Skip to main content

Advertisement

Log in

Recent advancements of two-dimensional transition metal dichalcogenides and their applications in electrocatalysis and energy storage

  • Review
  • Published:
Emergent Materials Aims and scope Submit manuscript

Abstract

The discovery of graphene has stirred an intensive research interest in two-dimensional (2D) materials, but its lack of an electronic band gap has stimulated the research for novel materials with semiconducting character. The past few years have witnessed an impressive advancement in 2D materials from fundamental studies to the development of next generation of technologies and materials engineering. Among them, 2D transition metal dichalcogenides (TMDs) have been extensively studied in various areas of research since last few decades, and these 2D TMDs are semiconductors of the type MX2, where M is a transition metal atom (such as Mo or W) and X is a chalcogen atom (such as S, Se, or Te), furnish an auspicious alternative. Due to its unique physical and chemical properties, 2D monolayer TMDs exhibit a distinctive combination of atomic-scale thickness, direct band gap, strong spin–orbit coupling, and favorable electronic and mechanical properties. These properties make the 2D TMD materials (such as MoS2, MoSe2, WTe2, WS2, and WSe2) more interesting for fundamental studies and for applications in high-end electronics, spintronics, optoelectronics, electrocatalysis, energy harvesting, flexible electronics, water splitting, DNA sequencing, and personalized medicine. They exhibit tunable electronic band gaps that can undergo a transition from an indirect band gap (bulk crystal structure) to a direct band gap (2D monolayer nanosheets, i.e., slab structure). Because of its robustness, 2D monolayer MoS2 is the most studied material in this family and especially for the applications of electrocatalysis, H2 evolution reactions (HER), etc. Current state-of-the-art catalysts still rely on expensive and rare noble metals; however, the relatively cheap and abundant TMDs have emerged as exceptionally promising alternative electrocatalysts for HER. In this review, we focus on the development of 2D TMDs, their synthesis methods, electronic structures and phases of the TMDs, theoretical modelling of the 2D TMDs, computations of electronic properties, and their potential applications in HER. They have been widely considered potential candidates for HER electrocatalysts because of their low cost, good electrochemical stability in acidic conditions, and its nearly thermoneutral hydrogen adsorption energy. The mechanism of hydrogen adsorption on TMDs plays an important role in optimizing HER activity. This review emphasizes on recent progress in improving the catalytic properties of TMDs toward highly efficient production of H2 by electrochemical HER. Combining theoretical and experimental considerations, a summary of the progress to date is provided, and a pathway forward for viable hydrogen evolution from TMD driven catalysis is concluded.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

References

  1. A.K. Geim, K.S. Novoselov, The rise of graphene. Nat. Mater. 6, 183–191 (2007)

    Article  CAS  Google Scholar 

  2. R. Mas-Ballesté, C. Gómez-Navarro, J. Gómez-Herrero, F. Zamora, 2D materials: to graphene and beyond. Nanoscale 3, 20–30 (2011)

    Article  Google Scholar 

  3. S. Pakhira, K.P. Lucht, J.L. Mendoza-Cortes, Dirac cone in two dimensional bilayer graphene by intercalation with V, Nb, and Ta transition metals. J. Chem. Phys. 148, 064707 (2018)

    Article  CAS  Google Scholar 

  4. S. Pakhira, J.L. Mendoza-Cortes, Quantum nature in the interaction of molecular hydrogen with porous materials: implications for practical hydrogen storage. J. Phys. Chem. C 124, 6454–6460 (2020)

    Article  CAS  Google Scholar 

  5. J. Hui, N.B. Schorr, S. Pakhira, Z. Qu, J.L. Mendoza-Cortes, J. Rodríguez-López, Achieving fast and efficient K+ intercalation on ultrathin graphene electrodes modified by a Li+ based solid-electrolyte interphase. J. Am. Chem. Soc. 140, 13599–13603 (2018)

    Article  CAS  Google Scholar 

  6. H. Zhang, Ultrathin two-dimensional nanomaterials. ACS Nano 9, 9451–9469 (2015)

    Article  CAS  Google Scholar 

  7. M. Xu, T. Liang, M. Shi, H. Chen, Graphene-like two-dimensional materials. Chem. Rev. 113, 3766–3798 (2013)

    Article  CAS  Google Scholar 

  8. X. Chia, A.Y.S. Eng, A. Ambrosi, S.M. Tan, M. Pumera, Electrochemistry of nanostructured layered transition-metal dichalcogenides. Chem. Rev. 115, 11941–11966 (2015)

    Article  CAS  Google Scholar 

  9. M. Chhowalla, H.S. Shin, G. Eda, L.J. Li, K.P. Loh, H. Zhang, The chemistry of two-dimensional layered transition metal dichalcogenide nanosheets. Nat. Chem. 5, 263–275 (2013)

    Article  Google Scholar 

  10. A. Carvalho, M. Wang, X. Zhu, et al., Phosphorene: from theory to applications. Nat Rev Mater 1, 1–16 (2016)

    Article  CAS  Google Scholar 

  11. M. Pumera, Z. Sofer, 2D monoelemental arsenene, antimonene, and bismuthene: beyond black phosphorus. Adv. Mater. 29, 1605299 (2017)

    Article  CAS  Google Scholar 

  12. H. Jin, C. Guo, X. Liu, J. Liu, A. Vasileff, Y. Jiao, Y. Zheng, S.Z. Qiao, Emerging two-dimensional nanomaterials for electrocatalysis. Chem. Rev. 118, 6337–6408 (2018)

    Article  CAS  Google Scholar 

  13. S.Z. Butler, S.M. Hollen, L. Cao, Y. Cui, J.A. Gupta, H.R. Gutiérrez, T.F. Heinz, S.S. Hong, J. Huang, A.F. Ismach, E. Johnston-Halperin, M. Kuno, V.V. Plashnitsa, R.D. Robinson, R.S. Ruoff, S. Salahuddin, J. Shan, L. Shi, M.G. Spencer, M. Terrones, W. Windl, J.E. Goldberger, Progress, challenges, and opportunities in two-dimensional materials beyond graphene. ACS Nano 7, 2898–2926 (2013)

    Article  CAS  Google Scholar 

  14. X. Duan, C. Wang, A. Pan, R. Yu, X. Duan, Two-dimensional transition metal dichalcogenides as atomically thin semiconductors: opportunities and challenges. Chem. Soc. Rev. 44, 8859–8876 (2015)

    Article  CAS  Google Scholar 

  15. D. Jariwala, V.K. Sangwan, L.J. Lauhon, T.J. Marks, M.C. Hersam, Emerging device applications for semiconducting two-dimensional transition metal dichalcogenides. ACS Nano 8, 1102–1120 (2014)

    Article  CAS  Google Scholar 

  16. S.K. Mahatha, K.D. Patel, K.S.R. Menon, Electronic structure investigation of MoS2 and MoSe2 using angle-resolved photoemission spectroscopy and ab initio band structure studies. J. Phys. Condens. Matter 24, 475504 (2012)

    Article  CAS  Google Scholar 

  17. W. Sik Hwang, M. Remskar, R. Yan, V. Protasenko, K. Tahy, S. Doo Chae, P. Zhao, A. Konar, H. (Grace) Xing, A. Seabaugh, D. Jena, Transistors with chemically synthesized layered semiconductor WS2 exhibiting 105 room temperature modulation and ambipolar behavior. Appl. Phys. Lett. 101, 013107 (2012)

    Article  CAS  Google Scholar 

  18. P. Vogt, P. De Padova, C. Quaresima, et al., Silicene: compelling experimental evidence for graphenelike two-dimensional silicon. Phys. Rev. Lett. 108, 1–5 (2012)

    Article  Google Scholar 

  19. A. Pakdel, C. Zhi, Y. Bando, D. Golberg, Low-dimensional boron nitride nanomaterials. Mater. Today 15, 256–265 (2012)

    Article  CAS  Google Scholar 

  20. W. Yang, G. Chen, Z. Shi, C.C. Liu, L. Zhang, G. Xie, M. Cheng, D. Wang, R. Yang, D. Shi, K. Watanabe, T. Taniguchi, Y. Yao, Y. Zhang, G. Zhang, Epitaxial growth of single-domain graphene on hexagonal boron nitride. Nat. Mater. 12, 792–797 (2013)

    Article  CAS  Google Scholar 

  21. S. Najmaei, Z. Liu, W. Zhou, X. Zou, G. Shi, S. Lei, B.I. Yakobson, J.C. Idrobo, P.M. Ajayan, J. Lou, Vapour phase growth and grain boundary structure of molybdenum disulphide atomic layers. Nat. Mater. 12, 754–759 (2013)

    Article  CAS  Google Scholar 

  22. M.Y. Li, Y. Shi, C.C. Cheng, L.S. Lu, Y.C. Lin, H.L. Tang, M.L. Tsai, C.W. Chu, K.H. Wei, J.H. He, W.H. Chang, K. Suenaga, L.J. Li, Epitaxial growth of a monolayer WSe2-MoS2 lateral p-n junction with an atomically sharp interface. Science 349, 524–528 (2015)

    Article  CAS  Google Scholar 

  23. W. Choi, N. Choudhary, G.H. Han, J. Park, D. Akinwande, Y.H. Lee, Recent development of two-dimensional transition metal dichalcogenides and their applications. Mater. Today 20, 116–130 (2017)

    Article  CAS  Google Scholar 

  24. Q.H. Wang, K. Kalantar-Zadeh, A. Kis, J.N. Coleman, M.S. Strano, Electronics and optoelectronics of two-dimensional transition metal dichalcogenides. Nat. Nanotechnol. 7, 699–712 (2012)

    Article  CAS  Google Scholar 

  25. F. Zahid, L. Liu, Y. Zhu, J. Wang, H. Guo, A generic tight-binding model for monolayer, bilayer and bulk MoS2. AIP Adv. 3, 052111 (2013)

    Article  CAS  Google Scholar 

  26. G. Eda, H. Yamaguchi, D. Voiry, T. Fujita, M. Chen, M. Chhowalla, Photoluminescence from chemically exfoliated MoS2. Nano Lett. 11, 5111–5116 (2011)

    Article  CAS  Google Scholar 

  27. H. Li, Q. Zhang, C.C.R. Yap, B.K. Tay, T.H.T. Edwin, A. Olivier, D. Baillargeat, From bulk to monolayer MoS2: evolution of Raman scattering. Adv. Funct. Mater. 22, 1385–1390 (2012)

    Article  CAS  Google Scholar 

  28. S. Pakhira, K. Sen, C. Sahu, A.K. Das, Performance of dispersion-corrected double hybrid density functional theory: a computational study of OCS-hydrocarbon van der Waals complexes. J. Chem. Phys. 138, 164319 (2013)

    Article  CAS  Google Scholar 

  29. J. Hui, S. Pakhira, R. Bhargava, Z.J. Barton, X. Zhou, A.J. Chinderle, J.L. Mendoza-Cortes, J. Rodríguez-López, Modulating electrocatalysis on graphene heterostructures: physically impermeable yet electronically transparent electrodes. ACS Nano 12, 2980–2990 (2018)

    Article  CAS  Google Scholar 

  30. S. Pakhira, C. Sahu, K. Sen, A.K. Das, Can two T-shaped isomers of OCS-C2H2 van der Waals complex exist? Chem. Phys. Lett. 549, 6–11 (2012)

    Article  CAS  Google Scholar 

  31. S. Pakhira, M. Takayanagi, M. Nagaoka, Diverse rotational flexibility of substituted dicarboxylate ligands in functional porous coordination polymers. J. Phys. Chem. C 119, 28789–28799 (2015)

    Article  CAS  Google Scholar 

  32. S. Pakhira, K.P. Lucht, J.L. Mendoza-Cortes, Iron intercalation in covalent-organic frameworks: a promising approach for semiconductors. J. Phys. Chem. C 121, 21160–21170 (2017)

    Article  CAS  Google Scholar 

  33. N. Sinha, S. Pakhira, Tunability of the electronic properties of covalent organic frameworks. ACS Appl Electron Mater 3, 720–732 (2021)

    Article  CAS  Google Scholar 

  34. S. Pakhira, Rotational dynamics of the organic bridging linkers in metal-organic frameworks and their substituent effects on the rotational energy barrier. RSC Adv. 9, 38137–38147 (2019)

    Article  CAS  Google Scholar 

  35. S.S. Varghese, S.H. Varghese, S. Swaminathan, K. Singh, V. Mittal, Two-dimensional materials for sensing: graphene and beyond. Electron 4, 651–687 (2015)

    Article  CAS  Google Scholar 

  36. N. Choudhary, M.D. Patel, J. Park, B. Sirota, W. Choi, Synthesis of large scale MoS2 for electronics and energy applications. J. Mater. Res. 31, 824–831 (2016)

    Article  CAS  Google Scholar 

  37. J. Kang, S. Tongay, J. Zhou, J. Li, J. Wu, Band offsets and heterostructures of two-dimensional semiconductors. Appl. Phys. Lett. 102, 012111 (2013)

    Article  CAS  Google Scholar 

  38. V.H. Nguyen, T.P. Nguyen, T.H. Le, et al., Recent advances in two-dimensional transition metal dichalcogenides as photoelectrocatalyst for hydrogen evolution reaction. J. Chem. Technol. Biotechnol. 95, 2597–2607 (2020)

    CAS  Google Scholar 

  39. J. Wang, J. Liu, B. Zhang, X. Ji, K. Xu, C. Chen, L. Miao, J. Jiang, The mechanism of hydrogen adsorption on transition metal dichalcogenides as hydrogen evolution reaction catalyst. Phys. Chem. Chem. Phys. 19, 10125–10132 (2017)

    Article  CAS  Google Scholar 

  40. J.A. Wilson, A.D. Yoffe, The transition metal dichalcogenides discussion and interpretation of the observed optical, electrical and structural properties. Adv. Phys. 18, 193–335 (1969)

    Article  CAS  Google Scholar 

  41. C. Ataca, H. Şahin, S. Ciraci, Stable, single-layer MX 2 transition-metal oxides and dichalcogenides in a honeycomb-like structure. J. Phys. Chem. C 116, 8983–8999 (2012)

    Article  CAS  Google Scholar 

  42. F.A. Rasmussen, K.S. Thygesen, Computational 2D materials database: electronic structure of transition-metal dichalcogenides and oxides. J. Phys. Chem. C 119, 13169–13183 (2015)

    Article  CAS  Google Scholar 

  43. K. Liang, S. Pakhira, Z. Yang, A. Nijamudheen, L. Ju, M. Wang, C.I. Aguirre-Velez, G.E. Sterbinsky, Y. du, Z. Feng, J.L. Mendoza-Cortes, Y. Yang, S-doped MoP nanoporous layer toward high-efficiency hydrogen evolution in pH-universal electrolyte. ACS Catal. 9, 651–659 (2019)

    Article  CAS  Google Scholar 

  44. Y. Lei, S. Pakhira, K. Fujisawa, X. Wang, O.O. Iyiola, N. Perea López, A. Laura Elías, L. Pulickal Rajukumar, C. Zhou, B. Kabius, N. Alem, M. Endo, R. Lv, J.L. Mendoza-Cortes, M. Terrones, Low-temperature synthesis of heterostructures of transition metal dichalcogenide alloys (WxMo1-xS2) and graphene with superior catalytic performance for hydrogen evolution. ACS Nano 11, 5103–5112 (2017)

    Article  CAS  Google Scholar 

  45. S. Pakhira, J.L. Mendoza-Cortes, Tuning the Dirac cone of bilayer and bulk structure graphene by intercalating first row transition metals using first-principles calculations. J. Phys. Chem. C 122, 4768–4782 (2018)

    Article  CAS  Google Scholar 

  46. S. Pakhira, J.L. Mendoza-Cortes, Intercalation of first row transition metals inside covalent-organic frameworks (COFs): a strategy to fine tune the electronic properties of porous crystalline materials. Phys. Chem. Chem. Phys. 21, 8785–8796 (2019)

    Article  CAS  Google Scholar 

  47. K.S. Novoselov, D. Jiang, F. Schedin, T.J. Booth, V.V. Khotkevich, S.V. Morozov, A.K. Geim, Two-dimensional atomic crystals. Proc. Natl. Acad. Sci. U. S. A. 102, 10451–10453 (2005)

    Article  CAS  Google Scholar 

  48. L.F. Mattheiss, Band structures of transition-metal-dichalcogenide layer compounds. Phys. Rev. B 8, 3719–3740 (1973)

    Article  CAS  Google Scholar 

  49. D. Voiry, A. Mohite, M. Chhowalla, Phase engineering of transition metal dichalcogenides. Chem. Soc. Rev. 44, 2702–2712 (2015)

    Article  CAS  Google Scholar 

  50. X. Zhang, X.F. Qiao, W. Shi, J.B. Wu, D.S. Jiang, P.H. Tan, Phonon and Raman scattering of two-dimensional transition metal dichalcogenides from monolayer, multilayer to bulk material. Chem. Soc. Rev. 44, 2757–2785 (2015)

    Article  CAS  Google Scholar 

  51. K.F. Mak, C. Lee, J. Hone, J. Shan, T.F. Heinz, Atomically thin MoS2: a new direct-gap semiconductor. Phys. Rev. Lett. 105, 136805 (2010)

    Article  CAS  Google Scholar 

  52. A.D. Becke, Density-functional thermochemistry. III. The role of exact exchange. J. Chem. Phys. 98, 5648–5652 (1993)

    Article  CAS  Google Scholar 

  53. R. Puttaswamy, R. Nagaraj, P. Kulkarni, et al., Constructing a high-performance aqueous rechargeable zinc-ion battery cathode with self-assembled mat-like packing of intertwined Ag(I) pre-inserted V3O7·H2O microbelts with reduced graphene oxide core. ACS Sustain. Chem. Eng. 12, 3985–3995 (2021)

    Article  CAS  Google Scholar 

  54. K. S. Novoselov, A. K. Geim, S. V. Morozov, D. Jiang, Y. Zhang, S. V. Dubonos IVG and AAF (2004) Electric field effect in atomically thin carbon films. Science 306:666–669

  55. X. Cui, G. Lee, Y.D. Kim, et al., Multi-terminal transport measurements of MoS2 using a van der Waals heterostructure device platform. Nat. Nanotechnol. 10, 534–540 (2015)

    Article  CAS  Google Scholar 

  56. S. Tongay, H. Sahin, C. Ko, et al., Monolayer behaviour in bulk ReS2 due to electronic and vibrational decoupling. Nat. Commun. 5, 1–6 (2014)

    Article  CAS  Google Scholar 

  57. S. Tongay, J. Zhou, C. Ataca, K. Lo, T.S. Matthews, J. Li, J.C. Grossman, J. Wu, Thermally driven crossover from indirect toward direct bandgap in 2D semiconductors: MoSe2 versus MoS2. Nano Lett. 12, 5576–5580 (2012)

    Article  CAS  Google Scholar 

  58. A. Reina, X. Jia, J. Ho, D. Nezich, H. Son, V. Bulovic, M.S. Dresselhaus, J. Kong, Large area, few-layer graphene films on arbitrary substrates by chemical vapor deposition. Nano Lett. 9, 30–35 (2009)

    Article  CAS  Google Scholar 

  59. M. Hajlaoui, H. Sediri, D. Pierucci, et al., High electron mobility in epitaxial trilayer graphene on off-axis SiC(0001). Sci. Rep. 6, 1–8 (2016)

    Article  CAS  Google Scholar 

  60. W. Wang, X. Chen, X. Zeng, S. Wu, Y. Zeng, Y. Hu, S. Xu, G. Zhou, H. Cui, Investigation of the growth process of continuous monolayer MoS2 films prepared by chemical vapor deposition. J. Electron. Mater. 47, 5509–5517 (2018)

    Article  CAS  Google Scholar 

  61. Y. Zhan, Z. Liu, S. Najmaei, P.M. Ajayan, J. Lou, Large-area vapor-phase growth and characterization of MoS2 atomic layers on a SiO2 substrate. Small 8, 966–971 (2012)

    Article  CAS  Google Scholar 

  62. X. Ling, Y.H. Lee, Y. Lin, W. Fang, L. Yu, M.S. Dresselhaus, J. Kong, Role of the seeding promoter in MoS2 growth by chemical vapor deposition. Nano Lett. 14, 464–472 (2014)

    Article  CAS  Google Scholar 

  63. A. Mzerd, D. Sayah, J.C. Tedenac, A. Boyer, Optimal crystal growth conditions of thin films of Bi2Te3 semiconductors. J. Cryst. Growth 140, 365–369 (1994)

    Article  CAS  Google Scholar 

  64. H.M. Manasevit, Single-crystal gallium arsenide on insulating substrates. Appl. Phys. Lett. 12, 156–159 (1968)

    Article  CAS  Google Scholar 

  65. J. Cheon, J.E. Gozum, G.S. Girolami, Chemical vapor deposition of MoS 2 and TiS 2 films from the metal - organic precursors Mo ( S-t-Bu )4 and Ti ( S-t-Bu )4. Chem. Mater. 9, 1847–1853 (1997)

    Article  CAS  Google Scholar 

  66. S. Cwik, D. Mitoraj, O. Mendoza Reyes, et al., Direct growth of MoS2 and WS2 layers by metal organic chemical vapor deposition. Adv. Mater. Interfaces 5, 1–11 (2018)

    Article  CAS  Google Scholar 

  67. S C Xu, B Y Man, S Z Jiang, A H Liu, G D Hu, C S Chen, M Liu, C Yang DJF and CZ (2014) Direct synthesis of graphene on any nonmetallic substrate based on KrF laser ablation of ordered pyrolytic graphite. Laser Phys. Lett. 11:096001.

  68. Z. Zheng, T. Zhang, J. Yao, Y. Zhang, Flexible, transparent and ultra-broadband photodetector based on large-area WSe2 fi lm for wearable devices. Nanotechnology 27, 1–11 (2016)

    Article  Google Scholar 

  69. S.V. Mandyam, M. Zhao, P.M. Das, et al., Controlled growth of large-area bilayer tungsten diselenides with lateral P−N junctions. ACS Nano 13, 10490–10498 (2019)

    Article  CAS  Google Scholar 

  70. G. Siegel, Y.P.V. Subbaiah, M.C. Prestgard, et al., Growth of centimeter-scale atomically thin MoS2 films by pulsed laser deposition. APL Mater 3, 056103 (2015)

    Article  CAS  Google Scholar 

  71. L. El Bouanani, M.I. Serna, S.M.N. Hasan, et al., Large-area pulsed laser deposited molybdenum diselenide heterojunction photodiodes. ACS Appl. Mater. Interfaces 12, 51645–51653 (2020)

    Article  CAS  Google Scholar 

  72. Kun Tian KB and AT (2018) Growth of two-dimensional WS2 thin films by pulsed laser deposition technique. Thin Solid Films 668:69–73

  73. V.A. Online, L.K. Tan, B. Liu, et al., Atomic layer deposition of a MoS2 film. Nanoscale 6, 10584–10588 (2014)

    Article  CAS  Google Scholar 

  74. S. Pakhira, T. Debnath, K. Sen, A.K. Das, Interactions between metal cations with H2 in the M+- H2 complexes: performance of DFT and DFT-D methods. J. Chem. Sci. 128, 621–631 (2016)

    Article  CAS  Google Scholar 

  75. S. Pakhira, C. Sahu, K. Sen, A.K. Das, Dispersion corrected double high-hybrid and gradient-corrected density functional theory study of light cation-dihydrogen (M+-H2, where M = Li, Na, B and Al) van der Waals complexes. Struct. Chem. 24, 549–558 (2013)

    Article  CAS  Google Scholar 

  76. J. Kang, W. Cao, X. Xie, et al., Graphene and beyond-graphene 2D crystals for next-generation green electronics. Micro- Nanotechnol Sensors, Syst Appl VI 9083, 908305 (2014)

    Google Scholar 

  77. A.J. Garza, S. Pakhira, A.T. Bell, J.L. Mendoza-Cortes, M. Head-Gordon, Reaction mechanism of the selective reduction of CO2 to CO by a tetraaza [CoIIN4H]2+ complex in the presence of protons. Phys. Chem. Chem. Phys. 20, 24058–24064 (2018)

    Article  CAS  Google Scholar 

  78. K Praveen, M Sethumadhavan (2017) On the extension of XOR step construction for optimal contrast grey level visual cryptography. 2017 Int Conf Adv Comput Commun Informatics, ICACCI 2017 -Janua:219–222. (2017)

  79. S. Rhatigan, M.-C. Michel, M. Nolan, Hydrogen evolution on non-metal oxide catalysts. J Phys Energy 2, 042002 (2020)

    Article  CAS  Google Scholar 

  80. Q. Fu, J. Han, X. Wang, et al., 2D transition metal dichalcogenides: design, modulation, and challenges in electrocatalysis. Adv. Mater. 1907818, 1–24 (2020)

    Google Scholar 

  81. A.B. Laursen, S. Kegnæs, S. Dahl, I. Chorkendorff, Molybdenum sulfides - efficient and viable materials for electro - and photoelectrocatalytic hydrogen evolution. Energy Environ. Sci. 5, 5577–5591 (2012)

    Article  CAS  Google Scholar 

  82. C. Tan, X. Cao, X.J. Wu, Q. He, J. Yang, X. Zhang, J. Chen, W. Zhao, S. Han, G.H. Nam, M. Sindoro, H. Zhang, Recent advances in ultrathin two-dimensional nanomaterials. Chem. Rev. 117, 6225–6331 (2017)

    Article  CAS  Google Scholar 

  83. Y. Nie, L. Li, Z. Wei, Recent advancements in Pt and Pt-free catalysts for oxygen reduction reaction. Chem. Soc. Rev. 44, 2168–2201 (2015)

    Article  CAS  Google Scholar 

  84. Y. Wang, Y. Li, T. Heine, PtTe monolayer: two-dimensional electrocatalyst with high basal plane activity toward oxygen reduction reaction. J. Am. Chem. Soc. 140, 12732–12735 (2018)

    Article  CAS  Google Scholar 

  85. H. Zhang, Y. Tian, J. Zhao, Q. Cai, Z. Chen, Small dopants make big differences: enhanced electrocatalytic performance of MoS2 monolayer for oxygen reduction reaction (ORR) by N– and P–doping. Electrochim. Acta 225, 543–550 (2017)

    Article  CAS  Google Scholar 

  86. S. Dutta, S. De, MoS2 nanosheet/rGO hybrid: an electrode material for high performance thin film supercapacitor. Mater Today Proc 5, 9771–9775 (2018)

    Article  CAS  Google Scholar 

  87. S. Ratha, C.S. Rout, Supercapacitor electrodes based on layered tungsten disulfide-reduced graphene oxide hybrids synthesized by a facile hydrothermal method. ACS Appl. Mater. Interfaces 5, 11427–11433 (2013)

    Article  CAS  Google Scholar 

  88. L. Wang, Y. Ma, M. Yang, Y. Qi, One-pot synthesis of 3D flower-like heterostructured SnS2/MoS2 for enhanced supercapacitor behavior. RSC Adv. 5, 89069–89075 (2015)

    Article  CAS  Google Scholar 

  89. R. Cao, Q.C. Zhuang, L.L. Tian, X.Y. Qiu, Y.L. Shi, Electrochemical impedance spectroscopic study of the lithium storage mechanism in commercial molybdenum disulfide. Ionics (Kiel) 20, 459–469 (2014)

    Article  CAS  Google Scholar 

  90. S.W. Lee, M.T. McDowell, J.W. Choi, Y. Cui, Anomalous shape changes of silicon nanopillars by electrochemical lithiation. Nano Lett. 11, 3034–3039 (2011)

    Article  CAS  Google Scholar 

  91. Y. Seino, T. Ota, K. Takada, A. Hayashi, M. Tatsumisago, A sulphide lithium super ion conductor is superior to liquid ion conductors for use in rechargeable batteries. Energy Environ. Sci. 7, 627–631 (2014)

    Article  CAS  Google Scholar 

  92. L. Ionov, Hydrogel-based actuators: possibilities and limitations. Mater. Today 17, 494–503 (2014)

    Article  Google Scholar 

  93. K. Wang, H. Zhang, S. Chen, G. Yang, J. Zhang, W. Tian, Z. Su, Y. Wang, Organic polymorphs: one-compound-based crystals with molecular-conformation- and packing-dependent luminescent properties. Adv. Mater. 26, 6168–6173 (2014)

    Article  CAS  Google Scholar 

  94. J Li, H Wang, W Wei, L Meng Advanced MoS2 and graphene heterostructures as high-performance anode for sodium-ion batteries. Nanotechnology 30: (2019)

  95. O. Mashtalir, M. Naguib, V.N. Mochalin, et al., Intercalation and delamination of layered carbides and carbonitrides. Nat. Commun. 4, 1–7 (2013)

    Article  CAS  Google Scholar 

  96. Y. Dan, Y. Lu, N.J. Kybert, Z. Luo, A.T.C. Johnson, Intrinsic response of graphene vapor sensors. Nano Lett. 9, 1472–1475 (2009)

    Article  CAS  Google Scholar 

  97. P.T.K. Loan, W. Zhang, C. Te Lin, et al., Graphene/MoS2 heterostructures for ultrasensitive detection of DNA hybridisation. Adv. Mater. 26, 4838–4844 (2014)

    Article  CAS  Google Scholar 

  98. B. Cho, M.G. Hahm, M. Choi, J. Yoon, A.R. Kim, Y.J. Lee, S.G. Park, J.D. Kwon, C.S. Kim, M. Song, Y. Jeong, K.S. Nam, S. Lee, T.J. Yoo, C.G. Kang, B.H. Lee, H.C. Ko, P.M. Ajayan, D.H. Kim, Charge-transfer-based gas sensing using atomic-layer MoS2. Sci. Rep. 5, 8052 (2015)

    Article  CAS  Google Scholar 

  99. T. Wang, H. Zhu, J. Zhuo, Z. Zhu, P. Papakonstantinou, G. Lubarsky, J. Lin, M. Li, Biosensor based on ultrasmall MoS2 nanoparticles for electrochemical detection of H2O2 released by cells at the nanomolar level. Anal. Chem. 85, 10289–10295 (2013)

    Article  CAS  Google Scholar 

  100. F.K. Perkins, A.L. Friedman, E. Cobas, P.M. Campbell, G.G. Jernigan, B.T. Jonker, Chemical vapor sensing with monolayer MoS2. Nano Lett. 13, 668–673 (2013)

    Article  CAS  Google Scholar 

  101. K. Kalantar-Zadeh, J.Z. Ou, Biosensors based on two-dimensional MoS2. ACS Sensors 1, 5–16 (2016)

    Article  CAS  Google Scholar 

  102. D.J. Late, Y.K. Huang, B. Liu, J. Acharya, S.N. Shirodkar, J. Luo, A. Yan, D. Charles, U.V. Waghmare, V.P. Dravid, C.N.R. Rao, Sensing behavior of atomically thin-layered MoS2 transistors. ACS Nano 7, 4879–4891 (2013)

    Article  CAS  Google Scholar 

  103. Y. Chen, R. Ren, H. Pu, J. Chang, S. Mao, J. Chen, Field-effect transistor biosensors with two-dimensional black phosphorus nanosheets. Biosens. Bioelectron. 89, 505–510 (2017)

    Article  CAS  Google Scholar 

  104. N. Suvansinpan, F. Hussain, G. Zhang, C.H. Chiu, Y. Cai, Y.W. Zhang, Substitutionally doped phosphorene: electronic properties and gas sensing. Nanotechnology 27, 65708 (2016)

    Article  CAS  Google Scholar 

  105. F. Rigoni, S. Tognolini, P. Borghetti, G. Drera, S. Pagliara, A. Goldoni, L. Sangaletti, Enhancing the sensitivity of chemiresistor gas sensors based on pristine carbon nanotubes to detect low-ppb ammonia concentrations in the environment. Analyst 138, 7392–7399 (2013)

    Article  CAS  Google Scholar 

  106. V. Urbanová, P. Lazar, N. Antonatos, Z. Sofer, M. Otyepka, M. Pumera, Positive and negative effects of dopants toward electrocatalytic activity of MoS2 and WS2: experiments and theory. ACS Appl. Mater. Interfaces 12, 20383–20392 (2020)

    Article  CAS  Google Scholar 

Download references

Acknowledgements

Dr. Srimanta Pakhira acknowledges the SERB-DST, Government of India for providing his Early Career Research Award (ECRA) under the project number ECR/2018/000255. Dr. Pakhira thanks the SERB-DST for providing the highly prestigious Ramanujan Faculty Fellowship under the scheme number SB/S2/RJN-067/2017. Mr. Upadhyay thanks Indian Institute of Technology Indore (IIT Indore) and MHRD, Govt. of India for providing his doctoral fellowship. Mr. Jena Akash Kumar Satrughna thanks the SERB-DST, Government of India for providing his doctoral fellowship under the INSPIRE fellowship scheme no. IF190546. The authors would like to acknowledge the SERB-DST for providing the computing cluster and programs, and we extend our thanks to IIT Indore for providing the basic infrastructure to conduct this research work.

Funding

This work has been financially supported by the Science and Engineering Research Board-Department of Science and Technology (SERB-DST), Government of India under Grant No. ECR/2018/000255.

Author information

Authors and Affiliations

Authors

Contributions

Mr. Shrish Nath Upadhyay and Mr. Jena Akash Kumar Satrughna contributed equally to this work.

Corresponding author

Correspondence to Srimanta Pakhira.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Upadhyay, S.N., Satrughna, J.A.K. & Pakhira, S. Recent advancements of two-dimensional transition metal dichalcogenides and their applications in electrocatalysis and energy storage. emergent mater. 4, 951–970 (2021). https://doi.org/10.1007/s42247-021-00241-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s42247-021-00241-2

Keywords

Navigation