scholar 

  88. D. Weng, J. Li, X. Wu, Z. Si, NOx-assisted soot oxidation over K/CuCe catalyst. J Rare Earths 28, 542–546 (2010). https://doi.org/10.1016/S1002-0721(09)60150-2

    Article  CAS  Google Scholar 

  89. Q. Liang, X. Wu, D. Weng, Z. Lu, Selective oxidation of soot over Cu doped ceria/ceria-zirconia catalysts. Catal Commun 9, 202–206 (2008). https://doi.org/10.1016/j.catcom.2007.06.007

    Article  CAS  Google Scholar 

  90. D. Gamarra, G. Munuera, A.B. Hungría et al., Structure-activity relationship in nanostructured copper-ceria-based preferential CO oxidation catalysts. J Phys Chem C 111, 11026–11038 (2007). https://doi.org/10.1021/jp072243k

    Article  CAS  Google Scholar 

  91. M.F. Luo, Y.P. Song, J.Q. Lu et al., Identification of CuO species in high surface area CuO-CeO2 catalysts and their catalytic activities for CO oxidation. J Phys Chem C 111, 12686–12692 (2007). https://doi.org/10.1021/jp0733217

    Article  CAS  Google Scholar 

  92. M. Wang, Y. Zhang, Y. Yu et al., Surface oxygen species essential for the catalytic activity of Ce–M–Sn (M = Mn or Fe) in soot oxidation. Catal Sci Technol 11, 895–903 (2021). https://doi.org/10.1039/D0CY02077J

    Article  CAS  Google Scholar 

  93. J. Gao, Y. Xiong, Q. Zhang et al., 3D geometric modeling analysis of contact probability effect in carbon black oxidation over MnOx-CeO2 catalysts. Chem Eng J 398, 125448 (2020). https://doi.org/10.1016/j.cej.2020.125448

    Article  CAS  Google Scholar 

  94. N. Feng, Z. Zhu, P. Zhao et al., Facile fabrication of trepang-like CeO2@MnO2 nanocomposite with high catalytic activity for soot removal. Appl Surf Sci 515, 146013 (2020). https://doi.org/10.1016/j.apsusc.2020.146013

    Article  CAS  Google Scholar 

  95. J. Wang, S. Yang, H. Sun et al., Highly improved soot combustion performance over synergetic MnxCe1−xO2 solid solutions within mesoporous nanosheets. J Colloid Interface Sci 577, 355–367 (2020). https://doi.org/10.1016/j.jcis.2020.05.090

    Article  CAS  Google Scholar 

  96. Z. Yang, L. Luo, L. Tang et al., Trimesic acid assisted synthesis of cerium-manganese oxide for catalytic diesel soot elimination: Enhancement of thermal aging resistibility. Fuel 278, 118369 (2020). https://doi.org/10.1016/j.fuel.2020.118369

    Article  CAS  Google Scholar 

  97. Y. Shu, M. He, J. Ji et al., Synergetic degradation of VOCs by vacuum ultraviolet photolysis and catalytic ozonation over Mn-xCe/ZSM-5. J Hazard Mater 364, 770–779 (2019). https://doi.org/10.1016/j.jhazmat.2018.10.057

    Article  CAS  Google Scholar 

  98. X. Lin, S. Li, H. He et al., Evolution of oxygen vacancies in MnOx-CeO2 mixed oxides for soot oxidation. Appl Catal B Environ 223, 91–102 (2018). https://doi.org/10.1016/j.apcatb.2017.06.071

    Article  CAS  Google Scholar 

  99. H. Zhang, S. Li, Q. Lin et al., Study on hydrothermal deactivation of Pt/MnOx-CeO2 for NOx-assisted soot oxidation: redox property, surface nitrates, and oxygen vacancies. Environ Sci Pollut Res 25, 16061–16070 (2018). https://doi.org/10.1007/s11356-018-1582-5

    Article  CAS  Google Scholar 

  100. D. Jampaiah, V.K. Velisoju, D. Devaiah et al., Flower-like Mn 3 O 4 /CeO 2 microspheres as an efficient catalyst for diesel soot and CO oxidation: Synergistic effects for enhanced catalytic performance. Appl Surf Sci 473, 209–221 (2019). https://doi.org/10.1016/j.apsusc.2018.12.048

    Article  CAS  Google Scholar 

  101. S. Mobini, F. Meshkani, M. Rezaei, Supported Mn catalysts and the role of different supports in the catalytic oxidation of carbon monoxide. Chem Eng Sci 197, 37–51 (2019). https://doi.org/10.1016/j.ces.2018.12.006

    Article  CAS  Google Scholar 

  102. C. Huang, J. Liu, P. Sun et al., Study on oxygen species characteristics of CexMn1-xO2 catalyst for diesel soot oxidation. Energy Sources, Part A Recover Util Environ Eff 43, 326–336 (2021). https://doi.org/10.1080/15567036.2019.1624885

    Article  CAS  Google Scholar 

  103. Shao J, Lin F, Li Y, et al (2019) Co-precipitation synthesized mnox-ceo2 mixed oxides for no oxidation and enhanced resistance to low concentration of so2 by metal addition. Catalysts 9:. https://doi.org/10.3390/catal9060519

  104. H. Zhao, X. Zhou, M. Wang et al., Highly active MnOx-CeO2 catalyst for diesel soot combustion. RSC Adv 7, 3233–3239 (2017). https://doi.org/10.1039/c6ra25738k

    Article  CAS  Google Scholar 

  105. E. Colman-Lerner, PELUSO MA, SAMBETH J, THOMAS H, , Cerium, manganese and cerium/manganese ceramic monolithic catalysts. Study of VOCs and PM removal. J Rare Earths 34, 675–682 (2016). https://doi.org/10.1016/S1002-0721(16)60078-9

    Article  CAS  Google Scholar 

  106. C. Wu, Z. Dang, M. Prato et al., Nanosized, hollow, and Mn-doped CeO2/SiO2 catalysts via galvanic replacement: preparation, characterization, and application as highly active catalysts. ACS Appl Nano Mater 1, 1438–1443 (2018). https://doi.org/10.1021/acsanm.7b00380

    Article  CAS  Google Scholar 

  107. H. Zhang, C. Zhou, M.E. Galvez et al., MnO x -CeO 2 mixed oxides as the catalyst for NO-assisted soot oxidation: the key role of NO adsorption/desorption on catalytic activity. Appl Surf Sci 462, 678–684 (2018). https://doi.org/10.1016/j.apsusc.2018.08.186

    Article  CAS  Google Scholar 

  108. Q. Tang, J. Du, B. Xie et al., Rare earth metal modified three dimensionally ordered macroporous MnOx-CeO2 catalyst for diesel soot combustion. J Rare Earths 36, 64–71 (2018). https://doi.org/10.1016/j.jre.2017.06.010

    Article  CAS  Google Scholar 

  109. C. Wang, F. Yu, M. Zhu et al., Up-scaled flash nano-precipitation production route to develop a MnOx-CeO2-Al2O3 catalyst with enhanced activity and H2O resistant performance for NOx selective catalytic reduction with NH3. Chem Eng Res Des 134, 476–486 (2018). https://doi.org/10.1016/j.cherd.2018.04.036

    Article  CAS  Google Scholar 

  110. L. Meng, J. Wang, Z. Sun et al., Active manganese oxide on MnOx–CeO2 catalysts for low-temperature NO oxidation: characterization and kinetics study. J Rare Earths 36, 142–147 (2018). https://doi.org/10.1016/j.jre.2017.05.017

    Article  CAS  Google Scholar 

  111. H. He, X. Lin, S. Li et al., The key surface species and oxygen vacancies in MnOx(0.4)-CeO2 toward repeated soot oxidation. Appl Catal B Environ 223, 134–142 (2018). https://doi.org/10.1016/j.apcatb.2017.08.084

    Article  CAS  Google Scholar 

  112. H. Huang, J. Liu, P. Sun et al., Effects of Mn-doped ceria oxygen-storage material on oxidation activity of diesel soot. RSC Adv 7, 7406–7412 (2017). https://doi.org/10.1039/c6ra27007g

    Article  CAS  Google Scholar 

  113. B. Hillary, P. Sudarsanam, M.H. Amin, S.K. Bhargava, Nanoscale cobalt-manganese oxide catalyst supported on shape-controlled cerium oxide: effect of nanointerface configuration on structural, redox, and catalytic properties. Langmuir 33, 1743–1750 (2017). https://doi.org/10.1021/acs.langmuir.6b03445

    Article  CAS  Google Scholar 

  114. Y. Liang, Y. Huang, H. Zhang et al., Interactional effect of cerium and manganese on NO catalytic oxidation. Environ Sci Pollut Res 24, 9314–9324 (2017). https://doi.org/10.1007/s11356-017-8645-x

    Article  CAS  Google Scholar 

  115. L. Liu, C. Zheng, S. Wu et al., Manganese-cerium oxide catalysts prepared by non-thermal plasma for NO oxidation: effect of O 2 in discharge atmosphere. Appl Surf Sci 416, 78–85 (2017). https://doi.org/10.1016/j.apsusc.2017.04.020

    Article  CAS  Google Scholar 

  116. Mori K, Miyauchi Y, Kuwahara Y, Yamashita H (2017) Shape effect of MnOx-decorated CeO2 catalyst in the diesel soot oxidation. Bull Chem Soc Jpn 90:. https://doi.org/10.1246/bcsj.20170022

  117. Z. Sun, J. Wang, J. Zhu et al., Investigation of the active sites for NO oxidation reactions over MnOx-CeO2 catalysts. New J Chem 41, 3106–3111 (2017). https://doi.org/10.1039/c6nj03838g

    Article  CAS  Google Scholar 

  118. H. Zhang, Z. Hou, Y. Zhu et al., Sulfur deactivation mechanism of Pt/MnO x -CeO 2 for soot oxidation: surface property study. Appl Surf Sci 396, 560–565 (2017). https://doi.org/10.1016/j.apsusc.2016.10.196

    Article  CAS  Google Scholar 

  119. Y. Du, J. Ni, P. Hu et al., Synthesis and characterization of manganese doped CeO2 nanopowders from hydrolysis and oxidation of Ce37Mn 18C45. J Rare Earths 31, 271–275 (2013). https://doi.org/10.1016/S1002-0721(12)60271-3

    Article  CAS  Google Scholar 

  120. D. García Pintos, A. Juan, B. Irigoyen, Mn-doped CeO2: DFT+U study of a catalyst for oxidation reactions. J Phys Chem C 117, 18063–18073 (2013). https://doi.org/10.1021/jp403911b

    Article  CAS  Google Scholar 

  121. Zhang X, Wei J, Yang H, et al (2013) One-pot synthesis of mn-doped CeO2 nanospheres for CO oxidation. Eur J Inorg Chem 4443–4449. https://doi.org/10.1002/ejic.201300370

  122. K. Li, X. Tang, H. Yi et al., Low-temperature catalytic oxidation of NO over Mn-Co-Ce-Ox catalyst. Chem Eng J 192, 99–104 (2012). https://doi.org/10.1016/j.cej.2012.03.087

    Article  CAS  Google Scholar 

  123. X. Wu, S. Liu, D. Weng, F. Lin, Textural-structural properties and soot oxidation activity of MnO x-CeO2 mixed oxides. Catal Commun 12, 345–348 (2011). https://doi.org/10.1016/j.catcom.2010.10.019

    Article  CAS  Google Scholar 

  124. Y. Gao, X. Wu, S. Liu et al., MnOx–CeO2 mixed oxides for diesel soot oxidation: a review. Catal. Surv. from Asia 22, 230–240 (2018)

    Article  CAS  Google Scholar 

  125. D. Mukherjee, B.M. Reddy, Noble metal-free CeO2-based mixed oxides for CO and soot oxidation. Catal Today 309, 227–235 (2018). https://doi.org/10.1016/j.cattod.2017.06.017

    Article  CAS  Google Scholar 

  126. L. Xing, Y. Yang, C. Cao et al., Decorating CeO2 nanoparticles on Mn2O3 nanosheets to improve catalytic soot combustion. ACS Sustain Chem Eng 6, 16544–16554 (2018). https://doi.org/10.1021/acssuschemeng.8b03645

    Article  CAS  Google Scholar 

  127. W. Shan, N. Ma, J. Yang et al., Catalytic oxidation of soot particulates over MnOx-CeO2 oxides prepared by complexation-combustion method. J. Nat. Gas Chem. 19, 86–90 (2010)

    Article  CAS  Google Scholar 

  128. Z.Q. Zou, M. Meng, Y.Q. Zha, Surfactant-assisted synthesis, characterizations, and catalytic oxidation mechanisms of the mesoporous MnOx-CeO2 and Pd/MnOx-CeO2 catalysts used for CO and C3H8 oxidation. J Phys Chem C 114, 468–477 (2010). https://doi.org/10.1021/jp908721a

    Article  CAS  Google Scholar 

  129. X. Wu, F. Lin, H. Xu, D. Weng, Effects of adsorbed and gaseous NOx species on catalytic oxidation of diesel soot with MnOx-CeO2 mixed oxides. Appl Catal B Environ 96, 101–109 (2010). https://doi.org/10.1016/j.apcatb.2010.02.006

    Article  CAS  Google Scholar 

  130. X. Wu, S. Liu, F. Lin, D. Weng, Nitrate storage behavior of Ba/MnOx-CeO2 catalyst and its activity for soot oxidation with heat transfer limitations. J Hazard Mater 181, 722–728 (2010). https://doi.org/10.1016/j.jhazmat.2010.05.072

    Article  CAS  Google Scholar 

  131. He J, Yao P, Qiu J, et al (2021) Enhancement effect of oxygen mobility over Ce0.5Zr0.5O2 catalysts doped by multivalent metal oxides for soot combustion. Fuel 286:119359. https://doi.org/10.1016/j.fuel.2020.119359

  132. E. Aneggi, A. Trovarelli, Potential of ceria-zirconia-based materials in carbon soot oxidation for gasoline particulate filters. Catalysts 10, 1–13 (2020). https://doi.org/10.3390/catal10070768

    Article  CAS  Google Scholar 

  133. Zhang Y, Tsui CKJ, Li CYV, et al (2020) Scalable synthesis of ordered mesoporous binary metal oxide: CexZr1-xO2 as thermally stable catalyst for enhanced CO oxidation. Mater Today Commun 101811. https://doi.org/10.1016/j.mtcomm.2020.101811

  134. Ai C, Zhang Y, Wang P, Wang W (2019) Catalytic combustion of diesel soot on Ce/Zr series catalysts prepared by sol-gel method. Catalysts 9:. https://doi.org/10.3390/catal9080646

  135. J. Giménez-Mañogil, J.C. Martínez-Munuera, R. Matarrese et al., NO x adsorption over Ce/Zr-based catalysts doped with Cu and Ba. Top Catal 62, 140–149 (2019). https://doi.org/10.1007/s11244-018-1130-z

    Article  CAS  Google Scholar 

  136. P.M. Shah, A.N. Day, T.E. Davies et al., Mechanochemical preparation of ceria-zirconia catalysts for the total oxidation of propane and naphthalene Volatile Organic Compounds. Appl Catal B Environ 253, 331–340 (2019). https://doi.org/10.1016/j.apcatb.2019.04.061

    Article  CAS  Google Scholar 

  137. Shah PM, Burnett JWH, Morgan DJ, et al (2019) Ceria–zirconia mixed metal oxides prepared via mechanochemical grinding of carbonates for the total oxidation of propane and naphthalene. Catalysts 9:. https://doi.org/10.3390/catal9050475

  138. Z. Yang, W. Hu, N. Zhang et al., Facile synthesis of ceria–zirconia solid solutions with cubic–tetragonal interfaces and their enhanced catalytic performance in diesel soot oxidation. J Catal 377, 98–109 (2019). https://doi.org/10.1016/j.jcat.2019.06.029

    Article  CAS  Google Scholar 

  139. I.Y. Kaplin, E.S. Lokteva, E.V. Golubina et al., Efficiency of manganese modified CTAB-templated ceria-zirconia catalysts in total CO oxidation. Appl Surf Sci 485, 432–440 (2019). https://doi.org/10.1016/j.apsusc.2019.04.206

    Article  CAS  Google Scholar 

  140. Y. Ji, D. Xu, S. Bai et al., Pt- and Pd-promoted CeO2-ZrO2 for passive NOx adsorber applications. Ind Eng Chem Res 56, 111–125 (2017). https://doi.org/10.1021/acs.iecr.6b03793

    Article  CAS  Google Scholar 

  141. C. Kunjachan, A. Sreevalsan, M. Kurian, On the redox nature of ceria-zirconia mixed nanocatalysts and its effect on catalytic wet peroxide oxidation of chlorinated organic pollutants. J Environ Chem Eng 6, 4151–4159 (2018). https://doi.org/10.1016/j.jece.2018.06.009

    Article  CAS  Google Scholar 

  142. C. Lee, Y. Jeon, T. Kim et al., Ag-loaded cerium-zirconium solid solution oxide nano-fibrous webs and their catalytic activity for soot and CO oxidation. Fuel 212, 395–404 (2018). https://doi.org/10.1016/j.fuel.2017.10.007

    Article  CAS  Google Scholar 

  143. B. Guan, H. Lin, R. Zhan, Z. Huang, Catalytic combustion of soot over Cu, Mn substitution CeZrO2-Δ nanocomposites catalysts prepared by self-propagating high-temperature synthesis method. Chem Eng Sci 189, 320–339 (2018). https://doi.org/10.1016/j.ces.2018.05.063

    Article  CAS  Google Scholar 

  144. I. Heo, S.J. Schmieg, S.H. Oh et al., Improved thermal stability of a copper-containing ceria-based catalyst for low temperature CO oxidation under simulated diesel exhaust conditions. Catal Sci Technol 8, 1383–1394 (2018). https://doi.org/10.1039/c7cy02288c

    Article  CAS  Google Scholar 

  145. Y. Cheng, W. Song, J. Liu et al., Simultaneous NOx and particulate matter removal from diesel exhaust by hierarchical Fe-doped Ce-Zr oxide. ACS Catal 7, 3883–3892 (2017). https://doi.org/10.1021/acscatal.6b03387

    Article  CAS  Google Scholar 

  146. X. Deng, M. Li, J. Zhang et al., Constructing nano-structure on silver/ceria-zirconia towards highly active and stable catalyst for soot oxidation. Chem Eng J 313, 544–555 (2017). https://doi.org/10.1016/j.cej.2016.12.088

    Article  CAS  Google Scholar 

  147. Z. Wang, X. Sun, J. Liu, X. Li, The NO oxidation performance over Cu/Ce0.8Zr0.2O2 catalyst. Surfaces and Interfaces 6, 103–109 (2017). https://doi.org/10.1016/j.surfin.2016.12.003

    Article  CAS  Google Scholar 

  148. R. Zhao, Q. Hao, F. Bin et al., Influence of Ce/Zr ratio on the synergistic effect over CuCe1–xZrxOy/ZSM-5 catalysts for the self-sustained combustion of carbon monoxide. Combust Sci Technol 189, 1394–1415 (2017). https://doi.org/10.1080/00102202.2017.1297807

    Article  CAS  Google Scholar 

  149. L. Sui, Y. Wang, H. Kang et al., Effect of Cs-Ce-Zr catalysts/soot contact conditions on diesel soot oxidation. ACS Omega 2, 6984–6990 (2017). https://doi.org/10.1021/acsomega.7b01037

    Article  CAS  Google Scholar 

  150. P. Kumar, P. With, V.C. Srivastava et al., Efficient ceria-zirconium oxide catalyst for carbon dioxide conversions: characterization, catalytic activity and thermodynamic study. J Alloys Compd 696, 718–726 (2017). https://doi.org/10.1016/j.jallcom.2016.10.293

    Article  CAS  Google Scholar 

  151. S. Liu, X. Wu, J. Tang et al., An exploration of soot oxidation over CeO2-ZrO2 nanocubes: do more surface oxygen vacancies benefit the reaction? Catal Today 281, 454–459 (2017). https://doi.org/10.1016/j.cattod.2016.05.036

    Article  CAS  Google Scholar 

  152. W. Cai, Q. Zhong, Y. Yu, S. Dai, Correlation of morphology with catalytic performance of CrOx/Ce0.2Zr0.8O2 catalysts for NO oxidation via in-situ STEM. Chem Eng J 288, 238–245 (2016). https://doi.org/10.1016/j.cej.2015.12.009

    Article  CAS  Google Scholar 

  153. Bensaid S, Piumetti M, Novara C, et al (2016) Catalytic oxidation of CO and soot over Ce-Zr-Pr mixed oxides synthesized in a multi-inlet vortex reactor: effect of structural defects on the catalytic activity. Nanoscale Res Lett 11:. https://doi.org/10.1186/s11671-016-1713-1

  154. M. Piumetti, S. Bensaid, N. Russo, D. Fino, Investigations into nanostructured ceria-zirconia catalysts for soot combustion. Appl Catal B Environ 180, 271–282 (2016). https://doi.org/10.1016/j.apcatb.2015.06.018

    Article  CAS  Google Scholar 

  155. M. Piumetti, S. Bensaid, D. Fino, N. Russo, Nanostructured ceria-zirconia catalysts for CO oxidation: study on surface properties and reactivity. Appl Catal B Environ 197, 35–46 (2016). https://doi.org/10.1016/j.apcatb.2016.02.023

    Article  CAS  Google Scholar 

  156. Z. Song, P. Ning, Q. Zhang et al., Activity and hydrothermal stability of CeO2-ZrO2-WO3 for the selective catalytic reduction of NOx with NH3. J Environ Sci (China) 42, 168–177 (2016). https://doi.org/10.1016/j.jes.2015.06.010

    Article  CAS  Google Scholar 

  157. P. Yang, S. Zhou, J. Lei, Preparation of ordered mesoporous nanocrystalline ceria and ceria-zirconia for soot oxidation. J Wuhan Univ Technol Mater Sci Ed 31, 113–117 (2016). https://doi.org/10.1007/s11595-016-1339-2

    Article  CAS  Google Scholar 

  158. S. Ding, F. Liu, X. Shi, H. He, Promotional effect of Nb additive on the activity and hydrothermal stability for the selective catalytic reduction of NOx with NH3 over CeZrOx catalyst. Appl Catal B Environ 180, 766–774 (2016). https://doi.org/10.1016/j.apcatb.2015.06.055

    Article  CAS  Google Scholar 

  159. Deng J, Li S, Xiong L, et al (2019) Different thermal behavior of nanostructured CeO2-ZrO2 based oxides with varied Ce/Zr molar ratios. Mater Chem Phys 236:. https://doi.org/10.1016/j.matchemphys.2019.121767

  160. W. Cai, Q. Zhong, J. Ding, Y. Bu, Solvent effects during the synthesis of Cr/Ce0.2Zr0.8O2 catalysts and their activities in NO oxidation. Chem Eng J 270, 1–8 (2015). https://doi.org/10.1016/j.cej.2015.02.009

    Article  CAS  Google Scholar 

  161. S. Ding, F. Liu, X. Shi et al., Significant promotion effect of Mo additive on a novel Ce-Zr mixed oxide catalyst for the selective catalytic reduction of NOx with NH3. ACS Appl Mater Interfaces 7, 9497–9506 (2015). https://doi.org/10.1021/acsami.5b00636

    Article  CAS  Google Scholar 

  162. J.G. Mira, V.R. Pérez, A. Bueno-López, Effect of the CeZrNd mixed oxide synthesis method in the catalytic combustion of soot. Catal Today 253, 77–82 (2015). https://doi.org/10.1016/j.cattod.2014.11.037

    Article  CAS  Google Scholar 

  163. S. Quiles-Díaz, J. Giménez-Mañogil, A. García-García, Catalytic performance of CuO/Ce0.8Zr0.2O2 loaded onto SiC-DPF in NOx-assisted combustion of diesel soot. RSC Adv 5, 17018–17029 (2015). https://doi.org/10.1039/c4ra15595e

    Article  Google Scholar 

  164. P. Ning, Z. Song, H. Li et al., Selective catalytic reduction of NO with NH 3 over CeO 2 -ZrO 2 -WO 3 catalysts prepared by different methods. Appl Surf Sci 332, 130–137 (2015). https://doi.org/10.1016/j.apsusc.2015.01.118

    Article  CAS  Google Scholar 

  165. J. Giménez-Mañogil, A. Bueno-López, A. García-García, Preparation, characterisation and testing of CuO/Ce0.8Zr0.2O2 catalysts for NO oxidation to NO2 and mild temperature diesel soot combustion. Appl Catal B Environ 152–153, 99–107 (2014). https://doi.org/10.1016/j.apcatb.2014.01.018

    Article  CAS  Google Scholar 

  166. C.A. Neyertz, E.D. Banús, E.E. Miró, C.A. Querini, Potassium-promoted Ce0.65Zr0.35O2monolithic catalysts for diesel soot combustion. Chem Eng J 248, 394–405 (2014). https://doi.org/10.1016/j.cej.2014.03.048

    Article  CAS  Google Scholar 

  167. N. Guillén-Hurtado, F.E. López-Suárez, A. Bueno-López, A. García-García, Behavior of different soot combustion catalysts under NOx/O 2. Importance of the catalyst-soot contact. React Kinet Mech Catal 111, 167–182 (2014). https://doi.org/10.1007/s11144-013-0644-4

    Article  CAS  Google Scholar 

  168. W. Cai, Q. Zhong, S. Zhang, W. Zhao, Fractional-hydrolysis-driven formation of nonuniform dopant concentration catalyst nanoparticles of Cr/CexZr1-xO2 and their catalysis in oxidation of NO. Chem Eng J 236, 223–232 (2014). https://doi.org/10.1016/j.cej.2013.09.032

    Article  CAS  Google Scholar 

  169. W. Cai, Q. Zhong, W. Zhao, Solvent effects on formation of Cr-doped Ce0.2Zr0.8O2 synthesized with cinnamic acid and their catalysis in oxidation of NO. Chem Eng J 246, 328–336 (2014). https://doi.org/10.1016/j.cej.2014.02.090

    Article  CAS  Google Scholar 

  170. Z. Gu, X. Sang, H. Wang, K. Li, Structure and catalytic property of CeO2-ZrO2-Fe2O3 mixed oxide catalysts for diesel soot combustion: effect of preparation method. J Rare Earths 32, 817–823 (2014). https://doi.org/10.1016/S1002-0721(14)60147-2

    Article  CAS  Google Scholar 

  171. Shanmuga Priya N, Somayaji C, Kanagaraj S (2014) Characterization and optimization of Ce0.6Zr0.4−xMnxO2 (x ≤ 0.4). J Nanoparticle Res 16:. https://doi.org/10.1007/s11051-014-2661-2

  172. Y. Wei, Z. Zhao, J. Jiao et al., Preparation of ultrafine Ce-based oxide nanoparticles and their catalytic performances for diesel soot combustion. J Rare Earths 32, 124–130 (2014). https://doi.org/10.1016/S1002-0721(14)60041-7

    Article  CAS  Google Scholar 

  173. L.F. Nascimento, R.F. Martins, R.F. Silva et al., Ru-doped ceria-zirconia mixed oxides catalyze soot combustion. React Kinet Mech Catal 111, 149–165 (2014). https://doi.org/10.1007/s11144-013-0636-4

    Article  CAS  Google Scholar 

  174. A. Alinezhadchamazketi, A.A. Khodadadi, Y. Mortazavi, A. Nemati, Catalytic evaluation of promoted CeO2-ZrO2 by transition, alkali, and alkaline-earth metal oxides for diesel soot oxidation. J Environ Sci (China) 25, 2498–2506 (2013). https://doi.org/10.1016/S1001-0742(12)60334-9

    Article  CAS  Google Scholar 

  175. A.M. Hernández-Giménez, L.P.D.S. Xavier, A. Bueno-López, Improving ceria-zirconia soot combustion catalysts by neodymium doping. Appl Catal A Gen 462–463, 100–106 (2013). https://doi.org/10.1016/j.apcata.2013.04.035

    Article  CAS  Google Scholar 

  176. P. Dulgheru, J.A. Sullivan, Rare earth (La, Nd, Pr) doped ceria zirconia solid solutions for soot combustion. Top Catal 56, 504–510 (2013). https://doi.org/10.1007/s11244-013-0006-5

    Article  CAS  Google Scholar 

  177. G. Lv, F. Bin, C. Song et al., Promoting effect of zirconium doping on Mn/ZSM-5 for the selective catalytic reduction of NO with NH3. Fuel 107, 217–224 (2013). https://doi.org/10.1016/j.fuel.2013.01.050

    Article  CAS  Google Scholar 

  178. E. Aneggi, C. De Leitenburg, A. Trovarelli, On the role of lattice/surface oxygen in ceria-zirconia catalysts for diesel soot combustion. Catal Today 181, 108–115 (2012). https://doi.org/10.1016/j.cattod.2011.05.034

    Article  CAS  Google Scholar 

  179. E. Aneggi, C. De Leitenburg, J. Llorca, A. Trovarelli, Higher activity of diesel soot oxidation over polycrystalline ceria and ceria-zirconia solid solutions from more reactive surface planes. Catal Today 197, 119–126 (2012). https://doi.org/10.1016/j.cattod.2012.07.030

    Article  CAS  Google Scholar 

  180. N. Guillén-Hurtado, A. Bueno-López, A. García-García, Catalytic performances of ceria and ceria-zirconia materials for the combustion of diesel soot under NO x/O 2 and O 2. Importance of the cerium precursor salt. Appl Catal A Gen 437–438, 166–172 (2012). https://doi.org/10.1016/j.apcata.2012.06.028

    Article  CAS  Google Scholar 

  181. C.F. Oliveira, F.A.C. Garcia, D.R. Araújo et al., Effects of preparation and structure of cerium-zirconium mixed oxides on diesel soot catalytic combustion. Appl Catal A Gen 413–414, 292–300 (2012). https://doi.org/10.1016/j.apcata.2011.11.020

    Article  CAS  Google Scholar 

  182. Y. Wei, J. Liu, Z. Zhao et al., The catalysts of three-dimensionally ordered macroporous Ce 1-xZr xO 2-supported gold nanoparticles for soot combustion: the metal-support interaction. J Catal 287, 13–29 (2012). https://doi.org/10.1016/j.jcat.2011.11.006

    Article  CAS  Google Scholar 

  183. J. Liu, Z. Zhao, Y. Chen et al., Different valent ions-doped cerium oxides and their catalytic performances for soot oxidation. Catal Today 175, 117–123 (2011). https://doi.org/10.1016/j.cattod.2011.05.023

    Article  CAS  Google Scholar 

  184. D. Weng, J. Li, X. Wu, Z. Si, Modification of CeO2-ZrO2 catalyst by potassium for NOx-assisted soot oxidation. J Environ Sci 23, 145–150 (2011). https://doi.org/10.1016/S1001-0742(10)60386-5

    Article  CAS  Google Scholar 

  185. I. Atribak, N. Guillén-Hurtado, A. Bueno-López, A. García-García, Influence of the physico-chemical properties of CeO 2 -ZrO 2 mixed oxides on the catalytic oxidation of NO to NO 2. Appl Surf Sci 256, 7706–7712 (2010). https://doi.org/10.1016/j.apsusc.2010.06.042

    Article  CAS  Google Scholar 

  186. I. Atribak, A. Bueno-López, A. García-García, B. Azambre, Contributions of surface and bulk heterogeneities to the NO oxidation activities of ceria-zirconia catalysts with composition Ce0.76Zr 0.24O2 prepared by different methods. Phys Chem Chem Phys 12, 13770–13779 (2010). https://doi.org/10.1039/c0cp00540a

    Article  CAS  Google Scholar 

  187. L. Katta, P. Sudarsanam, G. Thrimurthulu, B.M. Reddy, Doped nanosized ceria solid solutions for low temperature soot oxidation: zirconium versus lanthanum promoters. Appl Catal B Environ 101, 101–108 (2010). https://doi.org/10.1016/j.apcatb.2010.09.012

    Article  CAS  Google Scholar 

  188. I. Atribak, B. Azambre, A. Bueno López, A. García-García, Effect of NOx adsorption/desorption over ceria-zirconia catalysts on the catalytic combustion of model soot. Appl Catal B Environ 92, 126–137 (2009). https://doi.org/10.1016/j.apcatb.2009.07.015

    Article  CAS  Google Scholar 

  189. B.M. Reddy, K.N. Rao, Copper promoted ceria-zirconia based bimetallic catalysts for low temperature soot oxidation. Catal Commun 10, 1350–1353 (2009). https://doi.org/10.1016/j.catcom.2009.02.020

    Article  CAS  Google Scholar 

  190. I. Atribak, A. Bueno-López, A. García-García, Thermally stable ceria-zirconia catalysts for soot oxidation by O2. Catal Commun 9, 250–255 (2008). https://doi.org/10.1016/j.catcom.2007.05.047

    Article  CAS  Google Scholar 

  191. I. Atribak, A. Bueno-López, A. García-García, Combined removal of diesel soot particulates and NOx over CeO2-ZrO2 mixed oxides. J Catal 259, 123–132 (2008). https://doi.org/10.1016/j.jcat.2008.07.016

    Article  CAS  Google Scholar 

  192. B.M. Reddy, P. Bharali, G. Thrimurthulu et al., Catalytic efficiency of ceria-zirconia and ceria-hafnia nanocomposite oxides for soot oxidation. Catal Letters 123, 327–333 (2008). https://doi.org/10.1007/s10562-008-9427-3

    Article  CAS  Google Scholar 

  193. P. Fang, J. Lu, X. Xiao, LUO M, , Catalytic combustion study of soot on Ce0.7Zr0.3O2 solid solution. J Rare Earths 26, 250–253 (2008). https://doi.org/10.1016/S1002-0721(08)60075-7

    Article  Google Scholar 

  194. Q. Liang, X. Wu, X. Wu, D. Weng, Role of surface area in oxygen storage capacity of ceria-zirconia as soot combustion catalyst. Catal Letters 119, 265–270 (2007). https://doi.org/10.1007/s10562-007-9228-0

    Article  CAS  Google Scholar 

  195. L. Zhu, J. Yu, X. Wang, Oxidation treatment of diesel soot particulate on CexZr1-xO2. J Hazard Mater 140, 205–210 (2007). https://doi.org/10.1016/j.jhazmat.2006.06.055

    Article  CAS  Google Scholar 

  196. J. Lee, M.W. Lee, M.J. Kim et al., Effects of La incorporation in catalytic activity of Ag/La-CeO2 catalysts for soot oxidation. J Hazard Mater 414, 125523 (2021). https://doi.org/10.1016/j.jhazmat.2021.125523

    Article  CAS  Google Scholar 

  197. W. Wang, Y. Liu, L. Wang et al., Soot combustion over Ag catalysts supported on shape-controlled CeO2. Catal Today (2020). https://doi.org/10.1016/j.cattod.2020.10.043

    Article  Google Scholar 

  198. M.V. Grabchenko, G.V. Mamontov, V.I. Zaikovskii et al., The role of metal–support interaction in Ag/CeO2 catalysts for CO and soot oxidation. Appl Catal B Environ 260, 118148 (2020). https://doi.org/10.1016/j.apcatb.2019.118148

    Article  CAS  Google Scholar 

  199. J.H. Lee, S.H. Lee, J.W. Choung et al., Ag-incorporated macroporous CeO2 catalysts for soot oxidation: effects of Ag amount on the generation of active oxygen species. Appl Catal B Environ 246, 356–366 (2019). https://doi.org/10.1016/j.apcatb.2019.01.064

    Article  CAS  Google Scholar 

  200. Zhang M, Jin B, Liu Y, et al (2019) Ozone activated Ag/CeO2 catalysts for soot combustion: the surface and structural influences. Chem Eng J 375:. https://doi.org/10.1016/j.cej.2019.121961

  201. Ivanova T V., Homola T, Bryukvin A, Cameron DC (2018) Catalytic performance of Ag2O and Ag doped CeO2 prepared by atomic layer deposition for diesel soot oxidation. Coatings 8:. https://doi.org/10.3390/coatings8070237

  202. E. Aneggi, J. Llorca, C. de Leitenburg et al., Soot combustion over silver-supported catalysts. Appl Catal B Environ 91, 489–498 (2009). https://doi.org/10.1016/j.apcatb.2009.06.019

    Article  CAS  Google Scholar 

  203. G. Zou, Z. Fan, X. Yao et al., Catalytic performance of Ag/Co-Ce composite oxides during soot combustion in O 2 and NO x : insights into the effects of silver. Chinese J Catal 38, 564–572 (2017). https://doi.org/10.1016/S1872-2067(17)62758-X

    Article  CAS  Google Scholar 

  204. L. Castoldi, E. Aneggi, R. Matarrese et al., Silver-based catalytic materials for the simultaneous removal of soot and NOx. Catal Today 258, 405–415 (2015). https://doi.org/10.1016/j.cattod.2015.02.024

    Article  CAS  Google Scholar 

  205. Z. Qu, F. Yu, X. Zhang et al., Support effects on the structure and catalytic activity of mesoporous Ag/CeO2 catalysts for CO oxidation. Chem Eng J 229, 522–532 (2013). https://doi.org/10.1016/j.cej.2013.06.061

    Article  CAS  Google Scholar 

  206. K.I. Shimizu, H. Kawachi, S.I. Komai et al., Carbon oxidation with Ag/ceria prepared by self-dispersion of Ag powder into nano-particles. Catal Today 175, 93–99 (2011). https://doi.org/10.1016/j.cattod.2011.03.053

    Article  CAS  Google Scholar 

  207. K. Yamazaki, T. Kayama, F. Dong, H. Shinjoh, A mechanistic study on soot oxidation over CeO2-Ag catalyst with “rice-ball” morphology. J Catal 282, 289–298 (2011). https://doi.org/10.1016/j.jcat.2011.07.001

    Article  CAS  Google Scholar 

  208. K. Shimizu, ichi, Kawachi H, Satsuma A, , Study of active sites and mechanism for soot oxidation by silver-loaded ceria catalyst. Appl Catal B Environ 96, 169–175 (2010). https://doi.org/10.1016/j.apcatb.2010.02.016

    Article  CAS  Google Scholar 

  209. K. Yamazaki, Y. Sakakibara, F. Dong, H. Shinjoh, The remote oxidation of soot separated by ash deposits via silver-ceria composite catalysts. Appl Catal A Gen 476, 113–120 (2014). https://doi.org/10.1016/j.apcata.2014.02.014

    Article  CAS  Google Scholar 

  210. P.W. Park, C.L. Boyer, Effect of SO2 on the activity of Ag/γ-Al2O 3 catalysts for NOx reduction in lean conditions. Appl Catal B Environ 59, 27–34 (2005). https://doi.org/10.1016/j.apcatb.2004.11.027

    Article  CAS  Google Scholar 

  211. R. Brosius, K. Arve, M.H. Groothaert, J.A. Martens, Adsorption chemistry of NOx on Ag/Al2O3 catalyst for selective catalytic reduction of NOx using hydrocarbons. J Catal 231, 344–353 (2005). https://doi.org/10.1016/j.jcat.2005.01.034

    Article  CAS  Google Scholar 

  212. L. Gang, B.G. Anderson, J. Van Grondelle et al., Alumina-supported Cu-Ag catalysts for ammonia oxidation to nitrogen at low temperature. J Catal 206, 60–70 (2002). https://doi.org/10.1006/jcat.2001.3470

    Article  CAS  Google Scholar 

  213. S. Imamura, H. Yamada, K. Utani, Combustion activity of Ag/CeO2 composite catalyst. Appl Catal A Gen 192, 221–226 (2000). https://doi.org/10.1016/S0926-860X(99)00344-0

    Article  CAS  Google Scholar 

  214. Z. Qu, M. Cheng, W. Huang, X. Bao, Formation of subsurface oxygen species and its high activity toward CO oxidation over silver catalysts. J Catal 229, 446–458 (2005). https://doi.org/10.1016/j.jcat.2004.11.043

    Article  CAS  Google Scholar 

  215. M.F. Luo, X.X. Yuan, X.M. Zheng, Catalyst characterization and activity of Ag-Mn, Ag-Co and Ag-Ce composite oxides for oxidation of volatile organic compounds. Appl Catal A Gen 175, 121–129 (1998). https://doi.org/10.1016/S0926-860X(98)00210-5

    Article  CAS  Google Scholar 

  216. A. Bueno-López, D. Lozano-Castelló, J.A. Anderson, NOx storage and reduction over copper-based catalysts. Part 1: BaO + CeO2 supports. Appl Catal B Environ 198, 189–199 (2016). https://doi.org/10.1016/j.apcatb.2016.05.067

    Article  CAS  Google Scholar 

  217. L.P. dos Santos Xavier, V. Rico-Pérez, A.M. Hernández-Giménez et al., Simultaneous catalytic oxidation of carbon monoxide, hydrocarbons and soot with Ce-Zr-Nd mixed oxides in simulated diesel exhaust conditions. Appl Catal B Environ 162, 412–419 (2015). https://doi.org/10.1016/j.apcatb.2014.07.013

    Article  CAS  Google Scholar 

  218. F.L. He, M.X. Jing, X.X. Meng, X.Q. Shen, Preparation and comparison of M/Ce-K-O (M=Co, Ni, Cu) nanocomposites on catalytic soot combustion. Adv Mater Res 699, 150–154 (2013). 10.4028/www.scientific.net/AMR.699.150

  219. F. He, X. Shen, X. Meng et al., Porous Cu/Ce-K-O nanocomposites for simultaneous removal of soot and NOx from diesel exhaust emission. J Nanosci Nanotechnol 13, 2696–2702 (2013). https://doi.org/10.1166/jnn.2013.7407

    Article  CAS  Google Scholar 

  220. Z.G. Liu, S.H. Chai, A. Binder et al., Influence of calcination temperature on the structure and catalytic performance of CuOx-CoOy-CeO2 ternary mixed oxide for CO oxidation. Appl Catal A Gen 451, 282–288 (2013). https://doi.org/10.1016/j.apcata.2012.10.023

    Article  CAS  Google Scholar 

  221. M. Lykaki, E. Pachatouridou, S.A.C. Carabineiro et al., Ceria nanoparticles shape effects on the structural defects and surface chemistry: implications in CO oxidation by Cu/CeO2 catalysts. Appl Catal B Environ 230, 18–28 (2018). https://doi.org/10.1016/j.apcatb.2018.02.035

    Article  CAS  Google Scholar 

  222. E.P. Mahofa, T.B. Narsaiah, C.S. Chakra, Catalytic soot oxidation using ceria, cobalt and copper nanocomposites. MRS Adv 3, 2581–2588 (2018). https://doi.org/10.1557/adv.2018.286

    Article  CAS  Google Scholar 

  223. J. Giménez-Mañogil, A. García-García, Identifying the nature of the copper entities over ceria-based supports to promote diesel soot combustion: synergistic effects. Appl Catal A Gen 542, 226–239 (2017). https://doi.org/10.1016/j.apcata.2017.05.031

    Article  CAS  Google Scholar 

  224. J. Qian, X. Hou, F. Wang et al., Catalytic reduction of NO by CO over promoted Cu3Ce0.2Al0.8 composite oxides derived from hydrotalcite-like compounds. J Phys Chem C 122, 2097–2106 (2018). https://doi.org/10.1021/acs.jpcc.7b09041

    Article  CAS  Google Scholar 

  225. Y. Wang, H. Zhao, J. Zheng et al., Easy synthesis of three-dimensionally ordered macroporous CuO–CeO2 mixed oxide catalysts and their high activities for the catalytic combustion of soot. J Chinese Chem Soc 65, 1028–1034 (2018). https://doi.org/10.1002/jccs.201800089

    Article  CAS  Google Scholar 

  226. X. Wu, Q. Liang, D. Weng, Z. Lu, The catalytic activity of CuO-CeO2 mixed oxides for diesel soot oxidation with a NO/O2 mixture. Catal Commun 8, 2110–2114 (2007). https://doi.org/10.1016/j.catcom.2007.04.023

    Article  CAS  Google Scholar 

  227. AlKhoori AA, Polychronopoulou K, Belabbes A, et al (2020) Cu, Sm co-doping effect on the CO oxidation activity of CeO2. A combined experimental and density functional study. Appl Surf Sci 521:146305. https://doi.org/10.1016/j.apsusc.2020.146305

  228. J.M. Waikar, R.K. More, N.R. Lavande, P.M. More, Lattice expansion and smaller CuOxCeO2−δ particles formation by magnesium interaction for low temperature CO oxidation. J Rare Earths 39, 434–439 (2021). https://doi.org/10.1016/j.jre.2020.07.005

    Article  CAS  Google Scholar 

  229. W. Yu, Q. Zhou, H. Wang et al., Selective removal of CO from hydrocarbon-rich industrial off-gases over CeO2-supported metal oxides. J Mater Sci 55, 2321–2332 (2020). https://doi.org/10.1007/s10853-019-04114-2

    Article  CAS  Google Scholar 

  230. X. Zhang, L. Su, Y. Kong et al., CeO2 nanoparticles modified by CuO nanoparticles for low-temperature CO oxidation with high catalytic activity. J Phys Chem Solids 147, 109651 (2020). https://doi.org/10.1016/j.jpcs.2020.109651

    Article  CAS  Google Scholar 

  231. T.S. Cam, T.A. Vishnevskaya, S.O. Omarov et al., Urea–nitrate combustion synthesis of CuO/CeO2 nanocatalysts toward low-temperature oxidation of CO: the effect of Red/Ox ratio. J Mater Sci 55, 11891–11906 (2020). https://doi.org/10.1007/s10853-020-04857-3

    Article  CAS  Google Scholar 

  232. S. Dey, G.C. Dhal, Ceria doped CuMnOx as carbon monoxide oxidation catalysts: synthesis and their characterization. Surfaces and Interfaces 18, 100456 (2020). https://doi.org/10.1016/j.surfin.2020.100456

    Article  CAS  Google Scholar 

  233. S. Ali, X. Wu, Z. Zuhra et al., Cu-Mn-Ce mixed oxides catalysts for soot oxidation and their mechanistic chemistry. Appl Surf Sci 512, 145602 (2020). https://doi.org/10.1016/j.apsusc.2020.145602

    Article  CAS  Google Scholar 

  234. H. Zhao, H. Li, Z. Pan et al., Design of CeMnCu ternary mixed oxides as soot combustion catalysts based on optimized Ce/Mn and Mn/Cu ratios in binary mixed oxides. Appl Catal B Environ 268, 118422 (2020). https://doi.org/10.1016/j.apcatb.2019.118422

    Article  CAS  Google Scholar 

  235. F. Zhao, M. Gong, G. Zhang, J. Li, Effect of the loading content of CuO on the activity and structure of CuO/Ce-Mn-O catalysts for CO oxidation. J Rare Earths 33, 604–610 (2015). https://doi.org/10.1016/S1002-0721(14)60460-9

    Article  CAS  Google Scholar 

  236. B. Govinda Rao, D. Jampaiah, P. Venkataswamy, B.M. Reddy, Enhanced catalytic performance of manganese and cobalt Co–doped CeO2 catalysts for diesel soot oxidation. ChemistrySelect 1, 6681–6691 (2016). https://doi.org/10.1002/slct.201601297

    Article  CAS  Google Scholar 

  237. D. Jampaiah, P. Venkataswamy, K.M. Tur et al., Effect of MnOx loading on structural, surface, and catalytic properties of CeO2-MnOx mixed oxides prepared by sol-gel method. Zeitschrift fur Anorg und Allg Chemie 641, 1141–1149 (2015). https://doi.org/10.1002/zaac.201400615

    Article  CAS  Google Scholar 

  238. S. Putla, M.H. Amin, B.M. Reddy et al., MnOx nanoparticle-dispersed CeO2 nanocubes: a remarkable heteronanostructured system with unusual structural characteristics and superior catalytic performance. ACS Appl Mater Interfaces 7, 16525–16535 (2015). https://doi.org/10.1021/acsami.5b03988

    Article  CAS  Google Scholar 

  239. W. Zhan, X. Zhang, Y. Guo et al., Synthesis of mesoporous CeO2-MnOx binary oxides and their catalytic performances for CO oxidation. J Rare Earths 32, 146–152 (2014). https://doi.org/10.1016/S1002-0721(14)60044-2

    Article  CAS  Google Scholar 

  240. Lavande NR, More RK, More PM (2020) Mg modified MnOx-CeO2-δ catalyst for low temperature complete oxidation of simulated diesel engine exhaust. Appl Surf Sci 502:. https://doi.org/10.1016/j.apsusc.2019.144299

  241. Hao B, Sun Y, Shen Q, et al (2020) Insight into structure defects and catalytic mechanism for NO oxidation over Ce0.6Mn0.4Ox solid solutions catalysts: effect of manganese precursors. Chemosphere 243:125406. https://doi.org/10.1016/j.chemosphere.2019.125406

  242. J.A. Martín-Martín, J. Sánchez-Robles, M.P. González-Marcos et al., Effect of preparation procedure and composition of catalysts based on Mn and Ce oxides in the simultaneous removal of NOX and o-DCB. Mol Catal 495, 111152 (2020). https://doi.org/10.1016/j.mcat.2020.111152

    Article  CAS  Google Scholar 

  243. L. Chen, Z. Si, X. Wu et al., Effect of water vapor on NH3-NO/NO2 SCR performance of fresh and aged MnOx-NbOx-CeO2 catalysts. J Environ Sci (China) 31, 240–247 (2015). https://doi.org/10.1016/j.jes.2014.07.037

    Article  CAS  Google Scholar 

  244. S. Li, S. Yan, Y. Xia et al., Oxidative reactivity enhancement for soot combustion catalysts by co-doping silver and manganese in ceria. Appl Catal A Gen 570, 299–307 (2019). https://doi.org/10.1016/j.apcata.2018.11.033

    Article  CAS  Google Scholar 

  245. F. Lin, X. Wu, S. Liu et al., Preparation of MnOx-CeO2-Al2O3 mixed oxides for NOx-assisted soot oxidation: activity, structure and thermal stability. Chem Eng J 226, 105–112 (2013). https://doi.org/10.1016/j.cej.2013.04.006

    Article  CAS  Google Scholar 

  246. S. Liu, X. Wu, D. Weng et al., Combined promoting effects of platinum and MnOx-CeO2 supported on alumina on NOx-assisted soot oxidation: thermal stability and sulfur resistance. Chem Eng J 203, 25–35 (2012). https://doi.org/10.1016/j.cej.2012.06.090

    Article  CAS  Google Scholar 

  247. Z. Sheng, Y. Hu, J. Xue et al., SO2 poisoning and regeneration of Mn-Ce/TiO2 catalyst for low temperature NOx reduction with NH3. J Rare Earths 30, 676–682 (2012). https://doi.org/10.1016/S1002-0721(12)60111-2

    Article  CAS  Google Scholar 

  248. P. Venkataswamy, D. Jampaiah, K.N. Rao, B.M. Reddy, Nanostructured Ce0.7Mn0.3O2-δ and Ce0.7Fe0.3O2-δ solid solutions for diesel soot oxidation. Appl Catal A Gen 488, 1–10 (2014). https://doi.org/10.1016/j.apcata.2014.09.014

    Article  CAS  Google Scholar 

  249. P. Venkataswamy, D. Mukherjee, D. Devaiah et al., Nanocrystalline Mn-doped and Mn/Fe co-doped ceria solid solutions for low temperature co oxidation. Curr Nanomater 3, 103–113 (2018). https://doi.org/10.2174/2405461503666180821130801

    Article  CAS  Google Scholar 

  250. Z. Ying, X. Chenjun, S. Yeqing et al., Thermal stability of MnOx-CeO2 mixed oxide for soot combustion: influence of Al2O3, TiO2, and ZrO2 carriers. RSC Adv 5, 91734–91741 (2015). https://doi.org/10.1039/c5ra17328k

    Article  CAS  Google Scholar 

  251. G. Thrimurthulu, K.N. Rao, D. Devaiah, B.M. Reddy, Nanocrystalline ceria-praseodymia and ceria-zirconia solid solutions for soot oxidation. Res Chem Intermed 38, 1847–1855 (2012). https://doi.org/10.1007/s11164-012-0508-y

    Article  CAS  Google Scholar 

  252. Y. Yang, Z.Z. Yang, Xu.H. Di et al., Influence of la on CeO2-ZrO2 catalyst for oxidation of soluble organic fraction from diesel exhaust. Wuli Huaxue Xuebao/ Acta Phys - Chim Sin 31, 2358–2365 (2015). https://doi.org/10.3866/PKU.WHXB201510135

    Article  CAS  Google Scholar 

  253. F. Zhong, Y. Xiao, X. Weng et al., Thermally stable CeO2-ZrO2-La2O 3 ternary oxides prepared by deposition-precipitation as support of Rh catalyst for catalytic reduction of NO by CO. Catal Letters 133, 125–133 (2009). https://doi.org/10.1007/s10562-009-0147-0

    Article  CAS  Google Scholar 

  254. Aneggi E, de Leitenburg C, Trovarelli A (2020) Influence of nanoscale surface arrangements on the oxygen transfer ability of ceria-zirconia mixed oxide. Inorganics 8:. https://doi.org/10.3390/INORGANICS8050034

  255. R. O’Donnell, K. Ralphs, M. Grolleau et al., Doping manganese oxides with ceria and ceria zirconia using a one-pot sol–gel method for low temperature diesel oxidation catalysts. Top Catal 63, 351–362 (2020). https://doi.org/10.1007/s11244-020-01250-x

    Article  CAS  Google Scholar 

  256. B. Sawatmongkhon, K. Theinnoi, T. Wongchang et al., Catalytic oxidation of diesel particulate matter by using silver and ceria supported on alumina as the oxidation catalyst. Appl Catal A Gen 574, 33–40 (2019). https://doi.org/10.1016/j.apcata.2019.01.020

    Article  CAS  Google Scholar 

  257. K. Ikeue, S. Kobayashi, M. Machida, Catalytic soot oxidation by Ag/BaCeO3 having tolerance to so2 poisoning. J Ceram Soc Japan 117, 1153–1157 (2009). https://doi.org/10.2109/jcersj2.117.1153

    Article  CAS  Google Scholar 

  258. T. Kayama, K. Yamazaki, H. Shinjoh, Nanostructured ceria-silver synthesized in a one-pot redox reaction catalyzes carbon oxidation. J Am Chem Soc 132, 13154–13155 (2010). https://doi.org/10.1021/ja105403x

    Article  CAS  Google Scholar 

  259. C. Lee, P.J. Il, Y.G. Shul et al., Ag supported on electrospun macro-structure CeO2 fibrous mats for diesel soot oxidation. Appl Catal B Environ 174–175, 185–192 (2015). https://doi.org/10.1016/j.apcatb.2015.03.008

    Article  CAS  Google Scholar 

  260. S. Liu, X. Wu, W. Liu et al., Soot oxidation over CeO2 and Ag/CeO2: factors determining the catalyst activity and stability during reaction. J Catal 337, 188–198 (2016). https://doi.org/10.1016/j.jcat.2016.01.019

    Article  CAS  Google Scholar 

  261. H. Wang, S. Liu, Z. Zhao et al., Activation and deactivation of Ag/CeO2 during soot oxidation: Influences of interfacial ceria reduction. Catal Sci Technol 7, 2129–2139 (2017). https://doi.org/10.1039/c7cy00450h

    Article  CAS  Google Scholar 

  262. L.F. Nascimento, J.F. Lima, P.C. de Sousa Filho, O.A. Serra, Control of diesel particulate emission based on Ag/CeOx/FeOy catalysts supported on cordierite. Chem Eng J 290, 454–464 (2016). https://doi.org/10.1016/j.cej.2016.01.043

    Article  CAS  Google Scholar 

  263. H. Wang, B. Jin, H. Wang et al., Study of Ag promoted Fe2O3@CeO2 as superior soot oxidation catalysts: the role of Fe2O3 crystal plane and tandem oxygen delivery. Appl Catal B Environ 237, 251–262 (2018). https://doi.org/10.1016/j.apcatb.2018.05.093

    Article  CAS  Google Scholar 

  264. M.J. Kim, G.H. Han, S.H. Lee et al., CeO2 promoted Ag/TiO2 catalyst for soot oxidation with improved active oxygen generation and delivery abilities. J Hazard Mater 384, 121341 (2020). https://doi.org/10.1016/j.jhazmat.2019.121341

    Article  CAS  Google Scholar 

  265. J.H. Lee, B.J. Lee, D.W. Lee et al., Synergistic effect of Cu on a Ag-loaded CeO2 catalyst for soot oxidation with improved generation of active oxygen species and reducibility. Fuel 275, 117930 (2020). https://doi.org/10.1016/j.fuel.2020.117930

    Article  CAS  Google Scholar 

Download references

Acknowledgements

One of the authors is thankful to “Technical Education Quality Improvement Programme” (TEQIP-III) of Rjkiya Engineering College, Ambedkar Nagar, Uttar Pradesh- 224122 for financial support. Authors are also thankful to all researchers whose findings (figures/reactions/ suplimetery material) have been cited here.

Funding

One of the authors is thankful to “Technical Education Quality Improvement Programme” (TEQIP-III) of Rjkiya Engineering College, Ambedkar Nagar, Uttar Pradesh-224122, for financial support.

Author information

Authors and Affiliations

Authors

Contributions

All the authors have studied the article and give permission to submit.

Corresponding author

Correspondence to Upendra Kumar Mishra.

Ethics declarations

Conflict of interest

The authors declare no competing interests.

Additional information

Publisher's note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Mishra, U.K., Chandel, V.S. & Singh, O.P. A review on cerium oxide–based catalysts for the removal of contaminants. emergent mater. 5, 1443–1476 (2022). https://doi.org/10.1007/s42247-021-00295-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s42247-021-00295-2

Keywords

Navigation